The Λ-parameter in 3-flavour QCD and α (m ) by the s Z ALPHA collaboration M. Brunoa, M. Dalla Bridab,c, P. Fritzschd,e, T. Korzecf, A. Ramosd∗, S. Schaeferc, H. Simmac, S. Sintg∗ and R. Sommerc,h∗ aPhysicsDepartment,BrookhavenNationalLaboratory,Upton,NY11973,USA bDipartimentodiFisica,UniversitàdiMilano-Bicocca&INFN,sezionediMilano-Bicocca, PiazzadellaScienza3,I-20126Milano,Italy 7 cNIC,DESY,Platanenallee6,D-15738Zeuthen,Germany 1 dPH-TH,CERN,CH-1211Geneva,Switzerland 0 2 eInstitutodeFísicaTeóricaUAM/CSIC,UniversidadAutónomadeMadrid, C/NicolásCabrera13-15,Cantoblanco,Madrid28049,Spain n a fDepartmentofPhysics,BergischeUniversitätWuppertal,Gaußstr. 20, J D-42119Wuppertal,Germany 2 gSchoolofMathematics&HamiltonMathematicsInstitute,TrinityCollege,Dublin2,Ireland 1 hInstitutfürPhysik,Humboldt-UniversitätzuBerlin,Newtonstr.15,12489Berlin,Germany ] t a E-mail:[email protected], [email protected], l - [email protected], [email protected], p e [email protected], [email protected], h [email protected], [email protected], [email protected] [ 2 We present results by the ALPHA collaboration for the Λ-parameter in 3-flavour QCD and the v strongcouplingconstantattheelectroweakscale, α (m ), intermsofhadronicquantitiescom- 5 s Z 7 puted on the CLS gauge configurations. The first part of this proceedings contribution contains 0 a review of published material [1, 2] and yields the Λ-parameter in units of a low energy scale, 3 1/L . We then discuss how to determine this scale in physical units from experimental data 0 had . for the pion and kaon decay constants. We obtain Λ(3) = 332(14)MeV which translates to 1 MS 0 αs(MZ)=0.1179(10)(2)usingperturbationtheorytomatchbetween3-,4-and5-flavourQCD. 7 1 : v i X r a CERN-TH-2016-262 DESY17-007 34thannualInternationalSymposiumonLatticeFieldTheory 24-30July2016 UniversityofSouthampton,UK ∗Speakers (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ Λ(3) andα (m )bytheALPHAcollaboration S.Sint,A.Ramos,R.Sommer s Z MS 1. Introduction ThestrongcouplinginQCDisafundamentalparameteroftheStandardModelanditsprecise knowledge is both of principal importance and of practical relevance to LHC physics. We here report on the ALPHA collaboration’s results for the Λ-parameter in 3-flavour QCD and α (m ). s Z TheprojectwasdesignedtomatchhadronicquantitiescomputedonCLSgaugeconfigurationsfor 3-flavourQCDatlowenergies[3,4]. ThestrategyfortheΛ-parameterwasexplainedin[5,6]and reliesonthemethodsandtoolsdevelopedovermanyyears(see[7,8]andreferencestherein). As a result we are able to defer the use of perturbation theory in 3-flavour QCD to high energies of O(100 GeV). On the other hand, the determination of α (m ) requires the matching to the 4- and s Z 5-flavour theories across the charm and bottom quark thresholds which still relies on perturbation theory [9, 10]. At all stages the continuum limit is taken and rather well controlled. Our strategy combinestheperturbativeknowledgeofthestandardSFcouplingathighenergieswiththeadvan- tageous properties of finite volume gradient flow couplings at low energies. A non-perturbative matching between these 2 coupling schemes is performed at an intermediate scale 1/L ≈4GeV. 0 At the largest box size reached, L , the matching to the gradient flow time scalet∗ at the SU(3) had 0 symmetric point is performed. Together with the recent results of ref. [4] (which rely on a new highprecisiondeterminationoftheaxialcurrentnormalizationconstant[11],basedonthemethod in[12]),thisallowsustoaccuratelyrelatetoalinearcombinationofpionandkaondecayconstants andthusexpressallresultsinphysicalunits. Inthiswrite-upwegothroughthedifferentstepsofthisstrategystartingfromthehighenergy end(section2). TheconnectionbetweentheintermediatescaleL andL isdiscussedinsection 0 had 3, includingthematchingatscaleL . RelatingL toahadronicscaleisthesubjectofsection4. 0 had This allows to quote the 3-flavour Λ-parameter in physical units. The perturbative connection to 5-flavour QCD is carried out in section 5, followed by our conclusions. Finally, a technical point pertainingtotheinterpolationofthelowenergydataisrelegatedtoanappendix. Notethatthefirst 2 steps have been published in [1] and [2], respectively. Further details on the first step will be given elsewhere [13]. The matching of L to a hadronic scale is currently being finalized. For a had recentaccountaimedatanon-latticeaudiencewereferto[14]. 2. Thehighenergyregime 2.1 AfamilyofcouplingsintheSFscheme UsingtheSchrödingerfunctionalinQCD[15,16],thespatialvectorcomponentsofthegauge fieldatthetimeboundariesx =0,T aretakentobespatiallyconstantandAbelian[17], 0 (cid:18) (cid:18) (cid:19) (cid:18) (cid:19) (cid:19) (cid:12) i π 1 1 π Ak(x)(cid:12)x0=0=Ck = Ldiag η− 3,η ν−2 ,−η ν+2 + 3 , (2.1a) (cid:18) (cid:18) (cid:19) (cid:18) (cid:19) (cid:19) Ak(x)(cid:12)(cid:12)x0=T =Ck(cid:48) = Lidiag −π−η,η ν+12 +π3,−η ν−12 +23π , (2.1b) for k=1,2,3. The parameters η and ν correspond with the existence of 2 abelian generators in SU(3). Theabsoluteminimumoftheactionwiththeseboundaryvaluesisattainedfor[15] B (x)=C +x0(cid:0)C(cid:48)−C (cid:1), B =0, (2.2) k k T k k 0 1 Λ(3) andα (m )bytheALPHAcollaboration S.Sint,A.Ramos,R.Sommer s Z MS theinducedbackgroundfield,whichisuniqueuptogaugeequivalence. Theeffectiveactionofthe SchrödingerfunctionalΓ[B]isthenunambiguouslydefinedanditsperturbativeexpansionstraight- forwardinprinciple, 1 Γ[B]= Γ [B]+Γ [B]+O(g2), (2.3) g2 0 1 0 0 withthefirsttermgivenbytheclassicalactionofthebackgroundfield, Γ [B]=g2S[B]=2(π+3η)2. (2.4) 0 0 SettingallquarkmassestozeroandT =L,theonlyremainingscaleissetbyL. TheSFcoupling atthisscaleisthendefinedasaderivativewithrespecttoabackgroundfieldparameter, ∂ηΓ[B] (cid:12)(cid:12) (cid:104)∂ηS(cid:105)|η=0 1 (cid:12) = = −ν×v¯(L). (2.5) ∂ Γ [B](cid:12) 12π g¯2(L) η 0 η=0 Thederivativeproducesanexpectationvaluewhichcanbemeasuredinnumericalsimulations. In fact,thereare2observables,theinversecoupling1/g¯2(L)andv¯(L)bothofwhicharemeasuredat ν =0. Anewfeatureofourprojectisthere-interpretationoftheparameterν asindexofafamily ofSFcouplings, 1 1 = −ν×v¯(L). (2.6) g¯2(L) g¯2(L) ν Thishasfirstbeenenvisagedasamethodtoreducelargecutoffeffectsinstronglycoupledmodels ofelectroweaksymmetrybreakingin[18]. In perturbation theory the β-function of the SF coupling family is known to 3-loops from the 2-loop matching to the MS-coupling in [19, 20, 21, 22] combined with the knowledge of the β-functionintheMS-scheme(cf.[23,24]andreferencestherein), ∂g¯ (L) β(g¯ )=−L ν =−b g¯3−b g¯5−b g¯7+O(g¯9). (2.7) ν ∂L 0 ν 1 ν 2,ν ν ν In 3-flavour QCD the universal terms are b =9/(4π)2 and b =1/(4π4). The 3-loop coefficient 0 1 isthenfoundtobe b =(−0.06(3)−ν×1.26)/(4π)3. (2.8) 2,ν TheΛ-parameterintheSF schemeisdefinedby ν LΛSFν =ϕν(g¯ν(L))=(cid:2)b0g¯2ν(L)(cid:3)−2bb120 e−2b0g¯12ν(L)exp(cid:26)−(cid:90) g¯ν(L)dg(cid:20)β(1g)+b1g3 −bb21g(cid:21)(cid:27). (2.9) 0 0 0 When evaluating the Λ-parameter one would like to know from which scale L one can trust per- turbation theory to evaluate the integral in the exponent and how one can quantify the associated systematicerror. Weproceedasfollows: firstwefixareferencescale,L ,through 0 g¯2(L )=2.012, (2.10) 0 andusethestep-scalingfunction(cf.nextsubsection)tostepuptheenergyscalenon-perturbatively byfactorsof2fromL toL =L /2n,forn=0,1,2,.... Wethenusetheν =0Λ -parameteras 0 n 0 SF referencepointandconsider L Λ = (Λ /Λ ) ×(L /L )×ϕ (g¯ (L )) (2.11) 0 SF SF SFν 0 n ν ν n (cid:124) (cid:123)(cid:122) (cid:125) (cid:124) (cid:123)(cid:122) (cid:125) exp(−ν×1.25516) 2n 2 Λ(3) andα (m )bytheALPHAcollaboration S.Sint,A.Ramos,R.Sommer s Z MS 1.22 1.20 u 1.18 / ) L / a 1.16 u, ( Σ 1.14 1.12 1.10 0 0.005 0.01 0.015 0.02 0.025 (a/L)2 Figure 1: Continuum extrapolation of the step scaling function. The leftmost points are the con- tinuum values, whereas the stars are obtained from perturbative scale evolution using the 3-loop β-function. withϕ (g¯ (L ))evaluatedinperturbationtheory,byinsertingthevalueofthecouplingg¯2(L )ob- ν ν n ν n tainednon-perturbativelyfromthestep-scalingprocedureandthe3-looptruncatedβ-function. Up to perturbative errors of order α2(1/L )=g¯4(L )/(4π)2, the result for L Λ must be independent n ν n 0 ofthenumberofstepsnandthevalueoftheparameterν. Thisgivesusanexcellentcontrolover the remaining systematic error stemming from perturbation theory. Before discussing the result webrieflypresentsomekeyfeaturesofournumericalsimulations,themeasurementsandthedata analysis. 2.2 Numericalsimulationdataandanalysis For the simulation at high energies we choose the Wilson plaquette action in order to use 2- loopperturbativeinformationatfiniteL/awhichisonlyavailableforthisregularization[19]. This allowsformorecontrolofboundaryO(a)effectsandalsoforperturbativeimprovementofthenon- perturbative data of the step-scaling function. We use the result for c from [25]. A very careful sw tuningofthebaremassparameterstotheircriticalvaluesin[26]reducesassociatedsystematicsto negligible levels. All our simulations have been carried out with a modification of the openQCD code[27]. ComparedtoearlierstudiesoftheSFcouplingin3-flavourQCDin[28](therewiththe Iwasakigaugeaction),wehavesignificantlyreducedstatisticalerrors. Wehaveproduceddatafor thestep-scalingfunctions Σ (u,a/L)=g¯2(2L)| , (2.12) ν ν g¯2ν(L)=u,m(L)=0 forlatticeresolutionsL/a=6,8,12andthecorrespondingdoubledlatticesizes1. Forν=0ourdata correspondstou-valuesintheinterval[1.1,2.0]. CutoffeffectareO(a2)inthebulk,andO(a)from thetimeboundaries. Thelatteraregovernedby2countertermsofdimension4withcoefficientsc t and c˜, known to 2-loop [19] and 1-loop order [29] respectively. Using these perturbative results t for the coefficients we expect that O(a) effects are strongly reduced. As a safeguard against any 1ForL/a=12wehavelimitedthedataproductiononthe24-latticesto3parameterchoices. 3 Λ(3) andα (m )bytheALPHAcollaboration S.Sint,A.Ramos,R.Sommer s Z MS O(a)contaminationofourcontinuumextrapolationsweincludeasystematicerrorasfollows. We determine the c and c˜ derivatives of the coupling numerically by a variation in a few points and, t t together with the corresponding perturbative information arrive at a model for the sensitivity of our data to such variations. We then use the last known perturbative coefficients for c and c˜ as t t an uncertainty and add the corresponding systematic error to the data. Note that this is likely an overestimate of the true error [13]. Fig. 1 shows our data points for the step-scaling function at ν =0. Wethenperformglobalfitsofthedata,forexample a2 a2 Σ(2)(u,a/L)=u+s u2+s u3+c u4+c u5+ρ u4 +ρ u5 , (2.13) 0 1 1 2 1 L2 2 L2 where Σ(2) denotes the 2-loop improved non-perturbative data, such that cutoff effects appear, by construction,firstatO(u4)[30]. Thecoefficientss ,s arefixedtotheirperturbativevalues, 0 1 s =2b ln2, s =s2+2b ln2, (2.14) 0 0 1 0 1 and we thus obtain the non-perturbative continuum step-scaling function σ(u) in terms of the fit coefficientsc andc andtheircorrelation,asrequiredfortheerrorpropagation. 1 2 2.3 ResultsforL Λ 0 0.033 0.032 Λ L0 0.031 0.030 0.029 0 0.005 0.01 0.015 0.02 0.025 0.03 α2 Figure 2: The extraction of the Λ-parameter using perturbation theory at different values of α, plottedvs. α2(1/L ). Thedatapointsare,fromtoptobottom,forν =−0.5,0,0.3and,fromright n toleft,forn=0,1,...,5stepsbyafactor2inscale. Giventhestep-scalingfunctionsinthecontinuumlimitourdataallowsustotakeupton=5 steps from L , thus covering a factor of 25 =32 in scale. For ν (cid:54)=0 one also needs to know the 0 valueofv¯atL [1], 0 v¯(L )=0.1199(10). (2.15) 0 We have considered O(10) ν-values around ν = 0. We present data for ν = 0.3 and ν = −0.5 besidesthereferencechoiceν =0. Fig.2showsthecorresponding3×6datapointsforL Λfrom 0 eq. (2.9), each corresponding to a determination of L Λ using non-perturbative data between L 0 0 and L and perturbation theory for L<L . As can be seen in the plot the data points nicely come n n togetheratsmallL(highenergyscales)whereα(1/L )≈0.1. Wearethereforeconfidenttoquote n ourresultwithanerrorof3%, L Λ =0.0303(8) ⇔ L Λ(3) =0.0791(21), (2.16) 0 SF 0 MS 4 Λ(3) andα (m )bytheALPHAcollaboration S.Sint,A.Ramos,R.Sommer s Z MS whichisthemainresultofourstudyofthelargeenergyregion. Inarecentletter[1]wehavealso presentedaby-productofthisstudy,namelytheobservationthatrenormalizedperturbationtheory in continuum QCD might be susceptible to larger systematic errors than often assumed. This is apparentinfig.2andinthecontinuumresultforv¯(L)whereperturbationtheoryatα =0.19does notlooktrustworthy. Thisisparticularlyworrisomegiventheveryadvantageouspropertiesofthe SF -schemesinperturbationtheory[1,13]. ν 3. Connectingwithhadronicscales Intheprevioussectionwehavedetailedourveryaccuratematchingwithperturbationtheory. The result is given in eq. (2.16) and relates the Λ-parameter with L , defined implicitly through 0 g¯2 (L )=2.012. The corresponding energy scale, 1/L ≈4GeV, is still very large if one aims SF 0 0 atusinglatticemethodstostudycontinuumpropertiesofQCDwhilehavingfinitevolumeeffects undercontrol. Thereforewewillcontinueusingourfinitesizescalingtechniqueinordertorelate thescaleL withascaleL characteristicofhadronicphysics. 0 had In principle one could simply continue with the program explained in the previous section until reaching the energy scale 1/L . Unfortunately the statistical precision of the SF coupling had deteriorates very fast when reaching large volumes (see for example the discussion in [31] and references therein), making it very difficult to maintain the precision. In order to overcome these problems we will continue to work with a finite volume renormalization scheme, but we will use the gradient flow coupling in a finite volume with SF boundary conditions [32] for our running coupling. Renormalized couplings based on the gradient flow have the nice property that their varianceisroughlyindependentofthelatticespacing. Themainresultofthissection[2]istheprecisedeterminationoftheratiooftwoscales L /L =21.86(42) for g¯2 (L )=11.31. (3.1) had 0 GF had Note,however,thatintheusualstepscalingprocedure(seeprevioussection)theaimistodetermine thevalueoftherenormalizedcouplingattwoscalesL andL thatareseparatedbyanintegerpower 1 2 ofthescalefactor(i.e. L =2nL withn∈Zwhenthescalefactoriss=2). Hereweneedtosolve 1 2 aslightlydifferentproblem: weknowthevalueofthecouplingattwoscales(L andL ),andare 0 had interestedincomputingtheratioofthesescales. Withourconventions2,theβ-functionisdefined by ∂g¯ (L) GF −L =β(g¯ ), (3.2) GF ∂L andratiosofscalessuchas(3.1)canbeeasilycomputed, oncetheβ-functionisknown, thanksto therelation L1 (cid:26) (cid:90) g¯GF(L1) dx (cid:27) =exp − . (3.3) L2 g¯GF(L2) β(x) In order to determine the β-function, we will first determine the usual continuum step scaling function, (cid:12) σ (u)=g¯2 (2L)(cid:12) , (3.4) GF GF (cid:12) g2 (L)=u GF 2Werecallthatwealwaysworkinamass-independentrenormalizationscheme,andthereforetheβ-functiononly dependsong. 5 Λ(3) andα (m )bytheALPHAcollaboration S.Sint,A.Ramos,R.Sommer s Z MS anduseittoconstrainthefunctionalformofβ(g)byusingtheexactrelation √ (cid:90) σGF(u) dx log2=− . (3.5) √u β(x) 3.1 Couplingdefinitionandchoicesofdiscretization The gradient flow coupling with SF boundaries conditions has been studied in [32], and the interestedreadershouldconsultthecitedreference. WeimposeSFboundaryconditionswithzero background field (i.e. Ck =Ck(cid:48) =0 in eq. (2.1)). The gradient flow [33, 34] determines how the gaugefieldB (t,x)evolveswiththeflowtimet (nottobeconfusedwiththeEuclideantimex )via µ 0 the(non-linear)diffusion-likeequation ∂B (t,x) (cid:12) µ =D G (t,x); A (x)=B (t,x)(cid:12) ; G =∂ B −∂ B +[B ,B ]. (3.6) ∂t ν νµ µ µ (cid:12)t=0 µν µ ν ν µ µ ν The important point is that gauge invariant observables made out of the flow field B (t,x) are µ automaticallyrenormalized[35]fort>0. InparticularonecanusetheactiondensityTr(G G ) √ µν µν to define a renormalized coupling at a scale µ ∝1/ 8t. There are many subtleties that lead us to usethefollowingcouplingdefinition t2 3 (cid:104)Tr(G (t,x)G (t,x))δˆ(Q)(cid:105)(cid:12) g¯2GF(L)=N −14 i,∑j=1 ij (cid:104)δˆ(Qij)(cid:105) (cid:12)(cid:12)√8t=cL;x0=T/2;T=L. (3.7) √ Note that the renormalization scale runs with the volume thanks to the relation 8t = cL (We choosec=0.3inthiswork). Severalpointsrequiresomeexplanation 1. The SF breaks the invariance under translations in Euclidean time. Moreover full O(a) im- provement with the SF setup requires to determine non-perturbatively two boundary im- provement coefficients (i.e. c,c˜), which we only know to 1-loop order in perturbation the- t t ory(seebelow). Tominimizetheseboundaryeffects,wechoosetodefinethecouplingusing the action density at x =T/2, and based only on the magnetic components (i,j =1,2,3) 0 ofthefieldstrengthtensor. WiththesechoicesboundaryO(a)effectscanbeestimatedfrom ourdataset,andarefoundtobesmall. 2. Simulations with SF boundary conditions suffer from the common problem of topology freezing [36]. In order to overcome this problem, we define the coupling only in the sec- torwithzerotopologicalcharge(see[37]formoredetails). 3. FortheprecisedefinitionsofthenormalizationN andthedelta-functionδˆ(Q)projectingto thezerochargesectorwereferto[2]. Sinceourfinalaimistodetermineourscalesinphysicalunitsfromthelargevolumesimulationsof theCLSinitiative[3],weusethesamebarelatticeaction,exceptfortheEuclideantimeboundary conditions. Inparticular,wesimulatethreemasslessflavoursofnon-perturbativelyO(a)improved Wilson fermions and a Symanzik tree-level O(a) improved gauge action. There is some freedom when defining this action near the Euclidean time boundaries, and we use option B of refer- ence [38]. With this choice we know the 1-loop value of the boundary improvement coefficients c,c˜ [39,40]. t t 6 Λ(3) andα (m )bytheALPHAcollaboration S.Sint,A.Ramos,R.Sommer s Z MS Therearemanypossibilitieswhentranslatingthecontinuumflowequation(3.6)tothelattice. Differentdefinitionsleadtodifferentcutoffeffects, butthesecanbelarge. Followingref.[41]we choosetheZeuthenflow. ThisparticulardiscretizationguaranteesthatO(a2)cutoffeffectsarenot generated when integrating the flow equation. In [2] we performed a detailed study of the cutoff effects offlow quantitiesand concludedthat, atleast forour data set, the scalingproperties ofthe Zeuthenflowallowustoperformamoreaccuratecontinuumextrapolation. 3.2 Determinationofthestepscalingfunction Thebaremassm istunedtoitscriticalvaluem withexcellentprecision[26],forallvalues 0 cr ofthebarecouplingβ =6/g2 usedhere. Anydeviationfromthecriticallineiswellbelowoursta- 0 tisticaluncertainties. Giventhefunctionm (β,L/a)(see[26]),oursimulationsdependessentially cr onlyononebareparameterβ. In order to determine the step scaling function we perform 9 precise simulations at β ∈ {3.9,4.0,4.1,4.3,4.5,4.8,5.1,5.4,5.7} on a L/a = 16 lattice. These simulations provide our 9 targetcouplingsv i v ∈{2.1257,3.3900,2.7359,3.2029,3.8643,4.4901,5.3013,5.8673,6.5489}, (3.8) i for which we would like to obtain the continuum step scaling function σ(v). In order to do i this, we tune the bare coupling β on some L/a = 8,12 lattices to match these values of the renormalized coupling. Once this tuning is satisfactory, we compute g¯2 on the doubled lattices GF (L/a = 16,24,32), with all bare parameters kept fixed, and thus obtain the lattice step scaling functionΣ (v,L/a). GF i Wefindthatournonperturbativedatafollowsverycloselythefunctionalform 1 1 − =constant, (3.9) Σ (u,L/a) u GF which allows us to propagate the uncertainties in u into Σ by using ∂Σ /∂u = Σ2 /u2. A GF GF GF (conservative) estimate of the boundary effects due to c is also propagated to Σ in a similar t GF fashion(see[2]forthedetails). All in all we get lattice estimates of the step scaling function Σ (v,L/a) at approximately GF i 9 values of the coupling. The very small mistuning can be corrected by shifting our data for Σ GF totheexacttargetvaluesbyusingtherelation(3.9). Theseshifteddatacanbeextrapolatedtothe continuuminastraightforwardway. Figure3ashowstwotypesofcontinuumextrapolationsofthe stepscalingfunction Σ (v,L/a) =σ (v)+ρ ×(a/L)2, (3.10) GF i GF i i 1/Σ (v,L/a) =1/σ (v)+ρ˜ ×(a/L)2. (3.11) GF i GF i i Note that the difference between these fit ansätze is O(a4). As it is apparent in Figure 3a, the continuumextrapolatedvaluesforbothfitansätzeagreewithinonestandarddeviation,butthereis asystematicdifferencebetweenthem. Despitethefactthatourdatashowsaverynicea2 scaling, the large cutoff effects, specially at large values of u, induce a systematic effect in our continuum extrapolations. We choose to include an estimate of this systematic uncertainty in the weights of 7 Λ(3) andα (m )bytheALPHAcollaboration S.Sint,A.Ramos,R.Sommer s Z MS 2.2 FitΣ 2.2 FitΣ Fit1/Σ Fit1/Σ Continuum(fitΣ) Continuum(fitΣ) Continuum(fit1/Σ) Continuum(fit1/Σ) 2 Data 2 Data u 1.8 u 1.8 / / L) L) / / a a u, 1.6 u, 1.6 Σ( Σ( 1.4 1.4 1.2 1.2 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 (a/L)2 (a/L)2 (a) Continuum extrapolation of the step scaling (b) Continuum extrapolation of the step scaling functionatthe9targetvaluesofthecouplingus- functionatthe9targetvaluesofthecouplingus- ingasweightsforthefittheuncertaintyinΣ.Note ingasweightsforthefittheuncertaintyinΣand that different continuum extrapolations are sys- thesystematicestimateoftheO(a4)effects. tematicallydifferent. Figure 3: Continuum limit of the step scaling function with and without including the systematic effect(3.12). ourfits. (cid:18) a(cid:19)4 u ∆sysΣ =0.05Σ 8 . (3.12) GF GF L u max This estimate comes from the size of the a2 cutoff effects at our largest value of the coupling (around 20% for our coarser lattice with L/a=8), that suggests that the O(a4) effects are around 5%. This effect is added in quadrature to the uncertainty in Σ . The result of this procedure is GF apparent if one compares Figures 3a and 3b. The fit functional forms are less constrained by the coarser lattices, resulting in a better agreement between the two extrapolation procedures. The price to pay is an increased error in the extrapolations. All our final numbers follow this fitting procedure. Theinterestedreadercanfindadetaileddiscussionin[2]. Asstatedearlierournon-perturbativedataobeysverywelltherelation1/σ−1/u=constant (the1-loopfunctionalform). Thissuggeststofitthecontinuumstepscalingfunctiontoafunctional form 1 1 nsig−1 − =Q(v), Q(u)= ∑ c uk, (3.13) i k σ (v) v GF i i k=0 wherethenumberoffitparametersn isvariedtochecktheconsistencyoftheresults. sig Finallyonecanalsocombinethecontinuumextrapolationsandtheparametrizationofthestep scalingfunctionsbyfitting 1 1 nρ−1 − =Q(v)+ρ(v)(a/L)2, ρ(u)= ∑ ρ uk. (3.14) i i k Σ (v,L/a) v GF i i k=0 Wefindgoodfitswhenn isatleast2. Notethatthisproceduredoesnotrequiretoshiftthedatato ρ constantvaluesofthecoupling. Allthesefittingproceduresproducearemarkableagreement,asis discussedindetailin[2]. 8 Λ(3) andα (m )bytheALPHAcollaboration S.Sint,A.Ramos,R.Sommer s Z MS Fit n n u u u u s(g2,g2) sig ρ 1 2 3 4 1 2 Σ 3 – 5.870(28) 3.954(22) 2.976(17) 2.385(15) 11.00(20) 1/Σ 1 3 5.843(20) 3.939(18) 2.971(16) 2.385(13) 10.96(18) 1/Σ 2 3 5.864(26) 3.944(19) 2.968(16) 2.378(14) 10.90(18) 1/Σ 3 3 5.864(27) 3.944(21) 2.968(17) 2.378(14) 10.90(19) (3.17),P 2 2 5.872(27) 3.949(19) 2.971(16) 2.379(14) 10.93(19) (3.17),P 3 3 5.874(28) 3.951(22) 2.972(17) 2.379(14) 10.93(20) Table 1: Coupling sequence eq. (3.18) with u = 11.31 and scale factors s(g2,g2) for g2 = 0 1 2 1 2.6723,g2 =11.31 for different fits to cutoff effects and the continuum β-function. Fits are la- 2 beled by Σ or 1/Σ for continuum extrapolations according to eq. (3.10), eq. (3.11) or eq. (3.17). Forglobalfitswespecifyn ,whileitsabsenceindicatesafitofdataextrapolatedtothecontinuum ρ ateachvalueofu=v. i 3.3 Determinationoftheβ-function Aswehavesaid,ourmainobjectiveistocomputearatioofscales,andinordertodothis,we needtodeterminetheβ-function. Wechoosetheparametrization g3 nsig−1 β(g)=− , P(g2)= ∑ p g2k. (3.15) P(g2) k k=0 The1-loopβ-functioncorrespondstothechoicen =1. Therelationbetweentheβ-functionand sig thestepscalingfunctionσ GF √ √ (cid:90) σ(u) dx (cid:90) σ(u) P(x2) log(2)=− = dx √u β(x) √u x3 (3.16) (cid:20) (cid:21) (cid:20) (cid:21) n p 1 1 p σ(u) sig p (cid:104) (cid:105) =− 0 − + 1log +∑ k+1 σk(u)−uk , 2 σ(u) u 2 u 2k k=1 is used to fit the coefficients p . An alternative analysis consists in combining the continuum k extrapolationwiththedeterminationoftheβ-functionbyfitting √ (cid:90) Σ(u,a/L) dx log(2)+ρ(u)(a/L)2=− . (3.17) (cid:101) √u β(x) Notethatthisansatzprovidesyetanotherparametrizationofthecutoffeffects. A quantitative test of the agreement between different functional forms consists in analyzing thesequence u =11.31, u =σ−1(u ),i=1,2,.... (3.18) 0 i GF i−1 Table 1 contains a sample of the different analysis considered in [2]. The agreement between differentansätzeisremarkable. Thelastcolumnoftable1isthescalefactor (cid:26) (cid:90) g2 dx (cid:27) s(g2,g2)=exp − , (3.19) 1 2 g β(x) 1 9