Mon.Not.R.Astron.Soc.000,000–000(0000) Printed5February2008 (MNLATEXstylefilev2.2) The Importance of Mergers for the Origin of Intracluster Stars in Cosmological Simulations of Galaxy Clusters Giuseppe Murante1,2, Martina Giovalli3, Ortwin Gerhard4, Magda Arnaboldi1,5, Stefano Borgani2,6,7, Klaus Dolag8 7 0 0 1INAF,OsservatorioAstronomicodiTorino,StradaOsservatorio20,I-10025PinoTorinese(Italy)([email protected]) 2 2DipartimentodiAstronomiadell’Universita´ diTrieste,ViaTiepolo11,I-34131Trieste(Italy) 3DipartimentodiFisicaGenerale“AmedeoAvogadro”,Universita´degliStudidiTorino,Torino(Italy)([email protected]) n 4Max-Planck-Institutfu¨rExtraterrestrischePhysik,Giessenbachstrasse,GarchingbeiMu¨nchen,D-85741.Germany([email protected]) a J 5ESO-Karl-Schwarzschild-Str.2D-85748GarchingbeiMu¨nchen([email protected]) 6INAF,OsservatorioAstronomicodiTrieste,ViaTiepolo11,I-34131Trieste(Italy)([email protected]) 1 7INFN,NationalInstituteforNuclearPhysics,Trieste(Italy) 3 8Max-Planck-Institutfu¨rAstrophysik,Karl-Schwarzschild-Strasse,GarchingbeiMu¨nchen,D-85741.Germany([email protected]) 1 v 5 2 5February2008 9 1 0 ABSTRACT 7 We studytheoriginofthediffusestellar component(DSC) in117galaxyclustersextracted 0 fromacosmologicalhydrodynamicalsimulation.Weidentifyallgalaxiespresentinthesim- / ulated clusters at 17 outputredshifts, starting with z = 3.5, and then build the family trees h p for all the z = 0 cluster galaxies. The most massive cluster galaxies show complex family - trees, resembling the merger trees of dark matter halos, while the majority of other cluster o galaxiesexperienceonlyoneor two majormergersduringtheirentire life history.Thenfor tr eachdiffusestarparticleidentifiedatz =0,welookforthegalaxytowhichitoncebelonged s atanearlierredshift,thuslinkingthepresenceofthediffusestellarcomponenttothegalaxy a : formationhistory. v Themainresultsofouranalysisare:(i)Onaverage,halfoftheDSCstarparticlescomes i X fromgalaxiesassociated with the family tree of the most massive galaxy (BCG), one quar- ter comes from the family trees of other massive galaxies, and the remaining quarter from r a dissolvedgalaxies.I.e.,theformationoftheDSCisparalleltothebuild-upoftheBCGand othermassivegalaxies.(ii) MostDSCstar particlesbecomeunboundduringmergersin the formation history of the BGCs and of other massive galaxies, independentof cluster mass. Ourresultssuggestthatthetidalstrippingmechanismisresponsibleonlyforaminorfraction of the DSC. (iii) At cluster radii larger than 250 h−1 kpc, the DSC fraction from the BCG isreducedandthelargestcontributioncomesfromtheothermassivegalaxies;inthecluster outskirts,galaxiesofallmassescontributetotheDSC.(iv)TheDSCdoesnothaveapreferred redshiftofformation:however,mostDSCstarsareunboundatz <1.(v)TheamountofDSC starsatz = 0 doesnotcorrelatestronglywith theglobaldynamicalhistoryofclusters,and increasesweaklywithclustermass. Key words: Galaxies:Clusters: General,Galaxies: Ellipticaland Lenticular,cD, Galaxies: Evolution 1 INTRODUCTION becomes unbound fromgalaxiesasthesefalltowards thedensest partsoftheirclusterenvironment. Theradialdistributionoftheintraclusterlight(ICL)ingalaxy Observationsof diffuseintraclusterlightandindividual intraclus- clustersisobservedtobemorecentrallyconcentratedthanthatof ter stars in nearby clusters (Arnaboldietal. 2002, 2003, 2004; the cluster galaxies (Zibettietal. 2005), a result which was pre- Feldmeieretal.2003;Mihosetal.2005;Gerhardetal.2005)and dicted from cosmological hydrodynamical simulations of galaxy at intermediate redshift (Gonzalezetal. 2000; Feldmeieretal. clusters(Muranteetal.2004,M04hereafter).Zibettietal.(2005) 2004;Zibettietal.2005)indicatethatasubstantialfractionofstars alsofindthatthesurfacebrightnessoftheICLcorrelatesbothwith 2 G. Muranteet al. BCG luminosity and with cluster richness, while the fraction of performedinthepreviousSections.InSection8wesummariseour the total light in the ICL is almost independent of these quanti- resultsandgiveourconclusions. ties.Otherobservationsindicateanincreaseoftherelativefraction of diffuse stars from the mass scale of loose groups (less than 2 %,Castro-Rodr´ıguezetal.(2003),Feldmeieretal.(2003))tothat ofVirgo-likeclusters(Feldmeieretal.2003;Arnaboldietal.2003; 2 THESIMULATEDCLUSTERS Mihosetal. 2005, ≈ 5−10%) up to the most massive clusters (Gonzalezetal.2000;Feldmeieretal.2002;Gal-Yametal.2003; Theclustersanalysedinthispaperareextractedfromthelargehy- Feldmeieretal.2004;Kricketal.2006,10-20%orhigher). drodynamicalsimulation(LSCS)ofa“concordance”ΛCDMcos- The origin and evolution of this diffuse stellar component mologicalmodel(Ωm = 0.3,ΩΛ = 0.7,Ωb = 0.019h−2,h = (DSC)iscurrentlyunknownandseveralmechanismarebeingin- 0.7and σ8 = 0.8). Thissimulationispresented inBorganietal. vestigated.TheICLmaybeproducedbystrippinganddisruption (2004)andwerefertothatpaperforadditionaldetails.TheLSCS ofgalaxiesastheypassthroughthecentralregionsofrelaxedclus- is carried out with the massively parallel Tree+SPH code GAD- ters(Byrd&Valtonen1990;Gnedin2003).Othermechanismsare GET2(Springeletal.2001;Springel2005),andfollows4803dark thestrippingofstarsfromgalaxiesduringtheinitialformationof matter particles and as many gas particles in a periodic box of clusters(Merritt1984);creationofstellarhalosingalaxygroups, size 192h−1 Mpc. Accordingly, the mass resolution is mdm = that later fall into massive clusters, and then become unbound 4.6 × 109h−1M⊙, mgas = 6.9 × 108h−1M⊙ and mstar = (Mihos 2004; Rudicketal.2006); strippingof starsduring high– 3.465×108h−1M⊙.ThePlummer–equivalentsofteninglengthfor speed galaxy encounters in the cluster environment (Mooreetal. thegravitationalforceissettoǫ = 7.5h−1 kpc,fixedinphysical 1996). Evidence for ongoing stripping from elliptical galaxies in unitsfromz = 0toz = 2,whilebeingfixedinco-movingunits clusterswaspresentedbyCyprianoetal.(2006). athigherredshift.TheSPHsofteninglengthofthegasisallowed toshrinktohalfthevalueofthegravitationalforcesoftening.The In parallel, numerical simulations have been performed to simulationincludesradiativecooling,theeffectofaphoto–ionising investigate the properties the DSC in galaxy clusters within the uniform UV background, star formation using a sub-resolution currentcosmological models.Napolitanoetal.(2003)usedDark- multi-phasemodel for the interstellarmedium (Springel &Hern- Matter(DM)onlysimulations,andidentifiedthestellarcomponent quist2003),feedbackfromsupernovae(SN)explosions,including using the DM particles as tracers. For the first time, M04 used a theeffectofgalacticoutflows.Thevelocityofthesegalacticwinds ΛCDMcosmologicalhydrodynamicalsimulation,includingradia- tivecoolingandstarformation,toquantifytheamountandthedis- isfixedtovw ≃340kms−1,whichcorrespondsto50%efficiency forSNtopowertheoutflows. tributionoftheDSCinasetof117clusters.Willmanetal.(2004) Clustersareidentifiedat z = 0 using astandard friends-of- and Sommer-Larsenetal. (2005) found aDSC in their simulated friends (FOF) algorithm, with a linking length of 0.15 times the single clusters. Willmanetal. (2004) discussed the origin of the mean dark matter inter-particleseparation. We identify 117 clus- DSC:theyfoundacorrelationbetweentheclustergrowthandthe increaseintheDSCmass,andthatbothmassiveandsmallgalaxies tersinthesimulationwithMFOF >1014h−1M⊙.Clustercentres areplacedatthepositionoftheDMparticlehavingtheminimum contributetoitsformation. valueofthegravitationalpotential.Foreachcluster,thevirialmass Recently,Rudicketal.(2006)performedcollisionlesssimula- Mvir isdefinedasthemasscontainedwithinaradiusencompass- tionswherehigh–resolutionmodelgalaxieswereinsertedintheir inganaveragedensityequaltothevirialdensity,ρvir,predictedby darkmatterhalosatagivenredshift,andthentheircommonevo- thetop–hatsphericalcollapsemodel.Fortheassumedcosmology, lution in a cluster was followed from that time on. A DSC was ρvir ≃ 100ρc, where ρc is the critical cosmic density (Ekeetal. formed,andRudicketal.(2006)foundthattheclusterDSCgrows 1996,e.g.). withtheaccretionofgroupsduringtheclusterhistory. To test the effects of numerical resolution on the final re- Inthiswork,wefocusontheformationmechanismoftheICL sults, we select three clusters, having virial masses Mvir = inacosmologicalhydrodynamicalsimulation(Borganietal.2004, 1.6,2.5,2.9×1014h−1M⊙,andre-simulatethemtwicewithdif- M04). Theformation of galaxies and their subsequent dynamical ferentresolution.Whilethefirst,lower-resolutionsimulationiscar- evolutioninatimedependentgravitationalpotentialisadirectcon- riedoutatthesameresolutionastheparentsimulation,thesecond sequenceofthehierarchicalassemblyprocessofcosmicstructures. simulationhadamassresolution 45× higher, withacorrespond- Usingalarge(1923h−3Mpc3)volumesimulation,westudyasta- ingly smaller softening parameter, ǫ = 2.1h−1 kpc. These re- tistically significant ensemble of galaxy clusters and follow how simulationsareperformedusingmoreefficientSNfeedback,with starsbecomeunboundfromgalaxiesduringtheevolutionofclus- awindvelocityvw ≃480kms−1.Adetaileddescriptionofthese tersasafunctionofcosmictime.Wealsoaddressthestabilityof re–simulationsisprovidedbyBorganietal.(2006). our resultsagainst numerical resolution bycarrying out thesame analysisonthreeclustersfromthisset,whichwerere-simulatedat asubstantiallyimprovedforceandmassresolution. Theplanofthepaperisasfollows:inSection2wedescribe 3 IDENTIFYINGGALAXIESINACLUSTERWITH ournumericalsimulationsandinSection3wegivedetailsonthe SKID galaxy identificationandproperties. InSection4 wedescribe the identificationofthediffusestellarcomponent(DSC).InSection5 The identification of substructures inside halos is a longstanding wepresentthelinkbetweengalaxyhistoriesandtheformationof problem, which is not uniquely solved. In the present work, we theDSC;inSection6wediscusshowresolutionandothernumer- needtoidentifygalaxiesinthesimulationsfromthedistributionof icaleffectmayaffect our results;inSection7wediscussthedy- starparticleswhichfillthevolumeofthecosmologicalsimulation. namicalmechanismsthatunbindstarsfromgalaxiesinclustersand In the LSCS, “galaxies” are defined as self—bound, locally comparewiththestatisticalanalysisofthecosmologicalsimulation over-dense structures, following the procedure in M04, which is Originof intraclusterstarsincosmologicalsimulations 3 based on the publicly available SKID algorithm1 (Stadel 2001). At a given redshift, once the star particleshave been grouped by SKID,weclassifyasgalaxiesonlythosegroupswhichcontainat least 32 bound star particles. There is a degree of uncertainty in thegalaxyidentificationbySKID,asinothersimilaridentification algorithms,whichcomesinfromtheassignmentofthosestarpar- ticleswhicharelocatedinitsoutskirtsofeachself-boundobject. Themainadvantage of thisidentificationalgorithmisthatitpro- videsadynamically–based, automated, operationalwaytodecide whetherastarparticlebelongstoagravitationallyboundobjector not.Additionaldetailsofthegalaxyidentificationalgorithmandon ourtestsaregivenintheAppendix. Weexpectthat,onceaself-boundstructureofluminouspar- ticles has been formed at a given redshift, most of its mass will remaininboundstructures,forallsubsequentredshifts.However, itmayhappenthatagroupofparticlesclassifiedasa“galaxy”at oneoutputredshift,withanumberofparticlesjustabovethespec- ifiedminimum particlethreshold for structure identification, may fallbelowthislimitatthenextredshiftoutput.Thismayoccur,for example, because thegroup isevaporated by interaction withthe Figure1. Themeangalaxystellardensityinsidethehalf-mass-radiusasa functionofgalaxymass.Allgalaxiesidentifiedintheparentsimulationat environment. Following Springeletal. (2001), we call structures all17redshiftoutputsareshown.Thesolidlineshowsanestimateofthe that can be identified only at one output redshiftvolatile, and do observedgalaxydensitiesfromSDSSdata(seetext).Thedottedlinesshow notconsiderthemfurther. thedensitiescorrespondingtothe3σscatterreportedinShenetal.(2003). Allstarparticlesthatneverbelongtoanygalaxiesidentifiedin theselectedredshiftoutputsarealsoassignedtothisvolatileclass. Suchstarparticleseitherdonotbelongtoanyboundstructureal- ρmin(Mgal).Galaxieswithdensitylowerthanthisminimumden- readyatthefirstoutputredshift,atz=3.5,ortheyforminagalaxy sity are discarded and also classified as volatile. From Fig. 1 we andbecomeunboundbetweentwosimulationoutputredshifts.In notethattheobservedtrendofdecreasingdensitywithincreasing bothcases,sincewecannotassignthosestarstothehistoryofany mass is recovered in our (lower-resolution) parent simulation for galaxies,wecannotdeterminetheirdynamicalorigin. galaxymasses∼>1011h−1M⊙. Animportantissueinourstudyconcernsthereliabilityofthe Inordertoquantifytheeffectofvolatilegalaxiesonourfinal simulatedgalaxypopulation.Ifgalaxiesareunder-dense,theycan results, we tested other density thresholds, namely (i) one corre- easily lose stars or be completely disrupted as a consequence of spondingto1σ scatterintheRe distribution,(ii)afixedvalueof numericaleffects.Insimulations,low-massgalaxiesmayhavetyp- ρ = 5·106h2M⊙/kpc3,aswellas(iii)agalaxymassthreshold, icalsizesoftheorder oftheadopted softeningparameter, sothat M =6·1010h−1M⊙.Ourresultsremainqualitativelyunchanged theirinternalmassdensityisunderestimated.Thereforeatthelow- wheneitherofthesecriteriaisadopted. massend,weexpectthatoursimulatedgalaxieswillhaveaninter- naldensitywhichisanincreasingfunctionofgalaxymass.Onthe otherhand,numericaleffectsshouldbelessimportantforthemore 4 IDENTIFYINGTHEDIFFUSESTELLAR massivegalaxies. COMPONENT Toinvestigatethisissue,weevaluatethestellardensityofall thesimulatedgalaxiesatthehalf-mass-radius,andplottheseinFig- Thestarformationmodelimplementedinoursimulationsisbased ure1asafunctionofthegalaxymass,combiningallredshiftout- onagas–densitythresholdcriterion(Springel&Hernquist2003). puts.Forrealgalaxies,theinternaldensityof(early–type)galaxies Thisensuresthatstarscanonlyforminsideexistinggravitational isadecreasingfunctionoftheirmass,asshownmostrecentlyby potential wells,sothat starformationdoesnot takeplaceoutside Shenetal.(2003),whomeasuredthesizedistributionfor140,000 DMhalos.ThusDSCstarsmusthavebecomeunboundfromtheir galaxiesfromtheSloanDigitalSkySurvey.Weusetheirmeasured parent galaxies sometime after their formation. Therefore in our size distribution to estimate the observed galaxy densities within analysis, we define as diffuse stellar component (DSC) all those thehalf-mass-radius.Forthispurpose,wetaketheexpressionsfor starparticleswhich(i)donot belong toanyself-bound galaxyat a Hernquist profilein (Hernquist 1990) to relate Sersichalf-light z = 0,(ii)werepartofanon-volatilestructureatearlierredshifts radiitothree-dimensionalhalf-massradii,andthenconverttheSer- whosedensity exceeded theminimumdensity for itsmassasde- sicsize-stellarmassrelationfor early-type galaxiesof Shenetal. finedabove. (2003)toarelationbetweenstellarmassandmeandensitywithin In surface brightness measurements of the DSC, sometimes thehalf-massradius.ThesolidlineinFig.1representstheresult- adistinctionisattemptedbetweenthecomponent associatedwith ingestimateofthemeangalaxydensity,withthedottedlineslim- thehaloofthecentraldominant(cD)galaxyandtheintra–cluster itingthe3σscatterofthesizedistributionasreportedinShenetal. light,whichfillsthewholeclusterregion.QuotingfromUsonetal. (2003). The dots inFig. 1 show the equivalent mean densities of (1991):”whetherthisdiffuselightiscalledcDenvelopeordiffuse our simulatedcluster galaxies. Inwhat follows, weusethelower intergalacticlightisamatterofsemantics: itisadiffusecompo- 3σ envelopetoestimatetheminimumacceptablegalaxydensities nentdistributedwithellipticalsymmetryatthecanterofthecluster potential”.Inouranalysis,wewillnotmakesuchadistinction:all starparticlesthatdonotbelongtoanyself-boundgalaxyatz =0, 1 Seehttp://www-hpcc.astro.washington.edu/tools/skid.htminlcludingthecDgalaxyidentifiedbySKID,arepartofthediffuse 4 G. Muranteet al. 5 TRACINGTHEORIGINOFTHEDSC 0.4 Thelargesetofsimulatedclustersextractedfromthecosmological simulationallowsustoperformastatisticalstudyoftheoriginof 0.35 theDSC.FromFig.2,itisclearthatclusterswithsimilarmasscan haveratherdifferentamountsofDSCatz=0.Forthisreason,we 0.3 willfirst address the general trends inthe originof the DSCthat areindependentofthecharacteristicsanddynamicalhistoryofin- dividualclusters,suchastheredshiftatwhichthemostoftheDSC 0.25 C becomes unbound, and from which galaxies the intracluster stars S D mainlyoriginate.Wewilltheninvestigatewhethersignificantdif- F 0.2 ferencesintheproductionoftheDSCcanbefoundbetweenclus- tersbelongingtodifferentmassclasses,anddiscusstherobustness ofourresultsagainstnumericalresolution. 0.15 We study the origin of the DSC by adopting the following strategy:wefollowbackintimealltheparticlesintheDSCcom- 0.1 ponent at z = 0 within each cluster’s virial radius and associate themwithboundstructurespresentatanyearlierredshifts.Forall clustersandthe17redshiftoutputs(fromz = 0toz = 3.5),we 0.05 1014 1015 compilethelistofallgalaxiesasdescribedinSect.3.Subsequently, Cluster mass ( h-1 M € ) foreachDSCparticleatz =0,wecheckwhetheritbelongtoany ofthesegalaxiesatearlierredshift.Ifnogalaxyisfound,theDSC Figure2.ThefractionofstellarmassintheDSCrelativetothetotalstellar particle is discarded, because we cannot establish its origin. If a massasafunctionoftheclustervirialmass.Dotsareforthe117clustersin galaxyisfound,thentherearethreeoptions: ourparentsimulation.Thecrossesshowtheaveragevaluesofthisratioin differentmassbins,withtheerrorbarsindicatingther.m.s.scatterwithin • This galaxy has a central density larger than the adopted eachbin. threshold and it belongs to the “family tree” of a galaxy identi- fiedat z = 0 (see the next subsection); the DSC particleis then associatedwiththatfamilytree. • This galaxy has a central density larger than the adopted threshold,butitdoesnotbelongtoafamilytreeofanygalaxyat stellar component if they wereonce part of a non-volatile, above z = 0;theDSCparticleisthenconsidered tocomefroma“dis- minimum-densitystructure. solved”galaxy. The part of the DSC contributed by galaxies which have a • This galaxy has a central density below the adopted thresh- central densitylower thanρmin isnot considered inour analysis, old and isthus considered as “volatile”; the DSC particleis then becauseitismostlikelyaffectedbynumericaleffects.Theselow- discarded. density structures include a population of extremely low–density In this way, the progenitors of all retained DSC particles can be objectsfoundbySKIDattheverylowmassend,manyofthemrep- found. resentingamis–identificationofSKIDduetotheirsmallnumber ofparticles(<100).However,bydiscardingthecontributionfrom low-densityandvolatilegalaxies,wemayalsoneglectapossibly 5.1 Buildingthefamilytreesofgalaxies genuine contribution to the DSC from a population of low–mass galaxies.Becauseofthis,ourestimateofthediffuselightfraction Webuildthemergertreesofallgalaxiesidentifiedatz=0,andre- inthesimulatedclustersmaybeanunderestimate,althoughwebe- fertothemas“familytrees”todistinguishthemfromthestandard lievethecorrespondingbiastoberelativelysmall;weshalldiscuss DMhalomergertrees. thisissueinSect.6. The“familytrees”arebuiltasfollows.Foreach output red- Figure 2 shows the fraction FDSC = MD∗SC/Mt∗ot, where shift zi+1 of thesimulations, wefollow all theDM, star and gas M∗ isthestellarmassintheDSCandM∗ isthetotalstellar particleswithinthevirialradiusoftheidentifiedclusteratz = 0. DSC tot massfoundwithinRvirforeachclusterintheparentsimulation,as Webuildcatalogsofallgalaxiesfromthecorresponding starand afunctionoftheclustermass.Inthiscomputation,thediffusestar DMparticlesdistributions.Foragivengalaxyidentifiedatredshift particlesfromvolatilegalaxieshavebeendiscarded.Wereporton zi+1,wetagallitsstarparticlesandtrackthembacktotheprevious thefractionsofDSCstarsinallthestepsofourselectionprocedure outputredshiftzi.Wethenmakealistofthesubsetofallidentified inTable1. galaxiesatzi whichcontainthetaggedparticlesbelonging tothe Consistent with the results shown in M04, we find: 1) The specifiedgalaxyatzi+1. fractionofDSCrelativetothetotalstellarlightinclustersincreases WedefineagalaxyGi,atoutputredshiftzi,tobeprogenitor withclustermass,albeitwithalargescatter,and2)theDSCfrac- of a galaxy Gj at the next output redshift zi+1 if it contains at tioninthesimulatedclustersisintherange0.1 < FDobSsC < 0.4. least a fraction g of all the stars ending up in Gj. The definition Both results are broadly consistent with the observed trends and of progenitor depends on the fraction g. Our tests show that the values(Arnaboldi2004;Aguerrietal.2005,2006);however,adi- numberofgalaxiesidentifiedasprogenitorsisstableforg values rectcomparisonbetweenobservedandmeasuredvaluesofFDSCis varyingintherange0.3–0.7.Thevalueadoptedforouranalysisis onlyqualitative,becausesimulationsprovidethevolume–averaged g=0.5,whichisthesamevalueadoptedinseveralreconstructions massfractiondirectly,whilethisisnottruewiththeobservedDSC oftheDMhalomergertreespresentedintheliterature(Kauffmann fractions. 2001;Springeletal.2001;Wechsleretal.2002). Originof intraclusterstarsincosmologicalsimulations 5 Figure3.Left:FamilytreeofthecDgalaxyofclusterAinthelow-resolutionsimulation(seeTable1).Right:FamilytreesofthecDgalaxy,thethird-most massivegalaxy,andalower-massgalaxyinthehigh-resolutionre-simulationofthesamecluster.–Thesizeofsymbolsisproportionaltothelogarithmofthe massofthegalaxiesatthecorrespondingredshift.Shownontheverticalaxisontheleftaretheoutputredshiftsusedtoreconstructthefamilytrees;theseare differentinbothsimulations.Agalaxyinthesetreesisconsideredaprogenitorofanothergalaxyifatleast50%ofitsstarsareboundtoitsdaughtergalaxy, accordingtotheSKIDalgorithm.Manymoregalaxiescanbeidentifiedinthehigh-resolutionsimulationatsimilarredshift.ThecDfamilytreeischaracterised byonedominantbranchwithanumberofotherbranchesmergingintoit,atbothresolutions.Squaresandtrianglesrepresentourclassificationof“merging” and“stripping”events,seeSection5.6.CirclescorrespondtoredshiftatwhichthegalaxyisnotreleasingstarstotheDSC. Wethenbuildthefamilytreesfor allgalaxiesfound at z = 0 in all the 117 clusters of our sample. Given the adopted mass thresholdof32starparticlepergalaxy,thisamountstoanoverall 1 numberof1816galaxiesatredshiftz = 0,and71648galaxiesin 1.0 allredshiftoutputs. Figure3showsthefamilytreeof thecD galaxyof acluster 0) 0.8 havingvirialmassMvir = 1.6×1014h−1M⊙ (clusterAinTa- z= ( ble1).ThecDgalaxyfamilytreeiscomplexandresemblesatypi- C S 0.6 0.01 calDMhalomergertree,withthecDbeingtheresultofanumber D F of mergers between pre–existing galaxies. Other galaxies have a / much simpler formation history, with fewer or no mergers of lu- z) 0.4 2 0 minousobjects.ThisisillustratedintherightpartofFig.3which (C shows merger trees from the high-resolution re-simulation of the S D 0.2 samecluster, for thecD galaxy, thethird-most massive galaxyin F thecluster,andalow-massgalaxy.Inmoremassiveclusters,galax- ieswhosefamilytreesareintermediatebetweenthatofthecDand 0 thethird-mostmassivegalaxycanalsobefound.Theyarehowever 3.5 3 2.5 2 1.5 1 0.5 0 amongthemostmassivegalaxiesintheircluster,andtheyareoften Redshift themostmassivegalaxyofaninfallingsubcluster,whichhasnot mergedcompletelywiththemainclusteryet. Oncethefamilytreesofallgalaxiesinourclustersatz = 0 arebuilt,wethenanalysetheformationhistoryoftheDSC. Figure4. Fractionofstarparticles foundintheDSCatredshiftz = 0 whicharealreadyinthediffusecomponentatredshiftz,forallclustersin ourset.Theinsetshowthesamecurvesinlogarithmiccoordinates. 5.2 TheepochofformationoftheDSC Asalreadydiscussed,thestarformationmodelusedinoursimula- tionsimpliesthatstarscanonlyforminsideexistinggravitational DSCstarparticlesalreadyresideoutsidetheirparentgalaxies,with potential wells,sothatallDSCstarsmust havebecome unbound significantcluster-to-clustervariations.However,fromtheinsetof fromtheirparentgalaxiessometimeaftertheirformation.InFig- Fig.4wenotethattheproductionoftheDSCfollowsapower-law, ure 4, we plot the fraction of star particles in the DSC at z = 0 thus implying that it is a cumulative process which, on average, whicharealreadyintheDSCatredshiftz.ThebulkoftheDSCis doesnot haveapreferredtimescale.Willmanetal.(2004)found createdafterz ≈1,whenonaverageonly≈30percentofz =0 asimilarresultbasedontheanalysisoftheirhigh–resolutionsim- 6 G. Muranteet al. ulation of a single cluster, with a continuous growth of the DSC contributedtotheproductionoftheDSC.Ourresultssuggestthat fractionandnopreferredepochofformation. whentheclusterstatisticsisenlarged,suchcasesarerare;inourset No statistically significant correlation is found between the thisisthecasein3clustersoutofthe11mostmassiveonesfrom fraction of DSC at z = 0 and a number of possible tracers of thewholesetof117clusters. the dynamical history of the cluster, such asthe concentration of Furthermore,Figure5showsthatclusterDisstilldynamically theNFWprofile,thenumberof(DM–halo)majormergers,orthe young,withanumberofmassivesubstructuresbothintheDMand epoch of the last major merger. Thissuggests that the process of in the star particle distribution. This is probably the main reason formationoftheDSCismorerelatedtothelocaldynamicsofthe whytheDSCformationinthisclusterisnotdominatedbythemost interactions between galaxies and the group/cluster environment, massivegalaxy:thesub–clumpscontaingalaxiesofvariousmasses ratherthantotheglobaldynamicalhistoryofthecluster. whichexperiencedseveralmergersintheirhistory,producingasig- nificantamountofDSC.Thisisalsoconfirmedbytheanalysisof thefamilytreesofthegalaxiesbelongingtothiscluster:12ofthe 5.3 DSCandthehistoryofgalaxies 85 identified galaxies had more than one merger in their history, whileusuallyonlyoneortwogalaxiesineachclusterarefoundto Wenowproceedtoestablishwhichgalaxiesarethemaincontrib- haveacomplexfamilytree. utors to the formation of the DSC. For each DSC star particle at Intheother3clusters,thelargestfractionoftheDSCstarpar- z = 0, we look for a Gj galaxy at zi to which it last belonged. ticlesisassociatedwiththeformationhistoryofthecluster’smost Whenthisgalaxyisfound,wecheckwhetherthegalaxyGj isas- massivegalaxy.ClusterBalsoshowsalargecontributioncoming sociatedwiththefamilytreeofagalaxyG atz=0.Ifso,thenthe k from dissolved galaxies: perhaps this suggests that the tidal field DSCstarparticleisassociatedwiththe“familytree”ofthegalaxy associatedinthisclusterwasmoreefficientindisruptinggalaxies Gk.IftheGj galaxyatzj isnotassociatedwiththefamilytreeof ratherthanstrippingsomeoftheirstars. anyGkgalaxiesatz =0,butitsfamilytreeendsatzj+m,thenthe Ouranalysissofardoesnotexcludethatsomefractionofthe DSCstarparticleisassociatedwithadissolvedgalaxy.Ifnobound DSCatz = 0isproduced insubclustersor groups, suchassug- structure is found, then the particle is associated with a volatile gested by Rudicketal. (2006). In fact, the analysis of cluster D structure,anditisnotconsideredinthesubsequentanalysis. suggeststhatthisdoeshappen.Ifthesesub-clustersorgroupsmi- Asanextstep,wecomputewhatfractionoftheDSCparticles gratetothecentreoftheclusterandfinallymerge,ourprocedure comesfromthefamilytreesofgalaxiesatz = 0,asafunctionof wouldassociate theDSCparticlesunbound fromthesestructures the binned galaxy mass at z = 0, M (z = 0). Then the DSC gal withthefamilytreeofthecDatz =0. mass M∗ (M ) obtained for each M (z = 0) bin is nor- DSC gal gal However,iftidalstrippingoftheleast–boundstarsinallgalax- malisedbythetotalstellarmassoftherespectivecluster.Thetotal ieswerethe mainmechanism for theproduction of theDSC,we fractionFDSC foreachclusterisfinallygivenbythesumoverall wouldexpectamoresimilarfractionofDSCstarparticlesfromall contributionsfromallgalaxymassesatz =0. galaxymasses. 5.4 Standardresolutionsimulation-4exemplaryclusters 5.5 Standardresolutionsimulation-statisticsfor117clusters Wediscusstheresultsofthisanalysisforthefourclustersshownin Wenowturntothestatisticalresultsforthewholesetof117clus- Figure5.ThefigureshowsthedensitydistributionofDMandstar ters.InFigure7weshowthecontributionsfromthesamegalaxy particlesinthefourclusters,andalsothedistributionofstarparti- mass bins as before, but averaged over all clusters and over dif- clesinthehigh-resolutionre-simulationoftheseclusters.Themain ferentcluster massranges. Toobtainour averagevalues, wesum characteristicsoftheseclustersaregiveninTable1.Thegalaxies themassof diffusestar particlesinallclustersintheappropriate identifiedbySKIDcorrespondtothedensestregionsplottedinyel- galaxy mass bin and normalise it to the total stellar mass of all lowinthisFigure. clusters.Thisprocedurecreatesa“stacked-averaged” cluster.The Thesefourclusterscoverawiderangeofmasses(seeTable1), averagevalueofthediffuselightfractionis< FDSC >= 16%of andthetwointermediatemassclustersBandChaveverydifferent thetotalstellarmass. dynamicalhistories:clusterBexperiencedamajormergeratz≈1, Intheupper leftpanelofFig.7,showingthefractionalcon- whileclusterCisundergoingamergereventatz=0whichbegan tributionsfromgalaxymassbinsaveraged over thewholecluster atz≈0.2. set,therightmostcolumnrepresentsthecontributionfromtheclus- In Figure 6, the histograms show the mass fractions of the ters’BCGsonly. Thevalueofthemassforthisclassisarbitrary; DSCassociatedwiththefamilytreesofMgal(z = 0) galaxyfor thisbinhasbeenplottedseparatelysincethemassesoftheBCGs thesefourclusters.FromFig.6,wecandrawthefollowingpicture increasewithclustermassand,therefore,BCGsindifferentclus- fortheoriginoftheDSC: terscanbelongtodifferentmassbins.Thiseffectisclearlyvisible • ThebulkoftheDSCcomesfromtheformationhistoryofthe intheupperrightpanelofFig.7,whichreferstothelessmassive clustersinourset.Fortheseclusters,theBCGsfallintotwomass mostmassivegalaxy,exceptinthemostmassiveclusterD; • Dissolved galaxies give asignificant contribution intwo out bins,withthemajorityofthemfallinginthesecondmostmassive bin. ofthefourclusters(clustersB,D); • Allothergalaxyfamilytreesprovideeitherasmall(clusters TheotherthreepanelsofFig.7showthesamerelativecon- tributions when the average is performed over (i) the 11 most A–C)ormodest(clusterD)contributiontotheDSC. massive clusters (lower right panel, Mvir > 4 × 1014h−1M⊙ In the caseof the most massive D cluster, asignificant con- with < FDSC >= 19%), (ii) the 35 clusters having intermedi- tribution to the DSC comes from intermediate–mass galaxies. atemass(lowerleftpanel,2×1014 <Mvir <1014h−1M⊙with Willmanetal. (2004) also found in their simulation of one clus- < FDSC >= 18%),and(iii)the71leastmassiveclusters(upper terwithmasssimilartoour clusterD,thatgalaxiesofallmasses rightpanel,Mvir < 2×1014h−1M⊙ with< FDSC >= 13%). Originof intraclusterstarsincosmologicalsimulations 7 Figure5.Thedistributionofthedarkmatter(leftpanels)andofthestars(canterpanels)forclusters(A),(B),(C),(D)fromthecosmologicalsimulation,and thedistributionofstarsinthehigh-resolutionre-simulationsofthesamefourclusters(rightpanels),allatredshiftz=0.Theframesare3h−1Mpconaside inthefirstthreerowsand6h−1Mpcinthelastrow,correspondingto≈2Rvirforthefourclusters(seeTable1).Theyshowdensitymapsgeneratedwiththe SMOOTHalgorithm,appliedseparatelytotheDMandstarparticledistributions.ColourscaleislogarithmicanddifferentforDMandstars:from10−0.5to 105timescriticaldensityandfrom10to106timescriticaldensityforstarsandDMparticles,respectively. 8 G. Muranteet al. 0.2 0.2 (A) (B) 0.15 0.15 C S D 0.1 0.1 F 0.05 0.05 0 0 0.2 0.2 (C) (D) 0.15 0.15 C S D 0.1 0.1 F 0.05 0.05 0 0 10 11 12 10 11 12 10 10 10 10 10 10 -1 Galaxy mass class ( h M € ) Figure6.Histograms ofthefraction ofDSCstarparticles identified atz = 0,associated withthe familytrees ofz = 0galaxies ofdifferent masses: FDSC(Mgal) = MD∗SC(Mgal)/Mt∗ot.ResultsarereportedforthefourclustersshowninFigure5(seealsoTable1).Weuse10galaxymassbins,loga- rithmicallyspaced,fromMmin = 1.1×1010h−1M⊙toMmax = 3.1×1012h−1M⊙.Theleftmostcolumnineachpanelgivesthecontributionfrom dissolvedgalaxies,regardlessoftheirmass.Itisthemassrangeonlyforsakeofclarity.Forthese4clusters,theonlyfamilytreecontributingtotherightmost columnisthatassociatedwiththeBCG. Table1.Virialmasses,viralradii,andDSCfractionsforthefourclustersA–DshowninFigure5.Thefractionshowninthecolumn4,Fall ,includesthe DSC contributionfromlow-densitygalaxies.TheFDSCvalueincolumn5isobtainedomittingtheparticlesunboundfromlow-densitygalaxies.Forcompleteness wereportthefractionFvol ofdiscardedparticles fromlow-densityorvolatilestructuresincolumn6;thefractionFdis ofstarparticlesfromdissolved DSC DSC galaxiesincolumn7,whichcorrespondstotheleftmostcolumnsinthehistogramsofFigs.6and7;thefractionFng ofstarparticlesthatneverbelongedto DSC anygalaxyincolumn8.ThelastrowofthetablereportstheaverageDSCfractionsforthewholesampleof117clusters. Label Mvir(1014h−1M⊙) Rvir(h−1kpc) FDalSlC FDSC FDvoSlC FDdiSsC FDngSC A 1.6 1200 0.33 0.20 0.11 0.02 0.02 B 2.5 1290 0.36 0.21 0.12 0.10 0.05 C 2.9 1350 0.45 0.27 0.14 0.04 0.04 D 13.0 2250 0.45 0.22 0.23 0.06 0.00 Ave – – 0.34 0.18 0.09 0.04 0.07 Originof intraclusterstarsincosmologicalsimulations 9 0.1 0.1 14 -1 All clusters M < 2•10 h M € clus 0.08 0.08 0.06 0.06 C S D F 0.04 0.04 0.02 0.02 0.0 0.0 14 -1 14 -1 2•10 h M € < M M > 4•10 h M € clus clus 14 -1 0.08 < 4•10 h M € 0.08 0.06 0.06 C S D F 0.04 0.04 0.02 0.02 0.0 0.0 10 11 12 10 11 12 10 10 10 10 10 10 -1 Galaxy mass class ( h M € ) Figure7. HistogramsoftherelativecontributiontotheDSCfromtheformationhistoryofgalaxiesbelongingto10Mgal(z =0)massbins,fortheentire setofclustersinthesimulation,andasafunctionofclustermass.Upperleftpanel:averageoverthewhole117clusterset.Upperrightpanel:averageover the71leastmassiveclusters.Lowerrightpanel:averageoverthe11mostmassiveclusters.Lowerleftpanel:averageoverthe35intermediate–massclusters. Weuse10Mgal(z =0)massbins,logarithmicallyspacedfromMmin =1.1×1010h−1M⊙toMmax =3.1×1012h−1M⊙.Theleftmostcolumnin eachpanelrepresentsthecontributionfromdissolvedgalaxies,regardlessoftheirmass.Therightmostcolumnineachpanelshowsthecontributionfromthe historyofthesinglemostmassivegalaxyofeachcluster,regardlessofitsactualmass. Theseaveragevaluesshow aweaktrendwithcluster massinthe mate(Section3),thenthecontributiontotheFDSCfromtheBCG productionoftheDSC.Asafurthertest,wehavedividedclusters risesto≈76%,whilethatfromdissolvedgalaxiesdropsto≈8%. accordingtheamountoftheDSCfractionitself.Thisanalysisalso As expected, most “dissolved galaxies” are those with low den- confirmsthatthedominantcontributiontotheDSCcomesfromthe sities, which indicates that their contribution to the DSC may be BCGfamilytree,independentofFDSCasexpected,giventheweak affected by the limits in numerical resolution. This needs further relationbetweenFDSCandclustermass.Wealsofindthatthecon- worktobeproperlyunderstood. tributionfromdissolvedgalaxiesisslightlyhigherforclusterswith <FDSC>greaterthan25%. The results shown in Fig. 7 areconsistent withthe previous 5.6 Mergingandstrippingingalaxyfamilytrees analysisofthefourclusters:thebulkoftheDSCisassociatedwith As shown in Fig. 3, the BCG is the galaxy that experiences the thegalaxiesinthefamilytreeofthemostmassivegalaxyofeach largestnumberofluminousmergersduringitsassembly,anditof- cluster. Galaxies in the family trees of smaller z = 0 mass bins tenhasthemostcomplexfamilytreeinacluster.Ourresultthata contributeonlyfewtenthsofthefractionfromtheBCGfamilytree. largefractionofDSCisassociatedwiththeBCGsupportsasce- Dissolved galaxies also contribute significantly to the DSC, nariowheremergersreleasestarsfromtheirparentgalaxiestothe butitispossiblethattheirestimatedcontributionsareaffectedby intraclusterspace. somenumericaleffects.Infact,iftheanalysisisrestrictedtogalax- To investigate this further, we estimate the fraction of DSC ieswhosedensityiswithin1σoftheobservedgalaxydensityesti- particles associated with themergerpart of the family trees, and 10 G. Muranteet al. 1 to the formation of the most massive galaxies in the cluster and to mergers between luminous objects, are the main cause for the 0.9 creationoftheDSC. 0.8 Afurthermechanismpossiblyatworkisthecompletedisrup- * tionofgalaxies,whichalsotakesplacepreferentiallyintheclus- 0.7 SC tercentralregions. Inour cosmological simulationthisformation D strp , F / FSCDSC 000...456 mficselsuceutscseth,eabrwnseihlisonimcwFhwfitgoeh.rne5dtnh.tewoDepSrdoiCsdcuiuscselsiukoneuldryehrti-ogdheb-nerseeesnoghlaualntaicxoeinedss.ibmWyuneluaatmdiodenrresicsoasfltthehifes- D F 0.3 mrgF / DSC 0.2 * 5.7 cDHalovsIntraclusterLight 0.1 Sofar,wehavemadenoattempttodistinguishbetweenacompo- 0 nentofDSCassociatedwiththeunbound halosofthecentralcD 1010 1011 1012 Galaxy mass class ( h-1 M € ) galaxies,andamorecluster-wideDSC.OurdefinitionoftheDSC includesstarsintheclustercentralregionsandapartofthesemay Figure 8. The fraction of DSC stars arising in the “merger” part, wellbeintheformof cD halos (seetheAppendix). Independent FDmSrCg/FDSC, and in the “stripping” part, FDstSrCp/FDSC, of the galaxy of how well a distinction between these two components can be family trees, as a function of their z = 0 galaxy mass class (solid and made,onemightexpectthatthefractionofDSCstarsthatcomes dashedlines,respectively).Theasterisksmarkthevaluesforthecontribu- fromthemergingtreeoftheBCGwouldbemostconcentratedto- tionfromtheBCGfamilytreeonly.Seetextfordetails. wardsthecluster centre. Toshed somelight on thisquestion, we showinFigure9thesameanalysisfortheaverageoverallgalaxy withthestrippingpartofthefamilytrees,asfollows.Wedefinea clustersinthesimulationasinFig.7,butnowexcludingallDSC DSCstarparticletoarisefromamergeratredshiftzjifthegalaxyit particles residing in the central 250h−1 kpc around their cluster waslastboundtohasmorethanoneprogenitoratzj−12.TheDSC centres.TheremainingtotalDSCfractiondropstoabout6%,less particlescoming fromtheprogenitors atzj−1 arealsodefinedas thanhalfofthetotal,reflectingthesteepradialprofileoftheDSC arisingfromamerger.WetakeaDSCstarparticletobeunbound (Muranteetal.2004;Zibettietal.2005).ForR>250h−1kpc,the throughstrippingif the galaxy it waslast bound to at redshift zj familytreesof themost massivegalaxies stillprovide thelargest hasonlyoneprogenitor atzj−1.Thedifferentpartsofthefamily contributiontotheDSC(permassbin),butthecumulativecontri- treesareindicatedinFig.3,wherethesquaresrepresentthemerger butionsfromfamilytreesoflessmassivegalaxiesnowdominates partofthetree,trianglesthestrippingpart,whilecirclesmarkthe theBCGcomponentbyafactor∼2.Atthesametime,therelative partofthetreewherenostarsarereleasedtotheDSC. contributionfromdissolvedgalaxiesincreases.Thelowerpanelof In Figure 8, we show the fraction of the DSC star particles Fig.9 shows the same analysis but now excluding DSC particles whicharisefromthemergerpartofthefamilytree,asafunction within0.5Rvir.Inthiscase,the< FDSC >dropsto∼ 1%,with ofthefinalgalaxymass.Forhigh–massgalaxies,mostoftheDSC the fraction from the BCG family tree now similar to that from originates from the mergerpart of their family trees. Low mass othergalaxies. galaxies,ontheotherhand,losestarsonlyviastripping.Aftereach SincetheBCGhaloislikelytobelessextendedthan250h−1 mergerbetweenmassivegalaxyprogenitors,upto30%ofthestel- kpc, our interpretation of the results in Fig. 9 is that the merger larmassinthegalaxiesinvolvedhasbecomeunbound.Thislarge part of the most massive galaxy family tree in each cluster con- fraction perhaps indicates that many of these mergers take place tributes substantially to the DSC also outside the cD halo. How- either in strong tidal fields generated by the mass distribution on ever,atradii250h−1kpc<R<0.5Rvir,thecumulativecontribu- largerscales,orjustbeforethemergerremnantsfallintotheirre- tionfromthefamilytreesofothermassivegalaxiesdominatesthe spectivecluster. DSC.Presumably,thesearethemostmassivegalaxieswithinsub- CombinedwiththeresultthatmostoftheDSCstarparticles groups,whichfellintotheclusterandbrought intheirownDSC, areassociatedwiththefamilytreesofthemostmassivegalaxies, butwhichhavenotyethadtimetomergewiththeBCG.Thisinter- thefactthatmostoftheDSCisreleasedduringmergereventsim- pretationisconsistentwiththesimulationresultsofWillmanetal. plies that the bulk of the DSC originates in the merger assembly (2004)andRudicketal.(2006).Onlyintheoutskirtsofclusters,at ofthemost massivegalaxiesinacluster.Themorestandardpic- R > 0.5Rvir,wefindthattheDSCparticlescomepreferentially turefortheformationoftheDSC,inwhichallgalaxieslosetheir fromthestrippingpartoffamilytreesfromallgalaxymassbins. outerstarswhileorbitinginanearlyconstantclustergravitational The relevance of merger events for the formation of the potential,isnotconfirmedbycurrentcosmologicalhydrodynamic DSC may explain why diffuse light is more centrally concen- simulations. It appears that strong gravitational processes, linked trated than galaxies, in both observations (Zibettietal. 2005; Arnaboldietal. 2002) and in simulations (M04, Willmanetal. 2004, Sommer-Larsenetal. 2005). Stars from accreted satellite 2 Itmayhappenthatthefinalphaseofthemergerisnotdetectedbyour galaxies form extended luminous halos around massive galaxies galaxyidentificationprocedure,becausethetwomergingstructuresarevery (Abadietal.2006),andifthesemassivegalaxiesend upconcen- closetoeachotherandhavesmallrelativevelocities.Inthiscase,theSKID tratedtotheclustercentre,theirdiffuseouterenvelopeswouldpref- algorithm generally mergesthetwoobjects intoasingleone,evenifthe erentiallycontributetotheDSCintheclustercentre. mergerisnotyetcompleted.Forthisreason,weassignaDSCstarparti- cletothemergerpartofitsparentgalaxyfamilytreeevenifitbecomes Our results on the origin of the DSC are also consistent unboundtwofamilytreelevelsafterthemerger,atzj+1(i.e.fromthe“off- withthepredictionsbyD’Onghiaetal.(2005)thatsimulatedfos- springoftheoffspring”ofamerger). sil galaxy groups have a larger amount of intra–group stars than