ebook img

THE h-VECTORS OF MATROIDS AND THE ARITHMETIC DEGREE OF SQUAREFREE ... PDF

106 Pages·2016·0.84 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview THE h-VECTORS OF MATROIDS AND THE ARITHMETIC DEGREE OF SQUAREFREE ...

UUnniivveerrssiittyy ooff KKeennttuucckkyy UUKKnnoowwlleeddggee University of Kentucky Doctoral Dissertations Graduate School 2008 TTHHEE hh--VVEECCTTOORRSS OOFF MMAATTRROOIIDDSS AANNDD TTHHEE AARRIITTHHMMEETTIICC DDEEGGRREEEE OOFF SSQQUUAARREEFFRREEEE SSTTRROONNGGLLYY SSTTAABBLLEE IIDDEEAALLSS Erik Stokes University of Kentucky, [email protected] RRiigghhtt cclliicckk ttoo ooppeenn aa ffeeeeddbbaacckk ffoorrmm iinn aa nneeww ttaabb ttoo lleett uuss kknnooww hhooww tthhiiss ddooccuummeenntt bbeenneefifittss yyoouu.. RReeccoommmmeennddeedd CCiittaattiioonn Stokes, Erik, "THE h-VECTORS OF MATROIDS AND THE ARITHMETIC DEGREE OF SQUAREFREE STRONGLY STABLE IDEALS" (2008). University of Kentucky Doctoral Dissertations. 636. https://uknowledge.uky.edu/gradschool_diss/636 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Erik Stokes The Graduate School University of Kentucky 2008 THE h-VECTORS OF MATROIDS AND THE ARITHMETIC DEGREE OF SQUAREFREE STRONGLY STABLE IDEALS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Arts and Sciences at the University of Kentucky By Erik Stokes Lexington, Kentucky Director: Dr. Uwe Nagel, Professor of Mathematics Lexington, Kentucky 2008 Copyright(cid:13)c Erik Stokes 2008 ABSTRACT OF DISSERTATION THE h-VECTORS OF MATROIDS AND THE ARITHMETIC DEGREE OF SQUAREFREE STRONGLY STABLE IDEALS Making use of algebraic and combinatorial techniques, we study two topics: the arithmetic degree of squarefree strongly stable ideals and the h-vectors of matroid complexes. For a squarefree monomial ideal, I, the arithmetic degree of I is the number of facets of the simplicial complex which has I as its Stanley-Reisner ideal. We consider the case when I is squarefree strongly stable, in which case we give an exact formula for the arithmetic degree in terms of the minimal generators of I as well as a lower bound resembling that from the Multiplicity Conjecture. Using this, we can produce an upper bound on the number of minimal generators of any Cohen-Macaulay ideals with arbitrary codimension extending Dubreil’s theorem for codimension 2. A matroid complex is a pure complex such that every restriction is again pure. It isalong-standingopenproblemtoclassifyallpossibleh-vectorsofsuchcomplexes. In thecasewhenthecomplexhasdimension1wecompletelyresolvethisquestionandwe give some partial results for higher dimensions. We also prove the 1-dimensional case of a conjecture of Stanley that all matroid h-vectors are pure O-sequences. Finally, we completely characterize the Stanley-Reisner ideals of matroid complexes. KEYWORDS: simplicial complex, matroid, h-vector, arithmetic degree, Stanley- Reisner ideal Author’s signature: Erik Stokes Date: July 22, 2008 THE h-VECTORS OF MATROIDS AND THE ARITHMETIC DEGREE OF SQUAREFREE STRONGLY STABLE IDEALS By Erik Stokes Director of Dissertation: Uwe Nagel Director of Graduate Studies: Qiang Ye Date: July 22, 2008 RULES FOR THE USE OF DISSERTATIONS Unpublished dissertations submitted for the Doctor’s degree and deposited in the University of Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the rights of the authors. Bibliographical references may be noted, but quotations or summaries of parts may be published only with the permission of the author, and with the usual scholarly acknowledgments. Extensive copying or publication of the dissertation in whole or in part also re- quires the consent of the Dean of the Graduate School of the University of Kentucky. A library that borrows this dissertation for use by its patrons is expected to secure the signature of each user. Name Date DISSERTATION Erik Stokes The Graduate School University of Kentucky 2008 THE h-VECTORS OF MATROIDS AND THE ARITHMETIC DEGREE OF SQUAREFREE STRONGLY STABLE IDEALS DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Arts and Sciences at the University of Kentucky By Erik Stokes Lexington, Kentucky Director: Dr. Uwe Nagel, Professor of Mathematics Lexington, Kentucky 2008 Copyright(cid:13)c Erik Stokes 2008 TABLE OF CONTENTS Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Stanley-Reisner Ideals and Commutative Algebra . . . . . . . . . . . 7 Chapter 3 Arithmetic Degree . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 A Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 An Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Chapter 4 Matroid Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Dimension 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2.1 The Set of Dimension 1 Matroid h-vectors . . . . . . . . . . . 48 4.3 A Conjecture of Stanley in Dimension 1 . . . . . . . . . . . . . . . . 55 4.4 Higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.4.1 Gorenstein Matroid Complexes . . . . . . . . . . . . . . . . . 62 4.4.2 The Sub-facet complex . . . . . . . . . . . . . . . . . . . . . . 65 4.4.3 The Stanley-Reisner Ideals of Matroid Complexes . . . . . . . 69 Appendix: Computer Code for SAGE . . . . . . . . . . . . . . . . . . . . . . . 74 Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 iii LIST OF FIGURES 2.1 The 2-simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 A simplicial complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.1 A matroid complex with 6 vertices . . . . . . . . . . . . . . . . . . . . . 30 4.2 A non-matroid complex with 6 vertices . . . . . . . . . . . . . . . . . . . 30 4.3 A non-pure complex whose proper restrictions are all pure . . . . . . . . 31 4.4 S3K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1 3 4.5 S2S2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2 1 2 4.6 ∆ and ∆ have the same h-vector but are not isomorphic . . . . . . 43 111 2000 4.7 The edge complex of an octahedron . . . . . . . . . . . . . . . . . . . . . 66 iv

Description:
the degree of Doctor of Philosophy in the College of Arts and Sciences arithmetic degree of squarefree strongly stable ideals and the h-vectors of matroid 2.2 Stanley-Reisner Ideals and Commutative Algebra . (the initial ideal) and monomial ideals into squarefree monomial ideals (polarization,.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.