The g /I Methodology, m D A Sizing Tool for Low-voltage Analog CMOS Circuits ANALOGCIRCUITSANDSIGNALPROCESSINGSERIES ConsultingEditor:MohammedIsmail.OhioStateUniversity Forothertitlespublishedinthisseries,goto www.springer.com/series/7381 The g /I Methodology, m D A Sizing Tool for Low-voltage Analog CMOS Circuits The Semi-empirical and Compact Model Approaches By PaulG.A.Jespers UniversitéCatholiquedeLouvain Louvain-la-Neuve,Belgium 123 Prof.PaulG.A.Jespers UniversitéCatholiquedeLouvain Louvain-la-Neuve Belgium [email protected] Additionalmaterialtothisbookcanbedownloadedfromhttp://extra.springer.com. ISBN978-0-387-47100-6 e-ISBN978-0-387-47101-3 DOI10.1007/978-0-387-47101-3 SpringerDordrechtHeidelbergLondonNewYork LibraryofCongressControlNumber:2009940107 (cid:2)c SpringerScience+BusinessMedia,LLC2010 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY10013, USA),except forbrief excerpts inconnection with reviews orscholarly analysis. Usein connectionwithanyformofinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) toDenise and tomyparents OscarJespers andMiaCarpentier Foreword IC designers appraise currently transistors sizes while having to fulfill simulta- neously a large number of objectives like a prescribed gain-bandwidth product, minimal power consumption, minimal area, low-voltage design, dynamic range, non-lineardistortion,etc.Makingappropriatedecisionsisnotalwaysobvious.How tomeetgain-bandwidthspecificationswhileminimizingpowerconsumptionofan Op.Ampwithoutareapenalty?Shouldmoderateinversionbepreferredtostrongin- version?Issizinganartoramixtureofdesignexperienceandrepeatedsimulations? Or is it a constrained multivariate optimization problem? Optimization algorithms areattractivewithoutdoubtbuttheyrequiretranslatingnotalwayswell-definedcon- ceptsintomathematicalexpressions.Theinteractionsamidsemiconductorphysics andsystemsarenotalwayseasytoimplement. The objective of the book is to devise a methodology enabling to fix currents andtransistorswidthsofCMOSanalogcircuitssoastomeetspecificationssuchas gain-bandwidthwhileoptimizingattributeslikelowpowerandsmallarea.Aspecial attentionisgiventolow-voltagecircuits.Thesizingmethodtakesadvantageofthe g =I ratioandmakesuseofeither‘semi-empirical’dataorcompactmodels.The m D ‘semi-empirical’approachutilizeslargelook-uptablesderivedfromphysicalmea- surements carried out on real transistors or advanced models. The compact model approach offers the possibility to make use of analytic expressions. Unfortunately whenitcomestorealtransistors,especiallysub-microndevices,thisisn’ttrueany- more. Other means are necessary to keep track of high order effects without the risktoloosetheinherentsimplicityofcompactmodels.Biasdependentinsteadof constant parameters offer the possibility to extend the validity of a model like the E.K.V.model. Inthefirstchapter,theIntrinsicGainStage,issizedmakinguseoftheclassical strongandweakinversionlargesignalmodelsofMOStransistors.Thisleavesopen themoderateinversionregion,aregionthatoffersthebestcompromisesgenerally as far as power consumption and sizes. To be able to size circuits in moderate in- version,weneedareliablelargesignalMOSmodel.TheChargeSheetModelthat isconsideredinChapter2isaninvaluabletoolforunderstandingthemechanisms governing current in MOS transistors, but it is not fitted for real transistors for it relies on the gradual channel approximation and makes use of mathematical ex- pressions that are too complicated. The MATLAB tools that are available under vii viii Foreword ‘extras.springer.com’ overcome the mathematical aspects and offer the possibility to perform ‘ideal experiments’. Some of the abstract aspects of the Charge Sheet ModelmoreoverarebridgedinChapter3bytheintroductionofagraphicalrepre- sentationofthedraincurrentthatcombinesphysicalaspectsandpracticalcircuits. The E.K.V. basic model discussed in Chapter 4, offers clearly more flexibility. ItisanapproximationoftheChargeSheetModelandaforerunnerofwhatisviewed nowadaysascompactSurfacePotentialModels.Themodelpavesthewaytowards analytical expressions not only for the drain current but also for the terminal volt- ages whatsoever the mode of operation of the transistor, whether saturated or not. Unfortunately,thesimpleE.K.V.modelisagradualchannelmodelliketheCharge SheetModel,unfitthusforrealtransistors,inparticularshortchanneldevice. ThefactthatdraincurrentspredictedbytheE.K.V.compactmodellooksosimi- lartorealdraincurrentsopensthequestionwhetherthemodelcouldnotbeextended torealdevices.InChapter5,weshowthatcurrentsveryclosetorealdraincurrents canbepredictedwhentheparametersoftheE.K.V.modelvarywithbias,evenwith 100 nm devices. The explanation may be the quasi-one-dimensional nature of the channelopposedtothetwo-dimensionalspacechargebelowtheinversionlayer.As a result, gradual channel conditions prevail in the inversion layer any longer than inthespacechargewhenthegatelengthisshrinking.Analgorithmisproposedto acquirethemodelparameters. TheIntrinsicGainStageisreconsideredinChapter6inthelightofthevariable parameterscompactmodel.Currentsandtransistorwidthobtainedbymeansofthe compactmodelreproduceverycloselythevaluesobtainedbymeansofthe‘semi- empirical’ method. A series of examples considering a low-frequency and a one GHzgain-bandwidthproductI.G.S.aredescribed. TheremainingChapters7and8extendthemethodrespectivelytothecommon- gatestageandtothebasicMillerOp.Amp.Thelatterillustrateshowtomeetboth, specificationsandattributes.Specificationsconcernthegain-bandwidthproductand phase margin, attributes low power and area. These determine optimal regions in the2DsizingspacedefinedbythefirstandsecondstagesoftheMillerOp.Amp.A MATLABfilecomparesdesignstrategies. IwanttoexpressmygratitudetoPietWambacqfortheopportunityhegaveme to check the validity of the variable parameter E.K.V. model on a 90 nm technol- ogy developed by IMEC. I am also very thankful Prof. Gilbert Declerck, former PresidentCEOandLudoDeferm,executivevice-presidentofIMEC,whogaveme permissiontopublishtheresultsandthedatalistedunderthe‘extras.springer.com’. MysincerethanksgotoProf.FernandoSilveirawhopublishedin1996thefirst paper illustrating the potential of the g =I methodology. I want to thank him as m D wellasProf.A.Vladimirescufortheverydetailedcommentsandsuggestionsthey made of the first chapters. I also want to associate Prof. D. Flandre to my thanks owing to our long-term collaboration at the Microelectronics lab of the Universite´ CatholiquedeLouvain. ThoughthespecificcurrentputtouseinthebookistheonedefinedintheE.K.V. model,Iowemuchtotworesearchgroups.IamindebtedtoProf.EricVittozforthe Foreword ix E.K.V.model,andtoProf.CarlosGalup-MontoroandMarcioC.Schneiderforthe A.C.M.model.Ithankthesupportersofthetwomodelsformotivatingdiscussions andinparticulartheopportunityProf.MontoroandSchneidergavemetovisitthem attheFederalUniversityofSantaCatarina,Brasil. Tervuren,July2009 P.Jespers Contents 1 SizingtheIntrinsicGainStage............................................... 1 1.1 TheIntrinsicGainStage................................................ 1 1.2 TheIntrinsicGainStageFrequencyResponse........................ 1 1.3 SizingtheIntrinsicGainStage......................................... 3 1.3.1 SizingtheI.G.S.withtheQuadraticModel................. 4 1.3.2 Sizing the I.G.S. by Means of the Weak InversionModel.............................................. 4 1.3.3 SizingtheI.G.S.intheModerateInversionRegion........ 5 1.4 Theg =I SizingMethodology...................................... 7 m D 1.5 Conclusions............................................................. 8 2 TheChargeSheetModelRevisited.......................................... 11 2.1 WhytheChargeSheetModel?......................................... 11 2.2 TheGenericDrainCurrentEquation.................................. 11 2.3 TheChargeSheetModelDrainCurrentEquation.................... 13 2.4 CommonSourceCharacteristics....................................... 15 2.4.1 TheI .V /Characteristics ................................. 15 D D 2.4.2 TheI .V /CharacteristicoftheSaturatedTransistor..... 17 D G 2.4.3 DriftandDiffusionContributionstotheDrainCurrent.... 18 2.5 WeakInversionApproximationoftheChargeSheetModel ......... 18 2.6 Theg =I RatiointheCommonSourceConfiguration............. 20 m D 2.7 CommonGateCharacteristicsoftheSaturatedTransistor ........... 23 2.8 AFewConcludingRemarksConcerningtheC.S.M.................. 24 3 GraphicalInterpretationoftheChargeSheetModel ..................... 25 3.1 AGraphicalRepresentationofI ..................................... 25 D 3.2 MoreontheV Curve.................................................. 28 T 3.3 TwoApproximateRepresentationsofV ............................. 29 T 3.3.1 The‘Linear’SurfacePotentialApproximation............. 29 3.3.2 The‘Linear’ThresholdVoltageV Approximation........ 31 T 3.4 AFewExamplesIllustratingtheUseoftheGraphicalConstruction 32 3.4.1 TheMOSDiode.............................................. 32 xi
Description: