ebook img

The formation efficiency of close-in planets via Lidov-Kozai migration: analytic calculations PDF

0.6 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The formation efficiency of close-in planets via Lidov-Kozai migration: analytic calculations

Mon.Not.R.Astron.Soc.000,1–??(2016) Printed25January2016 (MNLATEXstylefilev2.2) The formation efficiency of close-in planets via Lidov-Kozai migration: analytic calculations Diego J. Mun˜oz1(cid:63), Dong Lai1 and Bin Liu2 1CornellCenterforAstrophysicsandPlanetaryScience,DepartmentofAstronomy,CornellUniversity,Ithaca,NY14853,USA 2CenterforAstrophysics,UniversityofScienceandTechnologyofChina,Hefei,Anhui230026,People’sRepublicofChina 6 25January2016 1 0 2 ABSTRACT n Lidov-Kozai oscillations of planets in stellar binaries, combined with tidal dissipation, can a lead to the formation of hot Jupiters (HJs) or tidal disruption of planets. Recent population J synthesis studies have found that the fraction of systems resulting in HJs (F ) depends HJ 1 strongly on the planet mass, host stellar type and tidal dissipation strength, while the total 2 migration fraction F = F +F (including both HJ formation and tidal disruption) mig HJ dis exhibitsmuchweakerdependence.WepresentananalyticalmethodforcalculatingF and HJ ] F in the Lidov-Kozai migration scenario. The key ingredient of our method is to deter- P mig mine the critical initial planet-binary inclination angle that drives the planet to reach suffi- E cientlylargeeccentricityforefficienttidaldissipationordisruption.Thiscalculationincludes . h theeffectsofoctupolepotentialandshort-rangeforcesontheplanet.Ouranalyticalmethod p reproducestheresultingplanetmigration/disruptionfractionsfrompopulationsynthesis,and - canbeeasilyimplementedforvariousplanet,stellar/companiontypes,andfordifferentdistri- o butionsofinitialplanetarysemi-majoraxes,binaryseparationsandeccentricities.Weextend r t ourcalculationstoplanetsinthesuper-Earthmassrangeanddiscusstheconditionsforsuch s a planetstosurviveLidov-Kozaimigrationandformclose-inrockyplanets. [ Key words: binaries:general – planets: dynamical evolution and stability – star: planetary 1 system v 4 1 8 5 1 INTRODUCTION tidaldissipationatpericentertoshrinktheplanetsemi-majoraxis 0 downto(cid:46)0.1AU.Thus,suchmechanismsaresometimesreferred The occurrence of “hot Jupiters” (HJs) – gas giants with periods . tocollectivelyas“high-emigration”. 1 (cid:46) 5 days – is estimated to be around 1% for FGK stars (Marcy 0 Planet migration following eccentricity excitation through etal.2005;Wrightetal.2012;Howardetal.2012;Fressinetal. 6 Lidov-Kozai oscillations (Lidov 1962; Kozai 1962) induced by 2013;Petigura,Howard&Marcy2013).Itiscommonlybelieved 1 a stellar companion1 – often called Lidov-Kozai (LK) migra- thattheseplanetsformedatlargerseparationsfromtheirhoststars : tion – has been investigated by different researchers via Monte v (presumablybeyondtheiceline)andsubsequently“migrated”to Carlo experiments (Wu, Murray & Ramsahai 2007; Fabrycky & i semi-majoraxesoflessthan0.1AU.Theknownmigrationmech- X Tremaine 2007; Naoz, Farr & Rasio 2012; Petrovich 2015b; An- anisms can be (i) “disc mediated” due to planet-disc interaction r derson,Storch&Lai2016).Thelateststudieshaveconcludedthat a (e.g.,Goldreich&Tremaine1980;Lin,Bodenheimer&Richard- at most 20% of observed HJs can be explained by LK migration son 1996), (ii) “planet mediated”, including strong planet-planet in stellar binaries. Similarly, observational evidence (Dawson & scatteringsandvariousformsofsecularinteractionsamongmulti- Murray-Clay 2013; Dawson, Murray-Clay & Johnson 2015) also pleplanets(e.g.Rasio&Ford1996;Chatterjeeetal.2008;Juric´ indicatesthatthepopulationofHJsisunlikelytobeexplainedbya &Tremaine2008;Nagasawa,Ida&Bessho2008;Wu&Lithwick singlemigrationmechanism. 2011;Beauge´&Nesvorny´ 2012;Petrovich2015a),or(iii)“binary TheoccurrencerateofHJsproducedbyLKmigrationinstel- mediated”,i.e.,secularinteractionswithadistantstellarcompan- larbinariescanbecomputedvia ion(Wu&Murray2003;Wu,Murray&Ramsahai2007;Fabrycky &Tremaine2007;Naoz,Farr&Rasio2012;Correiaetal.2011; RLHKJ =Fb×Fp×FHLJK, (1) Storch,Anderson&Lai2014;Petrovich2015b;Anderson,Storch whereF isfractionofstarshavingawidebinarycompanion,F is &Lai2016).Excludingdisc-drivenmigration,thesemechanisms b p requirethemigratingplanettoreachhigheccentricitiesinorderfor 1 LKoscillationsinducedbyaplanetarycompanioncanplayanimportant roleinsomeplanet-mediatedhigh-emigrationscenarios.Inthispaper,we (cid:63) E-mail:[email protected] focusonLKoscillationsinducedbyastellar-masscompanion. (cid:13)c 2016RAS 2 Mun˜oz,Lai&Liu thefractionofsolar-typestarshostinga“regular”giantplanetata semi-majoraxisandeccentricity),M ,M ,M (massesofthe p ∗ out distanceofafewAU,andFLKistheformationfraction/efficiency planet,hoststarandouterbinarycompanion),andtheplanet’sra- HJ of HJs (i.e., the fraction of systems that result in HJs for a given diusR anditsinternalstructure(Lovenumber). p distributions of binaries and “regular” planets). Optimistic values InLiu,Mun˜oz&Lai(2015)(hereafterLML),wehavestud- ofF ∼20%(forbinaryseparationsbetween100AUand1000AU; iedthemaximumeccentricityinLKoscillationsincludingtheoc- b seeRaghavanetal.2010)andF ∼15%(Petrovich2015b)require tupole potential of the binary companion and the effect of short- p FLK∼30%–40% to explain the observed HJ occurrence rate (∼ rangeforces(associatedwithGeneralRelativity,thetidalbulgeand HJ 1%)usingLKmigrationalone. rotationalbulgeoftheplanet).Herewesummarizethekeyresults In a recent work, Anderson, Storch & Lai (2016) (hereafter neededforthispaper. ASL)conductedacomprehensivepopulationsynthesisstudyofHJ The strength of the octupole potential from the binary com- formationfromLKoscillationsinstellarbinaries,includingallrel- panionrelativetothequadrupolepotentialischaracterizedbythe evantphysicaleffects(theoctupolepotentialfromthebinarycom- dimensionlessratio panion, mutual precession of the host stellar spin axis and planet a e (cid:15) ≡ 0 out . (2) orbitalaxis,tidaldissipation,andstellarspin-downduetomagnetic Oct a 1−e2 out out braking).Unlikepreviousworks,ASLconsideredarangeofplanet When(cid:15) →0,theoctupoleeffectcanbeneglected.Inthislimit, masses(0.3−5M )andinitialsemi-majoraxes(a =1−5AU), Oct J 0 theplanet’sdimensionlessangularmomentum(projectedalongthe differentpropertiesforthehoststar,andvaryingtidaldissipation √ binary axis) j = 1−e2cosi is conserved, resulting in regu- strengths. They found that the HJ formation efficiency depends z lar LK oscillations in eccentricity and inclination. Together with stronglyonplanetmassandstellartype,withFLK = 1−4%(de- HJ theconservationofenergy,themaximumeccentricitye canbe pendingontidaldissipationstrength)forM =1M ,andlarger max p J calculated analytically as a function of i (and other parameters) (upto8%)formoremassiveplanets.Theproductionefficiencyof 0 (Fabrycky & Tremaine 2007). Assuming that the planet has zero “hot Saturns” (M = 0.3M ) is much lower, because most mi- p J initialeccentricity,e isdeterminedby(LML) gratingplanetsaretidallydisrupted.Remarkably,ASLfoundthat max thefractionofmigratingsystems,i.e.thosethatresultineitherHJ (cid:18) 1 (cid:19) (cid:15) (cid:18)1+3e2 + 3e4 (cid:19) ifsorrmouagtiholnyocorntisdtaanltd,ihsaruvpintigonli,ttFlemLvKiagri≡atioFnHLwJKit+hpFladLniKsetm(cid:39)as1s1,−st1e4ll%ar (cid:15)GR(cid:15) jm(cid:18)in −1 1 +(cid:19)T1i5de9e2 (cid:18) mjam9xin 58 max −(cid:19)1 (3) typeandtidaldissipationstrength.ASLprovidedaqualitativeex- + Rot −1 = max j2 − cos2i , planationofhowsucharobustFLK maycomeabout(seeSections 3 jm3in 8 jm2in min 3 0 mig √ 3.4and5.4.1ofthatwork).Notethat(Petrovich2015b)considered wherej ≡ 1−e2 ,andthedimensionlessquantities min max M = 1M aroundsolar-typestarsandfoundasimilarFLK as p J HJ AobStLai,nbeudtFammLKiugc≈hl2ar7g−er2d9i%sr.uTpthieondiffrfaecrteinocne(FardiLsiKses∼fro2m5%th)e,afancdttthhuast (cid:15)GR ≡ 3GM∗2aa3o40uct2(M1−ouet2out)3/2 (4a) s(Pumetreodvtihchat2t0h1e5bbi)nparlayceecdcaelnltprilcaintyetsdiisntirtiibaulltyioanteax0te=nd5sAupUtaon0d.9a5s-, (cid:15)Tide ≡ 15M∗2a3ouat(81M−Me2out)3/2k2pRp5 (4b) whereas ASL considered a = 1−5 AU and a maximum binary 0 p out 0 M a3 (1−e2 )3/2k Ω2R5 eccentricityof0.8(seeSection6.2ofASLforfurtherdiscussion). (cid:15) ≡ ∗ out out qp p p , (4c) In this paper, following on the work of ASL, we present an Rot Ga50MpMout analytic study that explains (i) how the LK migration fraction of representtherelativestrengthsofapsidalprecessionsduetoGen- close-inplanetsarelargelydeterminedbygeometricalconsidera- eral Relativity (GR), tidal bulge, and rotational distortion of the tions,and(ii)howtheplanetsurvivalanddisruptionfractionsde- planet.Herek istheLovenumber,k theapsidalmotioncon- 2p qp pendonthepropertiesoftheplanetsandhoststars.Weoutlinethe stantandΩ therotationrateoftheplanet.Inthe“pure”LKlimit p necessary steps that allow for simple calculations of FmLKig, FHLJK ((cid:15)GR = (cid:15)Tide = (cid:15)Rot = 0),Equation(3)reducestothestandard andFdLiKs undervariousconditionsandassumptions(e.g.,thedis- expressionemax = (cid:112)1−(5/3)cos2i0.Fortypicalplanetaryro- tributions of initialplanetary semi-major axes, binary separations tationrates,thecontributionfromtherotationalbulge((cid:15) )canbe Rot andeccentricities,themassesofplanetandhoststar).Ouranalytic neglectedcomparedtothetidalterm((cid:15) )(seeLML) Tide calculationsagreewiththeresultsofpopulationsynthesisstudies. Themaximumvalueofe isachievedwheni = 90◦ in max 0 Inaddition,weextendourcalculationstoplanetsinthesuper-Earth Equation(3),andisreferredtoasthe“limitingeccentricity”e . lim massrange. Whene ≈1,thelimitingeccentricitysatisfies(Eq.53ofLML) lim (cid:15) 7 (cid:15) 9 GR + Tide (cid:39) . (5) (1−e2 )1/2 24(1−e2 )9/2 8 lim lim 2 LIDOV-KOZAIOSCILLATIONSWITHOCTUPOLE Inthepresenceoffiniteoctupolepotential((cid:15) (cid:54)= 0),j is EFFECTANDSHORT-RANGEFORCES:MAXIMUM Oct z nolongeraconstant,butaslowlyvaryingquantity(Ford,Kozinsky ECCENTRICITY & Rasio 2000; Lithwick & Naoz 2011; Katz, Dong & Malhotra ThesuccessofLKmigrationdependsonthemaximumeccentric- 2011),withdj /dt∝(cid:15) .Forsufficientlylargeinitialinclinations z Oct itye thatcanbeachievedbytheplanetintheLKcycles.This (i >i ),theslowevolutionofj cantakeittoextremelysmall max 0 lim z eccentricityneedstobehighenoughsuchthatthepericentersepa- valuesandevenmakeitcrosszero(i.e.i → 90◦,seee.g.,Katz, rationbetweentheplanetanditshoststarissufficientlysmallfor Dong & Malhotra 2011). As j becomes small, e can reach very z tidaldissipationintheplanettobeefficient(seeSection3.1).The highvalues. maximumeccentricitydependsontheinitialinclinationi between AsdescribedbyLML,theeffectoftheoctupoleistoincrease 0 theplanetaryandbinaryorbitalaxes,andonvarioussystemparam- therangeofpossibleinitialanglesi forwhiche canbereached. 0 lim eters:a (initialplanetarysemi-majoraxis),a ande (binary TocapturetheeffectdescribedbyLML,wecanapproximatethe 0 out out (cid:13)c 2016RAS,MNRAS000,1–?? Lidov-Kozaimigrationfractions 3 90 ofthecriticalinclinationanglefororbitalflip–thisanalyticresult region of extreme eccentricity Liu, Muñoz & Lai (2015) isvalidonlyfor(cid:15) (cid:28)1(seeFig.1). oct We note that, in general, the octupole-active window of ex- 80 tremeeccentricityisreachedonlywhenω (theargumentofperi- center) of the planet is circulating (as discussed by Katz, Dong 70 & Malhotra 2011). However, since planets commonly start with e (cid:39) 0, this distinction is irrelevant, as planets at e (cid:39) 0 lie very ] moderate eccentricity ◦ closetotheseparatrixbetweenthelibratingandcirculatingregions [ i060 ofphasespace. i († ) lim oct 50 3 DERIVATIONOFMIGRATIONFRACTIONS Katz et al (2011) -- analytic 40 3.1 Requiredpericenterdistanceformigrationordisruption 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 In order to migrate, a distant planet must reach small pericenter † oct distance, r = a (1−e), such that tidal dissipation can reduce p 0 Figure 1. The behavior of LK oscillations with the octupole and short- theplanet’ssemi-majoraxiswithinafewGyr.Theeffectiveorbital range-force(SRF)effectscanbedividedinto“moderate”eccentricityevo- decayrateduringLKoscillationscanbeestimatedfromtheorbital lutionand“extreme”eccentricityevolution.Theboundarybetweenthese decayrateduetotidaldissipationate = e multipliedbythe max two regions is a function of (cid:15)Oct (the dimensionless octupole strength) fraction of the time the planet spends in the high-e phase (e ∼ andi0 (theinitialinclinationangle).Inthe(cid:15)Oct-i0 plane,thisboundary e ),giving(seeSection3.2andEq.32ofASL) max is represented by the critical initial angle ilim((cid:15)Oct) above which plan- (cid:12) (cid:12) aiethlrtiseemctr(aea(cid:15)kdnOencrceutfa)rrcvoflhematdthtteehepneislcinmotusuimtttihtenoergiaficeatcctloicninengsnttetafrgunircntaicvtttiyaiolonuenselim(o≈Efq(L4uE8iauq◦t,ui.oMaFntiouo7rn˜n)co.o5zFm)&o.prTaL(cid:15)hraOiesicod(tn2a,0t(cid:38)at1h5pe0)ob.ia0lnnu5tdes, td1ec ≡(cid:39)(cid:12)(cid:12)(cid:12)6a1kddat∆(cid:12)(cid:12)(cid:12)tTidMe,L∗K(cid:18)Rp(cid:19)5n2f1(emax) (8) curveshowstheanalyticresultforthecriticali0 fororbitalflipwithout 2p LMp a0 jm14in SRF,asobtainedbyKatz,Dong&Malhotra(2011). GM2 R5 (cid:39)2.8k ∆t ∗ p 2p L M a r7 p 0 p,min maximumeccentricitywith2 where∆tisthelagtime,thepericenterdistanceatmaximumec-  e(mQauxad)(i0) i0 <ilim((cid:15)Oct) centricityisdefinedasrp,min ≡a0(1−emax)andtheexpression emax(i0,(cid:15)Oct)(cid:39) (6) f1(emax)isreplacedbyitsapproximatevalue3861/64.Inorder  elim i0 (cid:62)ilim((cid:15)Oct) tohavemigrationwithin∼ 109 years(i.e.,tdec (cid:46) 109 years),we requirer (cid:46)r ,with p,min p,mig where e(Quad)(i ) is the solution to Equation (3) and e is the esolilmutiiosnrmetoaacxEhqeudat(0ifoonr((cid:15)5O)c,tan→dili0m, iitsitsherecqriutiirceadlatnhgatleilaibmolvi→mew9h0ic◦h, rp,mig ≡2.4×10−2(cid:18)RRpJ(cid:19)57 AU such that the quadrupole approximation is recovered). Note that Equation(6)neglectsthe“transitionregion”fori0 justbelowilim ×(cid:18)χ(cid:19)1/7(cid:18)Mp(cid:19)−17(cid:18) a0 (cid:19)−17(cid:18)k2p (cid:19)17(cid:18) M∗ (cid:19)27 , inwhichtheoctupolepotentialmakesemaxlargerthane(mQauxad)but 10 MJ 1AU 0.37 1M(cid:12) not as large as e . The numerical calculations of LML showed (9) lim thatwhentidaldistortion((cid:15) )dominatestheSRFs,thetransition Tide whereχ≡∆t/(0.1s)isadimensionlesstidalenhancementfactor. regionisnarrow. We see that, except for planet radius, the dependence of the The critical inclination angle i , which defines the lim criticalpericenterdistancer onthephysicalparametersofthe “octupole-active” window, depends on (cid:15) . Figure 1 shows the p,mig Oct systemisweak,andthusitrepresentsaveryrobust(albeitnotan numericallycomputedvaluesofofi (LML).Thesecanbewell lim exact) estimate of how close planets must get to their host stars approximatedbythefittingformula inordertomigrateeffectively(seeASL).Forthispericentertobe cos2i =A(cid:18)(cid:15)Oct(cid:19)+B(cid:18)(cid:15)Oct(cid:19)2+C(cid:18)(cid:15)Oct(cid:19)3+D(cid:18)(cid:15)Oct(cid:19)4 reached,aplanetinitiallylocatedata0needstoachieveamaximum lim 0.1 0.1 0.1 0.1 eccentricityof (7) r for(cid:15)Oct (cid:54) 0.05withA = 0.26,B = −0.536,C = 12.05and emig ≡1− pa,m0ig (10) D=−16.78.For(cid:15) >0.05,thedependenceon(cid:15) flattensoff Oct oct viaLKoscillations.Notethat,sincethefinalsemi-majoraxisa atcos2i =0.45ori =48◦(Fig.1).Notethat,asshownby F lim lim oftheplanetaftertidaldecayisapproximatelya (cid:39) r (1+ LML,theoctupole-active’windowisequivalenttotherangeofin- F p,mig e ) (cid:39) 2r ,Equation(9)indicatesthatitisdifficulttoform clinationssusceptibletoorbital“flips”inLKcycleswithout SRFs. max p,mig HJswitha (cid:38)0.06AUviaLKmigration(Petrovich2015b;ASL), Katz,Dong&Malhotra(2011)hasobtainedananalyticexpression F unless the tidal dissipation parameter χ is much larger than the canonicalvalueof10. 2 Equation(6)isrestrictedtoi0 (cid:54) 90◦.However,notethatthesystem Equation(9)setsthemaximumpericenterseparationthatal- issymmetricaround90◦,thusthelimitingeccentricityisalsoreachedfor lowsforLKmigration.Thereisalsoaminimumpericentersepa- 90◦<i0<180−ilim. rationthatpermits“successfullymigrated”planets.Forpericenter (cid:13)c 2016RAS,MNRAS000,1–?? 4 Mun˜oz,Lai&Liu (cid:113) separationssmallerthanthetidalradius withj = 1−e2 andinwhichtherotationaldistortionef- mig mig (cid:18)M (cid:19)1/3 fectinEquation(3)hasbeenignoredforconsistency.Notethatthe rp,dis =ηRp M∗ conditionemig <elimisequivalenttoC(emig)>0.Similarly,the p criticaldisruptionanglei(Quad)isgivenbyEquation(17)withe =1.3×10−2AU(cid:18)Rp(cid:19)(cid:18)Mp(cid:19)−1/3(cid:18)M∗(cid:19)1/3 . replacingemig. 0,dis dis RJ MJ M(cid:12) In the first panel of Fig. 2, we show fmLKig, fdLiKs and fHLJK (11) for a 0.3M planet started at different initial semi-major axis a J 0 and a binary companion with a = 200 AU and e = 0. (whereη = 2.7;Guillochon,Ramirez-Ruiz&Lin2011),planets out out We see that, for large a , SRFs are unimportant for determining willbedisruptedandthereforeunabletoturnintoHJs.Asbefore, 0 e around e , thus the shape of the curve is simply fLK = forthisspecificpericentertobereached,aplanetinitiallylocated max mig mig (cid:113) (cid:112) ata0needstoachieveLKmaximumeccentricityof cosi0,mig = 3/5(1−e2mig) ≈ (6/5)(rp,mig/a0).Forsmall e ≡1− rp,dis . (12) a0, elim is smaller than the required emig, making the migration dis a fractionrapidlygotozero. 0 Notethat,ifr >r ,allmigration-inducingLKoscillations p,dis p,mig willresultintidaldisruptions.Thisconditionimposesalowerlimit intheplanetmassthatpermitstheformationofclose-inplanets: 3.2.2 Includingtheoctupoleeffect Mp >0.04MJ(cid:18)RRp(cid:19)32(cid:18)1χ0(cid:19)−34(cid:18)1MM∗ (cid:19)14(cid:18)1aA0U(cid:19)34(cid:18)0k.23p7(cid:19)−43 .eWccheenntrtihceityocatcuhpioevleedefifnecLtKisciyncclleusdceadn(b(cid:15)Oecatpp(cid:54)=rox0i)m, athteedmbayxEimquuma- J (cid:12) (13) tion(6).Foremig >elim,nomigrationispossibleandwestillhave ThisimpliesthatSaturn-massplanetscanrarelymigratesuccess- cosi0,mig = 0.Foremig < elim,sinceanon-negligible(cid:15)Oct can fullyviaLKoscillationswithoutfirstbeingdisrupted(seeASL). expandtherangeofinclinationanglesthatproduceemig,thecriti- calanglei isthelowestpossibleanglethatresultsine ,i.e., 0,mig mig i =min(i(Quad),i ).Thus, 0,mig 0,mig lim 3.2 Migrationanddisruptionfractions (cid:40) (cid:20) (cid:21) Having defined the eccentricities required for migration and tidal cos2i = max C(emig),cos2ilim((cid:15)Oct) , ifemig(cid:54)elim 0,mig disruption,wecannowcomputethefractionsofmigrationandtidal 0 , ife >e mig lim disruptionforgivena ,a ande (plustheotherfixedparame- 0 out out (19) tersofthesystemssuchasMp,M∗,Mout,Rpandχ).Toachieve where C(e ) is given by Equation (19) and cos2i ((cid:15) ) mig lim Oct e ,theinitialplanetaryinclinationangle(relativetothebinary) mig is given by Equation (7). An analogous expression applies to mustbesufficientlylarge,i.e.,i0,mig < i0 < 180◦−i0,mig.For cos2i . 0,dis anisotropicdistributionoftheinitialplanetaryangularmomentum WeillustratetheeffectoftheoctupoletermonfLK andfLK mig dis vectors,thosethatcanleadtoemig orlargeroccupyasolidangle inthethreelastpanelsofFig.2.Forallpanels,a (cid:112)1−e2 = 4πcosi .Thusthemigrationfractionis out out 0,mig 200AU,whiletheeccentricityisvariedfrom0to0.8.Ase isin- out fmLKig(a0,aout,eout)=cosi0,mig. (14) creased,thevalueof(cid:15)Octforagivenplanetsemi-majoraxisa0also grows.Goingfrome = 0toe = 0.8illustratesthegradual out out Similarly,thedisruptionfractionisgivenby transitionfromcos2i =C(e )foralla (purequadrupole) 0,mig mig 0 fLK(a ,a ,e )=cosi , (15) tocos2i0,mig = cos2ilim((cid:15)Oct)foralla0 (entirelydominatedby dis 0 out out 0,dis theoctupoleeffect).NotethattheHJfractionfLK =fLK −fLK HJ mig dis wherei0,disisthecriticalinclinationthatleadstoemax =edis.The isalwaysanarrowdistributionboundedbyatthe“no-migration” fractionofHJformation(migrationwithoutdisruption)issimply limit (e < e ) at small a and by the tidal disruption limit lim mig 0 (e >e )atlargera .Thewidthandheightofthispeakisonly fLK(a ,a ,e )=fLK−fLK =cosi −cosi . (16) max dis 0 HJ 0 out out mig dis 0,mig 0,dis mildlyaffectedbytheoctupolecontribution.Ontheotherhand,the fractionoftidallydisruptedplanetsfLK isincreasedsignificantly dis forlargere .Thus,themaineffecttheoctupoleistoincreasethe 3.2.1 Migration/disruptionfractioninquadrupole-ordertheory out numberofdisruptedplanets,ratherthanthenumberofsuccessfully Foremig >elim,nomigrationispossibleandwehavecosi0,mig = migratedones(Petrovich2015b;ASL). 0.Foremig < elim,toquadrupole-order,thecriticalangleformi- Fig.3showsthesameexamplesasFig.2,exceptforaplanet grationi0,migcanbecomputedanalyticallybydirectlysolvingfor massof3MJ.Althoughthelowerlimitfornon-zeromigrationis cosi0inEquation(3)withemax =emig.Thus almostunchanged(seeEq.47ofASL),theboundarybetweensuc- (cid:26) C(e ) if e <e cessfulmigrationandtidaldisruptionoccursatalargera0 (edis is cos2i(Quad) = mig mig lim (17) largerformoremassiveplanets,makingdisruptionmoredifficult; 0,mig 0 if e >e mig lim seeEquation(13).Thus,alargerfractionofthesemassiveplanets where cansurviveLKoscillationsandbecomeHJs.Themass-dependent (cid:18) (cid:19) boundarybetweendisruptionandsuccessfulmigrationexplainsthe 3 8 (cid:15) C(emig)= 5jm2ig− 15e2GR jmig−jm2ig lack of “hot Saturns” in observations (ASL). Note that, as in the mig previousexample,themostnoticeableeffectoftheoctupoleterms − 8 (cid:15)Tide(cid:18)1+3e2mig+ 38e4mig −j2 (cid:19) –whichdifferentiatethelastthreepanelsfromthefirst–istoin- 225 e2 j2 mig creasetherateoftidaldisruptions,nottosignificantlyincreasethe mig mig (18) numberofHJs. (cid:13)c 2016RAS,MNRAS000,1–?? Lidov-Kozaimigrationfractions 5 † † † oct oct oct 0.002 0.004 0.006 0.005 0.010 0.015 0.02 0.04 f a =200AU f a =204AU f a =218AU f a =333AU 100 % mig out mig out mig out mig out fHJ eout=0 fHJ eout=0.2 fHJ eout=0.4 fHJ eout=0.8 LK fdis fdis fdis fdis f n o ti c a fr 10 % n o ti a r mig Mp =0.3MJ R =1R p J 1 % 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 a [AU] a [AU] a [AU] a [AU] 0 0 0 0 Figure2.MigrationfractionfLK (Equation14,inblack),tidaldisruptionfractionfLK(inred)andsuccessfulclose-inplanetformationfractionfLK = mig dis HJ fmLKig−fdLiKs (inblue)foragasgiantofmass0.3MJandtidaldissipationparameterχ=10.Thefirstpanelshowsthefractionsforabinarystellarcompanion withaout =200AUandeout =0,forwhichtheoctupoletermsinthebinarypotentialareidenticallyzero.Thesecondtofourthpanelsshowincrements ineout(0.2,0.4and0.8)whilekeepingaout(1−e2out)1/2constant,implyingamonotonicincreaseoftheoctupolestrength(cid:15)Oct.Iftheeffectsofoctupole potentialwereneglected,allfourpanelswouldbeidentical.Upperhorizontalaxisshows(cid:15)Oct,whichisdirectlyproportionaltoa0forfixedaoutandeout. Themaineffectoftheoctupolepotentialistoincreasethetidaldisruptionfraction.Theareaunderthebluecurveis,fromlefttoright,10%,7.8%,5.1%and 5.3%. † † † oct oct oct 0.002 0.004 0.006 0.005 0.010 0.015 0.02 0.04 f a =200AU f a =204AU f a =218AU f a =333AU 100 % mig out mig out mig out mig out fHJ eout=0 fHJ eout=0.2 fHJ eout=0.4 fHJ eout=0.8 LK fdis fdis fdis fdis f n o ti c a fr 10 % n o ti a r mig Mp =3MJ R =1R p J 1 % 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 a [AU] a [AU] a [AU] a [AU] 0 0 0 0 Figure3.SameasFig.2butforaplanettentimesmoremassive(Mp=3MJ).Generaltrendsareanalogoustothelessmassiveexample(thetotalmigration curvefLK inblackisessentiallyunchanged).Inthiscase,however,planetsaremuchmorelikelytosurviveLKmigration,becausetheboundarybetween mig HJformationandtidaldisruptiontakesplaceathighereccentricity(Equation13).Theareaunderthebluecurveis,fromlefttoright,20%,9.2%,7.7%and 13%. 4 TOTALMIGRATIONFRACTIONSASAFUNCTION Forconcreteness,weadopttheintegrationlimitsof[0,0.8]fore out OFPLANETMASS and[2.0,3.0]forlog a (ASL),althoughotherchoicesarepos- 10 out sible.WecomputethisintegralusingtheMonteCarlomethod,uni- Intheprevioussection,wedescribedhowtocalculatethemigration formlysamplinge andlog a . fractionfLK anddisruptionfractionfLKforagivensetoforbital out 10 out mig dis parameters a , a and e (Eqs. 14-15). We now consider the 0 out out migrationanddisruptionfractionsintegratingoverarangeofval- 4.1 Gasgiants uesina ande : out out Fig. 4 shows FLK(a ) and FLK(a ) for different planet masses (cid:90) (cid:90) dis 0 HJ 0 FLK(a )= fLK(a ,a ,e ) andtidaldissipationstrengths.Forthefiducialdissipationparame- mig 0 mig 0 out out ter(χ=10),theHJfractionofJupiter-massobjectsis1−3%(for (20) d2N a0 = 1−5 AU). For Saturn-mass objects, this fraction becomes × dloga de . dlogaoutdeout out out is much smaller for a wide range of a0. For smaller χ, the “hot (cid:13)c 2016RAS,MNRAS000,1–?? 6 Mun˜oz,Lai&Liu 100 % FHJ Fdis χ=1 Table1.TheHJformationfractionFHLKJ,tidaldisruptionfractionFdLiKs ) Mp Mp=0.3MJ R =1R andtotalmigrationfractionFmLKigforgasgiantswiththreedifferentmasses a0 Mp Mp=0.5MJ p J andthreedifferentdissipationstrengths. K( Mp Mp=1MJ L on F 10 % MMpp MMpp==35MMJJ χ=1 χ=10 χ=100 ti ac Mp(MJ) 0.3 1 3 0.3 1 3 0.3 1 3 r f n FLK(%) 0 0.8 1.8 1.2 2.1 2.8 2.6 3.1 3.6 o HJ ti 1 % FLK(%) 12.4 11.6 10.8 12.4 11.6 10.8 12.4 11.6 10.8 a dis r g mi FmLKig(%) 12.4 12.4 12.6 13.6 13.7 13.6 15 14.7 14.4 0.1 % 100 % a0[AU] χ=10 χwhilekeepingMpfixeddoesnotchangeFdLiKs,butonlyFmLKig,as r growsslightlywithstrongerdissipation. p,mig ) R =1R 0 p J ThesetrendsareinagreementwiththeextensiveMonteCarlo a K( experiments of ASL. In that work, the computed total migration L F fractions(HJsplustidaldisruptions)dependveryweaklyonχ.In n 10 % order to compare directly with the results of ASL, we integrate o ti FLK(a ) over a range of planet semi-major axes. Assuming that c mig 0 ra a0isdistributeduniformlybetweena0,inneranda0,outer,wehave: f gration 1 % FmLKig = a(cid:90)0,outerFmLKig(a0)ddaN0da0 . (21) mi a0,inner Usingthevaluesa =1AUanda =5AU,wecompute 0,inner 0,outer 0.1 % the integrated migration fractions FLK, FLK and FLK for three mig dis HJ 100 % a0[AU] χ=100 planetmasses(Mp =0.3,1.0and3MJ)andthreedissipationpa- rameters(χ=1,10and100).Theresults(seeTable1)agreewith ) R =1R a0 p J the findings of ASL. In particular, the total migration fraction is ( K confirmedtobeveryrobustandtolieintherangebetween12% L n F 10 % and15%. o ti c a r 4.1.1 Otherstudies f n o DespitetherobustnessoftheHJmigrationfractionfoundbyASL, ati 1 % this number is not in perfect agreement with the results of other r g recent works, such as Naoz, Farr & Rasio (2012) and Petrovich mi (2015b) (both considered only M = 1 M ). The main differ- p J encewithNaoz,Farr&Rasio(2012)isinthechoiceofηinEqua- 0.1 % tion(11).Ontheotherhand,Petrovich(2015b)usedη = 2.7,the 1 2 3 4 5 6 7 a [AU] sameasASL.However,thesetwolastworksdifferintheproperties 0 oftheassumedunderlyingpopulationofcompanions(seeSection Figure4. IntegratedHJformationfractionFHLJK(a0)andtidaldisruption 6.2ofASLforadiscussion).Here,we(andASL)haveassumedthe fractionFdLiKs(a0)(seeEq.20)forarangeofplanetmassesMpanddimen- binaryorbitstofollowuniformdistributionsineout andlogaout, sionlesstidaldissipationstrengthsχ.PlanetmassesareMp =0.3,0.5,1, with e ∈ [0,0.8] and loga ∈ [2,3]. Following one of the out out 3and5MJandallplanetradiiaretakentobeRp=RJ.Thethreepanels examples of Petrovich (2015b), we choose e ∈ [0,0.95] and correspondtoχ=1,10,100. out loga ∈ [2,3.2], and find FLK = 1.2%, FLK = 21.2% for out HJ dis atotalofFLK = 22.4%,inagreementwiththeresultsofMonte mig Carloexperiments. planet”fractionofSaturn-massobjectsis(cid:28)1%,whileonlyplan- etswithmassesabove3M cansuccessfullyturnintohotplanets. J 4.2 Rockyplanets Itisonlyintheextremedissipationregime(χ = 100)thatallgas giantsacrosstheexploredmassrangecanturnintohotplanetsat The procedure outlined in the previous section can be applied to ratesofafewpercent.Thisbehaviorcanbeeasilyunderstoodfrom rockyplanetsbysimplemodificationoftheplanetmass-radiusre- thedefinitionsofrp,mig andrp,dis (Eqs.9and11).Foragivenχ, lation, Love number k2p and dimensionless tidal strength χ. For varyingtheplanetmassbyafactorofafewdoesnotchangesig- SolarSystemrockyplanets∆t ≈ 600s(Lambeck1977;Neron L nificantlythetotalmigrationfraction(FmLKig+FdLiKs)becauserp,mig de Surgy & Laskar 1997), i.e., χ = 6000, and k2p ≈ 0.3 (Yo- isessentiallyunchanged.However,therelativeimportanceofFLK der 1995). We take the generic mass-radius relation from Seager mig andFLKischangedasr dependsonM .Similarly,changing et al. (2007) for an “Earth-like” composition and calculate FLK dis p,dis p mig (cid:13)c 2016RAS,MNRAS000,1–?? Lidov-Kozaimigrationfractions 7 andFLK asabove.Thesuccessfulmigrationrateof“hotplanets” is,anadloisgoustoHJs,FLK =FLK −FLK. 100 % FhFp HL JKFFdidLsiK s χ=6000 entroIcnkFyigp.la5n,ewtse,srahnogwhinpFghLipnKm(imnasibsglfureo)madni2sdMF⊕dLiKsto(1in5Mred⊕).fTorhediifnfeter-- (a)0 MMMppp MMMppp===251MM0M⊕⊕⊕ gratedhotplanetfractionFhLpK(fora0between1and5AU)isbe- LKF Mp Mp=15M⊕ tween1%and1.5%.Thus,theseplanetsaremorelikelytosurvive n 10 % LKmigrationthanSaturn-massplanets.Thereasonforthisisthat tio c thereisenoughroombetweenrp,mig andrp,dis(Eqs.9and11)to ra accomodatetheplanetsintosuccessfullymigratedorbits.Rewrit- n f ingrp,mig andrp,dis inunitsmoresuitableforrockyplanets,we tio 1 % a have r g (cid:18) (cid:19)5 mi r =2.47×10−2 Rp 7 AU p,mig 1.2R ⊕ 0.1 % ×(cid:18) χ (cid:19)1/7(cid:18) Mp (cid:19)−17(cid:18) a0 (cid:19)−17(cid:18)k2p(cid:19)71(cid:18) M∗ (cid:19)27 1 2 3 a0[AU]4 5 6 7 6000 2M 1AU 0.3 1M ⊕ (cid:12) (22) Figure 5. Integrated LK “hot planet” formation fraction FhLpK(a0) and tidal disruption fraction FdLiKs(a0) as in Fig. 4 but for rocky planets. and Planet masses are Mp=2M⊕, 5M⊕, 10M⊕ and 15M⊕, with cor- rp,dis =7.6×10−3AU(cid:18)1.R2Rp⊕(cid:19)(cid:18)2MMp⊕(cid:19)−1/3(cid:18)1MM∗(cid:12)(cid:19)1/3 . artwensdepeon2nRd1i⊕nga.nrdWadh5iienAofUin(,StetegharegaetigrnlgoebtaFallhL.piKn2t0(ea0g07ra))teRdanpdf=ra1Fc.t2diLoRiKsn⊕s(a,a01r)e.,5oRrve⊕esrp,ea1c0t.i8vRebl⊕ey-, (23) (FLK,FLK)=(1.08%,12.9%),(1.23%,12.9%),(1.35%,12.8%)and hp dis Interestingly,rp,migisveryclosetothevalueobtainedforaJupiter- (1.43%,12.7%). If, instead of χ = 6000 we use χ = 600, the hot massplanet;however,r issmaller,sincethehigherdensityof planet fractions are reduced by half: (FLK,FLK)= (0.62%,12.9%), p,dis hp dis rockyplanetspushestheRochelimitclosertothestar.Thus,pro- (0.74%,12.9%),(0.85%,12.8%)and(0.92%,12.7%). vided χ is high enough (in this case 6000), some small but non- negligible fraction of rocky planets can survive LK oscillations anoccurrencerateof∼ 0.5%intheKeplercatalog(e.g.Sanchis- andmigrateintoclose-inorbits.Notethat,for2M rockyplanets, ⊕ Ojeda et al. 2014), and the occurrence rate of rocky planets with Eqs.(22)and(23)indicatethattheLKmigratedhotsuper-Earths slightlylongerperiods(afewdays)isappreciablyhigher(Fressin shouldresidewithinanorbitalperiodrangeof0.7to4days. etal.2013).Whilemanyoftheseareexpectedtobemembersof Note that the dimensionless tidal dissipation parameter χ is multiple-planetsystems(Sanchis-Ojedaetal.2014),somemaybe highlyuncertain.TidaldissipationintheEarthisdominatedbyits true“singles”(Steffen&Farr2013).LKmigrationofrockyplanets oceans (e.g., Peale 1999, and references therein), which does not maycontributetothispopulationofclose-inplanets. necessarilyapplytomodelsofmigratingsuper-Earthswithuncer- tainamountsofgasenvelopes.Ifweassumeasmallertidaldissipa- tionstrength(χ=600),thehotplanetformationratesarereduced byafactoroftwo(seethecaptionofFig.5).Suchsmallsuccess 5 SUMMARY rates in producing close-in rocky planets are in rough agreement We have derived a simple analytical method for calculating mi- with the N-body experiments of Plavchan, Chen & Pohl (2015), gration fractions of close-in planets via Lidov-Kozai oscillations who implemented a constant-phase-lag (or constant tidal quality in stellar binaries. An important ingredient of the method is the factorQ)modeltostudyLKmigrationofsmallplanetsinthebi- relationship between the maximum eccentricity e that can be narysystemαCenB.Inthatstudy,only1−3integrationsoutof max achievedinLKoscillationsasafunctionoftheinitialplanet-binary ∼600endedupinclose-inplanets. inclination(Equation6)–theeffectsofshort-rangeforcesandoc- Ifwewritetheoccurrencerateofhotrockyplanetsformedvia tupole potential play an essential role. Our method can be easily LKmigrationas(seeEquation1)Rrocky =F ×Frocky×FLK, hp b p hp implemented for various planet and stellar/companion types, and andassumethattheplanetbearingfractionofrockyplanetswithin consistsofthefollowingsteps: a few AU is Frocky∼100% (Petigura, Howard & Marcy 2013; p Fressinetal.2013),then,withFb ∼ 20%andFhLpK ∼ 1%(see • Forgiveninitialplanetsemi-majoraxisa0 andbinaryorbital Fig. 5), we find Rrhopcky ∼ 0.2%. Thus, an intriguing possibility parameters(aout andeout),calculatethe“migrationeccentricity” isthatofLKmigrationplayingaroleintheoriginofshort-period emig =1−rp,mig/a0,withrp,mig(therequiredpericenterdistance rockyplanets,especiallyforsingle-planetsystems3.Observation- inorderfortidaldissipationtoinduceefficientorbitaldecay)given ally,ultra-short-period((cid:46) 2days)rockyplanetsarefoundtohave byEquation(9). • Knowinge andtheoctupoleparameter(cid:15) ,calculatethe mig oct criticalplanet-binaryinclinationangleformigration,i ,using 0,mig Equation(19). 3 ForsystemscontainingmultipleplanetswithafewAUsemi-majoraxes, • Assumingisotropicdistributionofthebinaryorientations,the LKoscillationscanbesuppressedbymutualplanet-planetinteractionsif migrationfractionisfLK = cosi .Thetidaldisruptionfrac- theplanetmassistoolarge.FromEq.(7)ofMun˜oz&Lai(2015),thecrit- mig 0,mig tionissimilarlycalculatedfromfLK = cosi andtheHJ(hot ical“shieldingmass”isabout3M⊕fora0 ∼3AUandastellarcompan- dis 0,dis ionlocatedat150AU(seealsoMartin,Mazeh&Fabrycky2015;Hamers, planet)formationfractionisfHLJK =fmLKig−fdLiKs. Perets&PortegiesZwart2016).Forsmallerplanetmasses,LKoscillation • Foradistributionofa0,aout andeout,theintegratedmigra- mayoperateforeachplanetindependently. tion/disruptionfractionscanbeobtainedusingEqs.20and21. (cid:13)c 2016RAS,MNRAS000,1–?? 8 Mun˜oz,Lai&Liu Theresultsofourcalculationsareingoodagreementwiththe Martin D. V., Mazeh T., Fabrycky D. C., 2015, MNRAS, 453, recentpopulationstudiesofHJformationviaLKmigrationinstel- 3554 larbinaries(Petrovich2015b;Anderson,Storch&Lai2016).They Mun˜ozD.J.,LaiD.,2015,ProceedingsoftheNationalAcademy canbeeasilymodifiedtoreflectdifferenttypesofplanets/binaries ofScience,112,9264 anddistributionsofthebinary’sorbitalelements.Thisagreement NagasawaM.,IdaS.,BesshoT.,2008,ApJ,678,498 confirmsthatthetotalmigrationfractionofplanets(thesumofHJ NaozS.,FarrW.M.,RasioF.A.,2012,ApJ,754,L36 andtidaldisruptionfractions)viatheLKmechanismisprimarily NerondeSurgyO.,LaskarJ.,1997,A&A,318,975 determined by the initial geometry of the hierarchical triple, and PealeS.J.,1999,ARA&A,37,533 dependsweaklyonthepropertiesoftheplanet(Anderson,Storch PetiguraE.A.,HowardA.W.,MarcyG.W.,2013,Proceedings & Lai 2016). The production fraction of close-in planets, on the oftheNationalAcademyofScience,110,19273 other hand, does depend on the internal properties of the planet PetrovichC.,2015a,ApJ,805,75 (e.g., mass-radius relation and the strength of dissipation), and it PetrovichC.,2015b,ApJ,799,27 decreases with decreasing mass in the case of gas giants, result- PlavchanP.,ChenX.,PohlG.,2015,ApJ,805,174 inginanaturalabsenceof“hotSaturns”.Inaddition,wefindthat RaghavanD.etal.,2010,ApJS,190,1 rocky planets, provided they are sufficiently dissipative, may mi- RasioF.A.,FordE.B.,1996,Science,274,954 gratemoreeffectivelythanSaturn-massplanets.Itispossiblethat Sanchis-OjedaR.,RappaportS.,WinnJ.N.,KotsonM.C.,Levine somefractionoftheobservedshort-periodrockyplanetsarepro- A.,ElMellahI.,2014,ApJ,787,47 ducedviaLKmigrationinstellarbinaries. SeagerS.,KuchnerM.,Hier-MajumderC.A.,MilitzerB.,2007, ApJ,669,1279 SteffenJ.H.,FarrW.M.,2013,ApJ,774,L12 StorchN.I.,AndersonK.R.,LaiD.,2014,Science,345,1317, ACKNOWLEDGEMENTS preprint(arXiv:1409.3247) WethankKassandraAndersonforusefuldiscussionsandCristo´bal WrightJ.T.,MarcyG.W.,HowardA.W.,JohnsonJ.A.,Morton Petrovich for comments on the manuscript. This work has been T.D.,FischerD.A.,2012,ApJ,753,160 supported in part by NSF grant AST-1211061, and NASA grants WuY.,LithwickY.,2011,ApJ,735,109 NNX14AG94GandNNX14AP31G. WuY.,MurrayN.,2003,ApJ,589,605 WuY.,MurrayN.W.,RamsahaiJ.M.,2007,ApJ,670,820 YoderC.F.,1995,inGlobalEarthPhysics:AHandbookofPhys- icalConstants,AhrensT.J.,ed.,p.1 REFERENCES AndersonK.R.,StorchN.I.,LaiD.,2016(ASL),MNRAS,456, 3671 Beauge´C.,Nesvorny´D.,2012,ApJ,751,119 ChatterjeeS.,FordE.B.,MatsumuraS.,RasioF.A.,2008,ApJ, 686,580 CorreiaA.C.M.,LaskarJ.,FaragoF.,Boue´ G.,2011,Celestial MechanicsandDynamicalAstronomy,111,105 DawsonR.I.,Murray-ClayR.A.,2013,ApJ,767,L24 DawsonR.I.,Murray-ClayR.A.,JohnsonJ.A.,2015,ApJ,798, 66 FabryckyD.,TremaineS.,2007,ApJ,669,1298 FordE.B.,KozinskyB.,RasioF.A.,2000,ApJ,535,385 FressinF.etal.,2013,ApJ,766,81 GoldreichP.,TremaineS.,1980,ApJ,241,425 GuillochonJ.,Ramirez-RuizE.,LinD.,2011,ApJ,732,74 HamersA.S.,PeretsH.B.,PortegiesZwartS.F.,2016,MNRAS, 455,3180 HowardA.W.etal.,2012,ApJS,201,15 Juric´M.,TremaineS.,2008,ApJ,686,603 Katz B., Dong S., Malhotra R., 2011, Physical Review Letters, 107,181101 KozaiY.,1962,AJ,67,591 LambeckK.,1977,PhilosophicalTransactionsoftheRoyalSoci- etyofLondonSeriesA,287,545 LidovM.L.,1962,P&SS,9,719 Lin D. N. C., Bodenheimer P., Richardson D. C., 1996, Nature, 380,606 LithwickY.,NaozS.,2011,ApJ,742,94 LiuB.,Mun˜ozD.J.,LaiD.,2015(LML),MNRAS,447,751 Marcy G., Butler R. P., Fischer D., Vogt S., Wright J. T., Tin- neyC.G.,JonesH.R.A.,2005,ProgressofTheoreticalPhysics Supplement,158,24 (cid:13)c 2016RAS,MNRAS000,1–??

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.