Springer Tracts in Modern Physics Volume 217 ManagingEditor:G.Höhler,Karlsruhe Editors: A.Fujimori,Chiba C.Varma,California F.Steiner,Ulm J.Kühn,Karlsruhe J.Trümper,Garching P.Wölfle,Karlsruhe Th.Müller,Karlsruhe StartingwithVolume165,SpringerTractsinModernPhysicsispartofthe[SpringerLink]service. ForallcustomerswithstandingordersforSpringerTractsinModernPhysicsweofferthefulltext inelectronicformvia[SpringerLink]freeofcharge.Pleasecontactyourlibrarianwhocanreceive apasswordforfreeaccesstothefullarticlesbyregistrationat: springerlink.com Ifyoudonothaveastandingorderyoucanneverthelessbrowseonlinethroughthetableofcontents ofthevolumesandtheabstractsofeacharticleandperformafulltextsearch. Thereyouwillalsofindmoreinformationabouttheseries. Springer Tracts in Modern Physics SpringerTractsinModernPhysicsprovidescomprehensiveandcriticalreviewsoftopicsofcurrentin- terestinphysics.Thefollowingfieldsareemphasized:elementaryparticlephysics,solid-statephysics, complexsystems,andfundamentalastrophysics. Suitablereviewsofotherfieldscanalsobeaccepted.Theeditorsencourageprospectiveauthorstocor- respond with them in advance of submitting an article. For reviews of topics belonging to the above mentionedfields,theyshouldaddresstheresponsibleeditor,otherwisethemanagingeditor. Seealsospringer.com ManagingEditor Solid-StatePhysics,Editors GerhardHöhler AtsushiFujimori EditorforThePacificRim InstitutfürTheoretischeTeilchenphysik UniversitätKarlsruhe DepartmentofComplexityScience Postfach6980 andEngineering 76128Karlsruhe,Germany UniversityofTokyo Phone:+49(721)6083375 GraduateSchoolofFrontierSciences Fax:+49(721)370726 5-1-5Kashiwanoha Email:[email protected] Kashiwa,Chiba277-8561,Japan www-ttp.physik.uni-karlsruhe.de/ Email:[email protected] http://wyvern.phys.s.u-tokyo.ac.jp/welcome_en.html ElementaryParticlePhysics,Editors C.Varma JohannH.Kühn EditorforTheAmericas InstitutfürTheoretischeTeilchenphysik DepartmentofPhysics UniversitätKarlsruhe UniversityofCalifornia Postfach6980 Riverside,CA92521 76128Karlsruhe,Germany Phone:+1(951)827-5331 Phone:+49(721)6083372 Fax:+1(951)827-4529 Fax:+49(721)370726 Email:[email protected] Email:[email protected] www.physics.ucr.edu www-ttp.physik.uni-karlsruhe.de/∼jk PeterWölfle ThomasMüller InstitutfürTheoriederKondensiertenMaterie InstitutfürExperimentelleKernphysik UniversitätKarlsruhe FakultätfürPhysik Postfach6980 UniversitätKarlsruhe 76128Karlsruhe,Germany Postfach6980 Phone:+49(721)6083590 76128Karlsruhe,Germany Fax:+49(721)698150 Phone:+49(721)6083524 Email:woelfl[email protected] Fax:+49(721)6072621 www-tkm.physik.uni-karlsruhe.de Email:[email protected] www-ekp.physik.uni-karlsruhe.de ComplexSystems,Editor FrankSteiner FundamentalAstrophysics,Editor AbteilungTheoretischePhysik JoachimTrümper UniversitätUlm Max-Planck-InstitutfürExtraterrestrischePhysik Albert-Einstein-Allee11 Postfach1312 89069Ulm,Germany 85741Garching,Germany Phone:+49(731)5022910 Phone:+49(89)30003559 Fax:+49(731)5022924 Fax:+49(89)30003315 Email:[email protected] Email:[email protected] www.physik.uni-ulm.de/theo/qc/group.html www.mpe-garching.mpg.de/index.html Stefan Kehrein The Flow Equation Approach to Many-Particle Systems With24Figures ABC StefanKehrein Ludwig-Maximilians-UniversitätMünchen FakultätfürPhysik Theresienstr.37 80333München Germany E-mail:[email protected] LibraryofCongressControlNumber:2006925894 PhysicsandAstronomyClassificationScheme(PACS): 01.30.mm,05.10.Cc,71.10.-w ISSNprintedition:0081-3869 ISSNelectronicedition:1615-0430 ISBN-10 3-540-34067-XSpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-34067-6SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:1)c Springer-VerlagBerlinHeidelberg2006 PrintedinTheNetherlands Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:bytheauthorusingaSpringerLATEXmacropackage Coverconcept:eStudioCalamarSteinen Coverproduction:design&productionGmbH,Heidelberg Printedonacid-freepaper SPIN:10985205 56/techbooks 543210 To Michelle Preface Overthepastdecade,theflowequationmethodhasdevelopedintoanewver- satiletheoreticalapproachtoquantummany-bodyphysics.Itsbasicconcept wasconceived independentlybyWegner[1]andbyGl(cid:1)azekandWilson[2,3]: the derivation of a unitary flow that makes a many-particle Hamiltonian in- creasingly energy-diagonal. This concept can be seen as a generalization of theconventionalscalingapproachesinmany-bodyphysics,wheresomeultra- violetenergyscaleislowereddowntotheexperimentallyrelevantlow-energy scale[4].Themaindifferencebetweentheconventionalscalingapproachand the flow equation approach can then be traced back to the fact that the flow equation approach retains all degrees of freedom, i.e. the full Hilbert space, while the conventional scaling approach focusses on some low-energy subspace. One useful feature of the flow equation approach is therefore that it allows the calculation of dynamical quantities on all energy scales in one unified framework. Since its introduction, a substantial body of work using the flow equa- tion approach has accumulated. It was used to study a number of very dif- ferent quantum many-body problems from dissipative quantum systems to correlated electron physics. Recently, it also became apparent that the flow equation approach is very suitable for studying quantum many-body non- equilibrium problems, which form one of the current frontiers of modern theoretical physics. Therefore the time seems ready to compile the research literatureonflowequationsinaconsistentandaccessibleway,whichwasmy goal in writing this book. The choice of material presented here is necessarily subjective and moti- vatedbymyownresearchinterests.Still,Ibelievethattheworkcompiledin this book provides a pedagogical introduction to the flow equation method from simple to complex models while remaining faithful to its nonpertur- bative character. Most of the models and examples in this book come from condensed matter theory, and a certain familiarity with modern condensed matter theory will be helpful in working through this book.1 Purposely, this bookisfocussedonthemethodandnotonthephysicalbackgroundandmoti- vationofthemodelsdiscussed.Byworkingthroughit,astudentorresearcher 1An excellent and highly recommended introduction is, for example, P.W. An- derson’s classic textbook [4]. VIII Preface shouldbecomewellequippedtoinvestigatemodelsofone’sowninterestusing the flow equation approach. Most of the derivations are worked out in con- siderable detail, and I recommend to study them thoroughly to learn about the application and potential pitfalls of the flow equation approach. Theflowequationapproachisunderactivedevelopmentandmanyissues still need to be addressed and answered. I hope that this book will motivate its readers to contribute to these developments. I will try to keep track of such developments on my Internet homepage, and hope for e-mail feedback from the readers of this book. In particular, I am grateful for mentioning typos, which will be compiled on my homepage. Both in my research on flow equations and in writing the present book, I owe debts of gratitude to numerous colleagues. First of all, I am deeply indebted to my Ph.D. advisor Franz Wegner, whose presentation of his new “flowequationscheme”inourHeidelberggroupseminarin1992startedboth thiswholelineofresearchandmyinvolvementinit.Ialsooweaveryspecial acknowledgment to Andreas Mielke, with whom I have started my work on flowequationsbackin1994.Ourjointworkhassetthefoundationsofmanyof thedevelopments presentedinthisbook.Duringmyworkonflowequations, I have also profited greatly from many discussions with Dieter Vollhardt. I amparticularlygratefultohimforhiscontinuedinterestandencouragement. I also thank the participants of my flow equation lecture in Augsburg during the summer term 2005, which gave me the opportunity to test my presentation of the material that is compiled in this book. Among them I am especially thankful to Peter Fritsch, Lars Fritz, Andreas Hackl, Verena Ko¨rting, and Michael Mo¨ckel for proofreading parts of this manuscript. TheoriginalideatowritethisbookisduetoasuggestionbyPeterWo¨lfle, and I am very grateful to him for starting me on this project and for his continuedinterestintheflowequationapproachingeneral.Thisbookproject and a lot of the research compiled in it has only been possible due to a Heisenberg fellowship of the Deutsche Forschungsgemeinschaft (DFG). This gave me the necessary free time to pursue this project, and it is pleasure to acknowledge the DFG for this generous and unbureaucratic support through the Heisenberg program. Finally, I thank my colleagues at the University of Augsburg for many valuable discussions, and everyone else not mentioned here by name with whom I have worked on flow equations in the past decade. For everything else and much more, I thank Michelle. Augsburg Stefan Kehrein February 2006 References IX References 1. F. Wegner, Ann. Phys. (Leipzig) 3, 77 (1994) 2. S.D. G(cid:1)lazek and K.G. Wilson, Phys. Rev. D 48, 5863 (1993) 3. S.D. G(cid:1)lazek and K.G. Wilson, Phys. Rev. D 49, 4214 (1994) 4. P.W.Anderson:BasicNotionsofCondensedMatterPhysics,6thedn(Addison- Wesley, Reading Mass. 1996) Contents 1 Introduction.............................................. 1 1.1 Motivation ............................................ 1 1.2 Flow Equations: Basic Ideas ............................. 2 1.3 Outline and Scope of this Book .......................... 7 References ................................................. 9 2 Transformation of the Hamiltonian ....................... 11 2.1 Energy Scale Separation................................. 11 2.1.1 Potential Scattering Model ........................ 12 2.1.2 Kondo Model .................................... 19 2.2 Flow Equation Approach ................................ 22 2.2.1 Motivation ...................................... 22 2.2.2 Infinitesimal Unitary Transformations............... 23 2.2.3 Choice of Generator .............................. 25 2.2.4 Flow Equations .................................. 28 2.3 Example: Potential Scattering Model...................... 31 2.3.1 Setting up the Flow Equations ..................... 31 2.3.2 Methods of Solution .............................. 34 2.3.3 Strong-Coupling Case............................. 39 References ................................................. 40 3 Evaluation of Observables ................................ 43 3.1 Expectation Values ..................................... 43 3.1.1 Zero Temperature ................................ 43 3.1.2 Nonzero Temperature............................. 46 3.2 Correlation Functions ................................... 47 3.2.1 Zero Temperature ................................ 47 3.2.2 Nonzero Temperature............................. 49 3.2.3 Fluctuation–Dissipation Theorem .................. 50 3.3 Examples.............................................. 51 3.3.1 Potential Scattering Model ........................ 52 3.3.2 Resonant Level Model ............................ 54 References ................................................. 61