Mon.Not.R.Astron.Soc.401,2531–2551(2010) doi:10.1111/j.1365-2966.2009.15829.x The evolution of the hard X-ray luminosity function of AGN J. Aird,1(cid:2)† K. Nandra,1 E. S. Laird,1 A. Georgakakis,2 M. L. N. Ashby,3 P. Barmby,4 A. L. Coil,5 J.-S. Huang,3 A. M. Koekemoer,6 C. C. Steidel7 and C. N. A. Willmer8 1AstrophysicsGroup,ImperialCollegeLondon,BlackettLaboratory,PrinceConsortRoad,LondonSW72AZ 2NationalObservatoryofAthens,InstituteofAstronomy,V.Paulou&I.Metaxa,Athens15236,Greece 3Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA 4DepartmentofPhysics&Astronomy,UniversityofWesternOntario,London,ONN6A3K7,Canada 5CenterforAstrophysicsandSpaceSciences(CASS),DepartmentofPhysics,UniversityofCalifornia,SanDiego,CA92093,USA 6SpaceTelescopeScienceInstitute,3700SanMartinDrive,BaltimoreMD21218,USA 7CaliforniaInstituteofTechnology,MS105-24,Pasadena,CA91125,USA 8StewardObservatory,UniversityofArizona,Tucson,AZ85721,USA Accepted2009October5.Received2009September3;inoriginalform2009April29 ABSTRACT Wepresentnewobservationaldeterminationsoftheevolutionofthe2–10keVX-rayluminos- ityfunction(XLF)ofactivegalacticnuclei(AGN).Weutilizedatafromanumberofsurveys includingboththe2MsChandraDeepFieldsandtheAEGIS-X200kssurvey,enablingac- curate measurements of the evolution of the faint end of the XLF. We combine direct, hard X-rayselectionandspectroscopicfollow-uporphotometricredshiftestimatesatz<1.2with arest-frameUVcolourpre-selectionapproach athigherredshiftstoavoidbiasesassociated withcatastrophicfailureofthephotometricredshifts.OnlyrobustopticalcounterpartstoX-ray sourcesareconsideredusingalikelihoodratiomatchingtechnique.ABayesianmethodology isdevelopedthatconsidersredshiftprobabilitydistributions,incorporatesselectionfunctions forourhigh-redshiftsamplesandallowsrobustcomparisonofdifferentevolutionarymodels. WestatisticallyaccountforX-raysourceswithoutopticalcounterpartstocorrectforincom- pletenessinoursamples.WealsoaccountforPoissonianeffectsontheX-rayfluxestimates and sensitivities and thus correct for the Eddington bias. We find that the XLF retains the same shape at all redshifts, but undergoes strong luminosity evolution out to z ∼ 1, and an overallnegativedensityevolutionwithincreasingredshift,whichthusdominatestheevolution atearliertimes.Wedonotfindevidencethataluminosity-dependentdensityevolution,and the associated flattening of the faint-end slope, is required to describe the evolution of the XLF.Wefindsignificantlyhigherspacedensitiesoflow-luminosity,high-redshiftAGNthan inpriorstudies,andasmallershiftinthepeakofthenumberdensitytolowerredshiftswith decreasingluminosity.ThetotalluminositydensityofAGNpeaksatz=1.2±0.1,butthere is a mild decline to higher redshifts. We find that >50 per cent of black hole growth takes placeatz>1,witharoundhalfinL <1044ergs−1AGN. X Key words: galaxies: active – galaxies: evolution – galaxies: luminosity function, mass function–X-rays:galaxies. activitythroughoutthehistoryoftheUniverse,tracedbythelumi- 1 INTRODUCTION nosity function, is essential to constrain models of super-massive Active galactic nuclei (AGN) are an important constituent of the blackholeformationandgrowth,thetriggeringandfuellingofAGN Universe, playing a vital role in the formation and evolution of andtheirco-evolutionwithgalaxies.Thisrequireslargesamplesof galaxiesandhavingawiderinfluenceonthestructureoftheUni- objectsspanningawiderangeofredshiftsandluminositiestoaccu- verse.DeterminingthedistributionandevolutionofAGNaccretion ratelydeterminetheshapeoftheluminosityfunctionandhowthis evolvesovercosmictime. (cid:2)E-mail:[email protected] X-ray surveys provide a highly efficient method of selecting †Present address: Center for Astrophysics and Space Sciences (CASS), AGN,includingunobscuredandmoderatelyobscuredsourcesand Department of Physics, University of California, San Diego, CA 92093, low-luminositysourcesthatmaynotbeidentifiedasAGNatoptical USA. wavelengths.X-rayemissionisrelativelyunaffectedbyabsorption, (cid:3)C 2009TheAuthors.Journalcompilation(cid:3)C 2009RAS 2532 J.Airdetal. particularlyathardX-rayenergies((cid:2)2keV)formoderatecolumn small number of fields with sufficiently high spectroscopic com- densities(N (cid:3)1023cm−2),andthusprovidesadirectprobeofthe pleteness also means that most results are susceptible to cosmic H accretionactivity.Largeeffortshavebeenmadetoobtainfollow-up variance. observations of X-ray sources in various X-ray surveys to deter- Analternativeapproachtotheincompletenessissuewasadopted minetheirredshifts,andthusallowtheX-rayluminosityfunction by Aird et al. (2008) (see also Nandra et al. 2005) to determine (XLF)tobedetermined(e.g.Bargeretal.2003;Szokolyetal.2004; the XLF at high redshift, where the effects can be most severe. Trouille et al. 2008). Such studies of the XLF have revealed that TheLyman-breaktechnique(e.g.Steidel&Hamilton1993;Steidel AGNareastronglyevolvingpopulation,withtheoveralldistribu- et al. 2003) was used to pre-select a sample of objects at z ∼ 3 tionshiftingtolowerluminositiesbetweenz∼1andthepresent basedontheirbroad-bandcoloursinthreefilters,anddeepX-ray day.Thisevolutioncanbedescribedbyapureluminosityevolution observationswereusedtoidentifyAGN.Thistechniqueprovidesan (PLE) parametrization (Boyle et al. 1993; Barger et al. 2005) in incompletesample(missingheavilyreddenedsourcesinparticular), which the XLF retains the same shape (a double power law with buttheopticalselectionfunctionsarewelldefinedandwerederived a break at a characteristic luminosity, L∗), but shifts to lower lu- usingsimulationsoftheopticaldata.Thisallowedcorrectionsfor minositiesasredshiftdecreases.However,recentdataindicatethat theincompletenesstobeapplied,andthusthefaintendoftheXLF amorecomplex,luminosity-dependentdensityevolution(LDDE) at z ∼ 3 could be accurately measured. The number density of parametrization is required to describe the evolution of the XLF low-luminosity AGN was at least as high as previous estimates, atbothlow(z(cid:3)1)andhigh(z≈1–4)redshifts(e.g.Uedaetal. andtherewasnoevidencefortheflatteningofthefaint-endslopeat 2003; La Franca et al. 2005; Silverman et al. 2008; Ebrero et al. z>1thatischaracteristicofLDDEparametrizations.However,this 2009; Yencho et al. 2009). In this scheme the shape of the XLF workdidnotaccountfortheuncertaintiesintheredshiftestimates changes with redshift, with the faint-end slope flattening as red- forsourceswithoutspectroscopicconfirmationanddidnotpresent shiftincreases.Thisevolutionisalsocharacterizedbyashiftinthe anevolutionarymodel. peakofthespacedensityofAGNtowardslowerredshiftsforlower Inadditiontouncertaintiesintheopticalfollow-upandredshift luminosities. estimates,anumberofissuesarisingfromtheX-rayobservations However,thereareremaininguncertaintiesastotheexactform mayalsoaffectthedeterminationoftheevolutionoftheXLF.The oftheevolution,especiallyathighredshifts.Inpart,thisisdueto faintest sources in Chandra surveys are detected with very small the difficulties of accurately measuring the faint end of the XLF, numbersofcounts,andthusPoissonianeffectscanbesignificant. where incomplete and uncertain redshift information is a serious Derived X-ray fluxes can thus be highly uncertain, and may be issue.TheChandraDeepFields-North(CDF-N;Alexanderetal. underestimatedbyupto50percentduetotheEddingtonbias(Laird 2003) and Chandra Deep Fields-South (CDF-S; Giacconi et al. etal.2009),leadingtouncertaintiesintheluminosity.Georgakakis 2002)havebeenkeyinstudiesoftheXLF,providingthedeepest etal.(2008)presentedanewmethodofdeterminingthesensitivity availableX-raydataandsubstantialprogrammesofspectroscopic ofChandraobservations,whichfullyaccountsforthePoissonian follow-up of the X-ray sources to determine redshifts. However, natureofthedetectionlimitsandaccountedforthefluxuncertainties even in these fields a high fraction (∼50 per cent) of the X-ray andEddingtonbiasinthedeterminationoftheX-raynumbercounts. sourcesremainsspectroscopicallyunidentified,mainlybecausethe However,thesetechniqueshavenotbeenincorporatedinprevious opticalcounterpartsofthefaintestX-raysourcesarealsofaint(R(cid:2) studiesoftheXLF. 24),andthusbeyondthelimitsofcurrentinstrumentation.Thiscan In this paper we present a new study of the evolution of the severelybiasdeterminationsoftheXLF,especiallyathighredshifts XLF, in which we incorporate new deep X-ray observations and (e.g.Bargeretal.2005). developimprovedmethodologiestoaddresssomeoftheissuesre- Onegeneralapproachtoaddressthisissueistodeterminepho- garding optical counterparts, completeness, photometric redshifts tometricredshiftsfortheX-raysourcesthataretoofaintforoptical and X-ray fluxes described above. Section 2 describes our data, spectroscopicfollow-up.Thissignificantlyimprovesthecomplete- including our samples of hard X-ray-selected AGN and the data nessofthesamples,althoughmanyX-raysourceswhichlackde- used to perform high-redshift colour pre-selection of AGN. We tectable optical counterparts remain unidentified. However, there adopt a likelihood ratio method to ensure that we assign secure are considerable uncertainties in such redshift estimates, particu- opticalcounterpartstothefaintestX-raysources.InSection3we larlyforthefaintestopticalcounterparts,andariskofcatastrophic developaBayesianmethodologytodeterminetheevolutionofthe failuresintheredshiftdeterminations,whichisparticularlyacute XLF, which accounts for uncertainties in redshift estimates and for sources at z ∼ 1–3. It is also necessary to correct for the re- X-rayfluxes,incorporatestheimprovedsensitivitycalculationsof mainingincompletenessinsuchsamples,whichcanprovedifficult. Georgakakisetal.(2008),correctsfortheremainingincomplete- Additionally,thereisasignificantriskofassociatingtheincorrect nessoftheopticalidentificationsandallowsarobustcomparison optical counterpart with an X-ray source, due to the high surface ofdifferentevolutionarymodels.Section3.3describeshowhigh- density of optical sources at these faint magnitudes, and thus an redshift rest-frame UV colour-selected samples are incorporated X-raysourcemaybeassignedcompletelyincorrectredshiftinfor- intothismethodology(buildingontheworkofAirdetal.2008),to mation.Forexample,Bargeretal.(2003)wereabletoassignoptical provideamorerobustdeterminationoftheevolutionatz(cid:2)1.2.Our counterpartsto∼85percentoftheX-raysourcesintheCDF-N,but resultsarepresentedinSection4anddiscussedfurtherinSection5. notedthat∼25percentoftheopticalidentificationsatR=24–26 Aflatcosmologywith(cid:3) =0.7andh=0.7isadoptedthrough- (cid:4) areexpectedtobespurious.SuchfalseidentificationsoffaintX-ray out. sourcescouldsignificantlybiasdeterminationsoftheXLF.Tore- ducetheseeffectsmanyauthors(e.g.Uedaetal.2003;Bargeretal. 2 DATA AND SAMPLES 2005;Silvermanetal.2008)setrelativelyhighX-rayfluxlimits, thusincreasingthespectroscopicallyidentifiedfractionandreduc- To determine the evolution of the XLF requires large samples of ingthenumbersofopticallyfaintorunidentifiedsources,butthis AGNspanningawiderangeofluminositiesandredshifts.Forour also reduces the sensitivity to the key low-luminosity AGN. The initial investigation of the evolution of the XLF, our approach is (cid:3)C 2009TheAuthors.Journalcompilation(cid:3)C 2009RAS,MNRAS401,2531–2551 Theevolution ofthehardXLFofAGN 2533 Table1. DetailsofthehardX-ray-selectedsamples/fields. Field RA Dec. X-rayexposure Surveyareaa NXb Foptc Fspecd (J2000) (J2000) (ks) (arcmin2) (percent) (percent) CDF-S 03:32:28 −27:48:30 1933.4 436.2 248 68 44 CDF-N 12:36:55 +62:14:18 1862.9 436.0 303 67 55 AEGIS-X 14:17:43 +52:28:25 188.7 1155.6 397 86 40 ALSS 13:14:00 +31:30:00 – 20880.0 34 97 97 AMSS – – – 294386.0 109 98 98 aAreacoveredbybothX-raydataandrequiredopticalimaging;btotalnumberofhardX-ray-selectedsources intheareacovered;cfractionofhardX-raysourceswithsecureopticalcounterparts;dfractionofhardX-ray sourceswithsecureopticalcounterpartsandspectroscopicredshifts. similartomostpreviousstudiesoftheXLF(e.g.Uedaetal.2003; Telescope (HST). We have searched for optical counterparts us- Barger et al. 2005; Silverman et al. 2008; Ebrero et al. 2009) ing the COMBO-17 survey (Wolf et al. 2004) source catalogue, in that we attempt to assign redshifts to all sources in a purely in which sources are detected in deep R-band images (10σ lim- X-ray-selectedcatalogue,utilizingphotometricredshiftstoimprove itingABmagnitudeof∼25.6)obtainedwiththeWFIinstrument the completeness. Thus AGN are detected over a wide redshift on the European Southern Observatory (ESO) 2.2 m telescope at range, which is essential for probing the evolution. Our method- LaSilla.Counterpartswerefoundusingtheimplementationofthe ology (see Section 3) requires probability distributions that de- likelihoodratiomethod(Sutherland&Saunders1992;Ciliegietal. scribe the uncertainties in the photometric redshift estimates. We 2003) described in Laird et al. (2009). This method allows us to thereforeadoptthebestavailablephotometricredshiftswithsuit- assign secure optical counterparts to the X-ray source, account- ableprobabilitydistributionsorgenerateourownfromtheavail- ingfortheX-rayandopticalpositionaluncertainties,theapriori abledata.ToobtainthebestconstraintsontheXLF,ahighfrac- probabilityofacounterpartwithagivenmagnitudeandtheprob- tionofspectroscopicidentificationsisalsorequired.Additionally, abilityofaspuriousopticalcounterpart.Werestrictoursampleto we require hard X-ray coverage to reduce biases against mod- objectswithlikelihoodratiosof>0.5,whichprovidesopticalcoun- erately absorbed sources. Three deep Chandra surveys have the terparts for 169 (≈68 per cent) of the hard-band-selected X-ray necessary spectroscopic follow-up, combined with the deep mul- sources. tiwavelength imaging required for photometric redshifts: the two A number of spectroscopic programmes have been carried out CDF and the AEGIS-X survey. We supplement this sample with in the CDF-S. Following Luo et al. (2008), we have combined two larger area ASCA surveys with near complete spectroscopic spectroscopic surveys from Szokoly et al. (2004), Le Fe`vre et al. follow-up,whichareneededtoconstrainthebrightendoftheXLF. (2004), Mignoli et al. (2005), Ravikumar et al. (2007), Popesso Table1summarizesthenumbersofsourcesandfractionwithop- etal.(2009)andVanzellaetal.(2008).Thisprovidesspectroscopic tical counterparts and spectroscopic redshifts. Further details and redshifts for 110 sources (65 per cent of the optical counterparts a description of the photometric redshift estimates are given in and44percentoftheentirehardX-ray-selectedsample). Section2.1. Avarietyofphotometricredshiftestimateshavebeenpublished Forthehigh-redshiftcolourpre-selectionapproach,therequire- in the CDF-S area, focused on both the X-ray source population ments are different. Deep X-ray data are again required, but the (e.g.Zhengetal.2004)andlargerpopulationsofopticallyselected soft(0.5–2keV)band,wherethesensitivityofChandraishighest, sources(e.g.Mobasheretal.2004;Wolfetal.2004).However,we maybeusedforselectionasthisprobesrelativelyhardrest-frame have chosen to use our own photometric redshift estimates using energiesatz(cid:2)2,andthusshouldnotbeseverelybiasedbyabsorp- theBayesianphotometricredshiftcodeBPZ(Ben´ıtez2000),which tioneffects.DeepopticalimagingdatainU GRoracomparable allowsustousethefullredshiftprobabilitydistributionoutputby n filtersetarerequiredforthecolourpre-selection,withdeepdataat the BPZ code and thus account for the significant uncertainties in U-bandwavelengthsbeingthemajorrequirement.Adescriptionof photo-zestimatesinourdeterminationoftheXLF(seeSection3). thedataforthehigh-redshiftworkisgiveninSection2.2. Such probability distributions are not available for the published catalogues. Our photo-z estimates were determined using the full 17-band 2.1 HardX-ray-selectedsamplesofAGN photometryfortheX-raysources(withsecureopticalcounterparts) fromtheCOMBO-17catalogues(Wolfetal.2004).TheBPZcode 2.1.1 ChandraDeepField-South usesaχ2minimizationtemplatefittingapproach.Asetofsixtem- Theoriginal∼1MsobservationoftheCDF-S(Giacconietal.2002) platespectraareused,consistingofthefourstandardtemplatesfrom hasrecentlybeensupplementedwithadditionalDirector’sDiscre- Coleman,Wu&Weedman(1980)(E/S0,Sbc,ScdandIrr)andtwo tionaryTimetoprovideatotalof∼2Msexposure(Luoetal.2008), starburstinggalaxytemplatesfromKinneyetal.(1996).Additional whichweuseinthispaper.Datareductionandsourcedetectionwere pointsincolourspacearecalculatedbyinterpolatingbetweenthe carried out using the procedures described in Laird et al. (2009). templates.TheBPZcodealsoadoptsaBayesianapproach,applying For our investigation of the XLF, we use the hard (2–7keV) se- priorsbasedontheexpectedfractionsandredshiftdistributionsfor lectedsourcecatalogueofobjectsdetectedwiththefalsePoisson differenttemplatesandmarginalizingoverthetemplatestoproduce probabilityof<4×10−6,whichprovidesasampleof248X-ray thefinalredshiftprobabilitydistribution,p(z).Thesedistributions sources.TheX-raysensitivity(areacurve)isdeterminedusingthe describetheuncertaintiesintheredshiftestimateduetobothphoto- proceduredescribedinGeorgakakisetal.(2008). metricerrorsandcolour,redshiftandtemplatedegeneracies,which DeepopticaldatahavebeenobtainedinseveralbandsintheCDF- often result in multimodal probability distributions. We note that S using both ground-based observatories and the Hubble Space BPZdoesnotincludeAGNorquasi-stellarobject(QSO)templates. (cid:3)C 2009TheAuthors.Journalcompilation(cid:3)C 2009RAS,MNRAS401,2531–2551 2534 J.Airdetal. 5.0 2.1.2 ChandraDeepField-North TheCDF-Nprovidesasecond2MsX-rayfield.Apointsourcecat- aloguebasedonthefull2Msexposureobtainedhasbeenpresented 2.0 by Alexander et al. (2003); however we use our own reduction andsourcecatalogue,againusingtheproceduredescribedinLaird 1.0 etal.(2009).Ourcatalogueprobestolowersignificancesthanthe zphot Aselnesxiatinvditeyrceatlaclu.l(a2ti0o0n3s)(wGoerokrgaankdakalilsoewtsalu.s2t0o0a8d).oIpntothuirsipmappreorvwede 0.5 useobjectswithsignificantdetections(falsePoissonprobabilityof <4 × 10−6) in the hard band, providing a sample of 303 X-ray sources. 0.2 Avastquantityofmultiwavelengthdataareavailableinthisthor- oughlyobservedfield(e.g.Dickinsonetal.2003).Tofindoptical 0.1 counterpartstoourX-raysources,weusetheHawaiiHDF-Ndata 0.1 0.2 0.5 1.0 2.0 5.0 (Capak et al. 2004), which fully covers the X-ray data with deep zspec observations in U, B, V, R, I, z(cid:6) and HK(cid:6) bandpasses. Optical counterpartswerefoundusingthelikelihoodratiomethod,asinthe Figure 1. Comparison of spectroscopic and template fitting photometric CDF-S. This yields secure optical counterparts for 204 (≈67 per redshiftestimatesintheCDF-S(circles),CDF-N(triangles)andAEGIS cent)ofourhard-band-selectedX-raysources. (squares).Errorbarsare95percentcentralconfidenceintervalsderived fromtheredshiftprobabilitydistributions.Atz(cid:2)1.0,thephotometricand We searched for spectroscopic redshifts for our secure optical counterparts in a variety of spectroscopic surveys that have been spectroscopicredshiftsaregenerallyingoodagreement.Athigherredshifts the photo-zs are less reliable, reflected by the larger error bars. A high carried out in the region (Steidel et al. 2003; Reddy et al. 2006; fractionoftheoutliersisassociatedwithbroad-lineQSOs(opensymbols), Weiner et al. 2006; Barger, Cowie & Wang 2008; Trouille et al. whicharepoorlyfittedbythetemplates.However,thereisasystematicbias 2008). This provided spectroscopic redshifts of 166 sources (81 toassignz(cid:3)1.2sourcestolowerredshifts. percentoftheX-raysourceswithsecureopticalcounterpartsand 55percentofthetotalhardX-ray-selectedsample).Thespectro- scopiccompletenessismuchhigher(∼80percent)forthebrightest X-raysources(f >10−14ergs−1cm−2;seeTrouilleetal.2008). Broad-lineQSOsarelikelytobeopticallybright,andmaybemore X As for the CDF-S, we have recalculated photometric redshift easilyidentifiedspectroscopicallyduetotheirclearspectroscopic features.TheremainingAGNpopulationisexpectedtobefainter, estimateswithBPZ,usingtheCapaketal.(2004)U,B,V,R,I,z(cid:6)and HK(cid:6) photometry.Acomparisonofphotometricandspectroscopic withasignificantfractionoftheopticallightcomingfromthehost redshiftsisshowninFig.1.Again,alargenumberoftheoutliersare galaxy,thusimprovingthematchtothegalaxytemplates.Uncer- associatedwithbroad-lineAGN,inadditiontohigh-redshiftsources tainties due to the mismatch between the observed AGN spectral whichareassignedlargeerrors.ExcludingQSOs,theaccuracyof energydistributions(SEDs)andthegalaxytemplatesmaybepar- ourphoto-zsisδz≈0.11.Asystematicbiasatz (cid:2)1.2,assigning tially reflected in the redshift probability distributions, although spec sourcestolowerredshifts,ispresent,asfoundfortheCDF-S. the lack of a representative template may result in catastrophic failures,andanunrepresentativep(z).Additionally,thepriorsare basedonobservationsofthegalaxypopulationintheHubbleDeep 2.1.3 AEGIS Field-North(HDF-N),andthusmaynottrulyrepresenttheAGN population. AEGIS(Davisetal.2007)isaninternationalmultiwavelengthsur- InFig.1wecomparetheavailablespectroscopicredshiftswith veyoftheExtendedGrothStrip,coveringan∼0.25by2◦ stripof thebestphoto-zestimates,givenbythemodeofthep(z)distribution. thesky.Deep(∼200ks)X-raydatahavebeenobtainedalongthe Errorbarsonthephoto-zrepresent95percentcentralconfidence entirelengthofthestrip.Lairdetal.(2009)describedthereduc- intervals determined from the p(z) distribution, although will not tionofthesedataandpresentedacatalogueof1325uniquepoint fullyrepresentmorecomplicatedmultimodaldistributions.Thees- sources,mergedoverallbands.Inthispaperwerestrictouranaly- timatesgenerallyagreewellatz <1.5andhaveaδz=|(z − sistohard-band-detectedsources(falsePoissonprobabilityof<4 spec phot z )|/(1+z )≈0.18.Therearehoweveranumberofoutliers. ×10−6)andthosewhichalsofallwithintheareawithverydeep spec spec A high fraction of these are associated with broad-line QSOs, in u∗g(cid:6)r(cid:6)i(cid:6)z optical data from the Canada–France–Hawaii Telescope whichtheopticallightisdominatedbytheAGN,andthuscannot LegacySurvey(CFHTLS).1Thisreducesthesampleto397X-ray beaccuratelydescribedwiththeBPZgalaxytemplates.Excluding sources, of which 343 (86 per cent) have secure i(cid:6)-band optical these sources reduces the error to δz ≈ 0.13. The remaining out- counterparts(likelihoodratioof>0.5). liersaregenerallyathighredshifts(z (cid:2)1.2),andareassigned Significant spectroscopic follow-up is available in the AEGIS spec largeerrors,indicatingbroadp(z)distributions.However,wenote field,includingredshiftsfromtheDEEP2survey(Davisetal.2007) asystematicbiasthatassignsz (cid:2)1.2sourcestolowerredshifts. andadditionaltargetedfollow-upofX-raysourceswithMMT(Coil spec Thep(z)distributionsareequallyaffectedbysuchbias;accounting etal.2009).Thisprovidesspectroscopicredshiftsfor157sources fortheredshiftuncertainty,howeverbroad,willnotcorrectforthis (40percent). effect. Indeed, the systematic bias indicates a catastrophic failure Inthisfield,wehavechosentousephotometricredshiftsfrom of the BPZ code to correctly fit the observed SEDs with realistic twodifferentsources.Huangetal.(inpreparation)useanArtificial templates at the higher redshifts. This failure may severely bias any determination of the XLF. We explore this in more detail in Section3.3. 1http://www.cfht.hawaii.edu/Science/CFHTLS (cid:3)C 2009TheAuthors.Journalcompilation(cid:3)C 2009RAS,MNRAS401,2531–2551 Theevolution ofthehardXLFofAGN 2535 1.5 Fortheremainingsourcesinoursamplewithsecureopticalcoun- terparts we adopt photometric redshifts from Ilbert et al. (2006), whicharebasedontheCFHTLSu∗g(cid:6)r(cid:6)i(cid:6)zdata.Theredshiftsare basedontemplatefittingandaBayesianapproach,andthususethe 1.0 samemethodastheBPZcode.Thepriorsarecalibratedusingspec- troscopicidentificationsofgalaxiesintheD1fieldoftheCFHTLS. z N TheestimatesarelessreliablethantheANNzresults(δz≈0.16), N butdoprovideredshiftinformationfortheremainingopticallyiden- A tifiedX-raysources.Howeverthereisasystematicbiasforsources 0.5 withz (cid:2)1.2tobeplacedatlowerredshifts,aswasfoundforthe spec CDF-SandCDF-N.Theauthorshavemadeavailablethefullp(z) redshiftprobabilitydistributionsforeverysource,whichwehave adoptedtoaccountfortheuncertainties,thoughonceagainwillnot 0.0 accountforthesystematicbias. 0.0 0.5 1.0 1.5 z spec 2.1.4 ASCALargeSkySurvey The ASCA Large Sky Survey (ALSS; Ueda et al. 1999) covers 1.0 a contiguous area of ∼5deg2 near the North Galactic Pole, and contains34sourcesdetectedinthehard(2–7keV)bandwiththe 0.8 Solid-State Imaging Spectrometer (SIS) detector, down to a flux limit∼10−13ergs−1cm−2(2–10keV).Opticalidentificationshave 0.6 ) z been presented by Akiyama et al. (2000). Two of these sources ( p areopticallyidentifiedasgalaxyclusters:oneisastarand30are 0.4 associated with AGN, all of which have spectroscopic redshifts. 0.2 One source remains unidentified. An area curve for this survey was presented by Akiyama et al. (2003), which we adopt forour 0.0 work. We note that this area curve does not fully account for the PoissoniannatureoftheX-raysourcedetection,butasarelatively -0.4 -0.2 0.0 0.2 0.4 highfluxlimitwassetforthecatalogueandtheX-rayfluxeswill (z-z )/(1+z) phot beaccuratelymeasuredthisisunlikelytohaveanadverseaffecton ourbright-enddetermination. Figure 2. Top panel: comparison of ANNz and spectroscopic redshifts in AEGIS, shown for all sources (red circles) and X-ray sources (black squares).TheANNzredshiftsgenerallyprovideextremelygoodestimates, 2.1.5 ASCAMediumSensitivitySurvey althoughareavailableforalimitedsubsetofobjects,andarerestrictedto z<1.5wheretherearesufficientspectroscopictrainingdata.Theprobability ThelargestareasurveyinourstudyistheASCAMediumSensitiv- distributionforanANNzestimateisdeterminedfromthedistributionof itySurvey(AMSS;Uedaetal.2001).Weincludesourcesfromthe spectroscopicredshiftsforasmallsliceofphotometricredshifts(e.g.blue AMSSnsub-sample,selectedinthehard(2–10keV)band,withop- dashedlines).Bottompanel):thedistributionof(z−zphot)/(1+z)forthe ticalidentificationspresentedbyAkiyamaetal.(2003).Thesample ANNzredshiftrangeindicatedinthetopfigure.Thetruedistribution(black includes87X-raysources,76ofwhichareAGN,toafluxlimitof histogram)issmoothed(redcurve)toprovideanestimateofprobability distributionoftrueredshiftsassociatedwithagivenANNzestimate. ∼3 × 10−13ergs−1cm−2, and is 100 per cent optically identified withspectroscopicredshiftsavailableforalltheAGN.Weinclude Neural Network/training set approach (ANNz; Collister & Lahav additional sources with redshift identifications from the AMSSs 2004). This approach effectively fits an arbitrary function to the sub-sample(Ueda&Akiyama,privatecommunication),whichin- redshift–colour relation, using a set of spectroscopic redshifts to cludes 20 AGN; two sources in this sample remain unidentified. train the neural network. As such the redshifts are only expected TheareacurveforthecombinedAMSSnandAMSSssampleswas to be valid for sources with the same range of properties as the presentedbyUedaetal.(2003). training set. The Huang et al. work uses a 3.6μm InfraredArray Camera (IRAC)-selected catalogue (Barmby et al. 2008), further 2.2 High-redshiftsample subjectedtoanumberofcolourcuts,andutilizesphotometryfrom MMT (Megacam)aswellasIRAC,MultibandImagingPhotome- Duetothecatastrophicfailureofourphotometricredshiftestimates ter and DEEP2. The neural network was then trained using the at z (cid:2) 1.2, we have also investigated an alternative colour pre- DEEP2spectroscopicdataandphotometricredshiftsestimatedfor selectionapproachforidentifyingAGNathigh-redshift,building allsourceswhichsatisfytheselectioncriteria.Thisprovideshighly ontheworkofAirdetal.(2008).Weincludefourofthefieldsused accuratephoto-zs(δz≈0.04),albeitforarestrictedsample.ANNz in Aird et al. (2008): HDF-N (fully encompassed by the CDF-N redshiftsareadoptedfor38X-raysourcesinoursample(without X-rayfielddescribedabove),LALACETUS,LynxandEGS1.We spectroscopicredshifts).Toaccountfortheerror,wemustdetermine additionally include the large area covered by both the AEGIS- aprobabilitydistributionforeachredshift.FortheANNzestimates X survey and the CFHTLS field D3 optical imaging. This fully wehavebasedthisonthedistributionofspectroscopicredshifts,for encompasses the Groth-Westphal Strip (GWS) field used in Aird agivenANNzestimate,usingallobjectsintheHuangetal.work et al. (2008), and thus supersedes those data. Our high-redshift withspectroscopicidentification,asdemonstratedinFig.2. data overlap with our hard X-ray-selected samples described in (cid:3)C 2009TheAuthors.Journalcompilation(cid:3)C 2009RAS,MNRAS401,2531–2551 2536 J.Airdetal. Section 2.1; in Section 3.3, we explain how data from our hard of uncertain colour corrections. The differences in the filters will X-raysurveysatz<1.2andourhigh-redshiftcolourpre-selected lead to different selection functions, which we determine in Sec- samplesarecombinedtodeterminetheevolutionoftheXLF. tion3.3.1. 2.2.1 Opticaldata 2.2.2 X-raydata The reduction of the optical data for HDF-N, LALA CETUS, AllofourfieldshavebeenobservedwithChandra,andhaveex- Lynx and EGS1 and the source detection and photometry with posure times of (cid:2)200ks. The data have been reduced using our SEXTRACTORhasbeendescribedinAirdetal.(2008)andReddyetal. pipelineprocedure(Lairdetal.2009).Forourhigh-redshiftsam- (2006),andwereferthereadertothosepapersforfurtherdetails. ples we use sources detected in the soft band with a significance For the CFHTLS we have used the publicly released images and of<4×10−6.Ourcolourpre-selectionlimitsustosourcesatz(cid:2) cataloguesavailablefromCanadaAstronomicalDataCenter,22008 2,andattheseredshiftsthesoftbandwillproberest-frameener- Marchrelease.ThecataloguesweregeneratedusingSEXTRACTOR, giesof∼2–8keV.Thusourselectionshouldberelativelyunbiased althoughwithaslightlydifferentconfigurationtoAirdetal.(2008). fortheselectionofmoderatelyabsorbedAGN(N (cid:3)1023cm−2), H Initialdetectionwasperformedinthei(cid:6)band(whichisthedeepest andiscomparablewiththehard-bandselectionemployedatlower band), and magnitudes were determined in the other bands using redshifts(Cowieetal.2003;Bargeretal.2005). theKron(1980)styleaperture(determinedfromthei(cid:6)-banddata). Thedatawerenotsmoothedtomatchtheseeingindifferentbands. Thesedifferenceswillaffectthedetectionofobjectsandmeasure- 2.2.3 MatchingtheX-rayandopticalsamples mentsoftheircolours,althoughgiventhedepthandqualityofthe Wedeterminedwhichofourcolourpre-selectedhigh-redshiftob- CFHTLSdatatheyareunlikelytoadverselyaffectthecolourselec- jectshostAGNbymatchingtheopticalandX-raysourcelists.The tionofcandidates.Nevertheless,anyerrors,biasesandscatterdue matchingisperformedwiththeentireR-(ori(cid:6)-)selectedoptical tothesourcedetectionandphotometryprocedurewillbeaccounted cataloguesusingthelikelihoodratiomethod.Thecolourselection forbyoursimulationstoderivetheopticalselectionfunctions(Sec- criteriaarethenappliedtothematches.Matchingtheentireoptical tion3.3.1). catalogueensuresthatX-raysourcesarematchedtothemostlikely Samplesofz∼3Lyman-breakgalaxies(LBGs)wereextracted optical counterparts and prevents colour pre-selected objects be- from the optical catalogues using the standard selection criteria ingerroneouslyassociatedwithnearbybrightX-raysources,which fromSteideletal.(2003): have correspondingly bright, secure optical counterparts (cf. the G−R≤1.2 directextractionmethodusedinAirdetal.2008). In Table 2, we list the total numbers of X-ray-detected objects U −G≥G−R+1.0 n withineachofourcolour-selectedsamples.Wesearchedforspec- 19.0≤R≤25.5 (1) troscopic redshifts for our sources as described in Sections 2.1.2 withthefaintlimitofR≤25.0forEGS1.Anadditionalsampleof and 2.1.3 for the HDF-N and AEGIS-X fields respectively, and fromSternetal.(2002)fortheLynxfield.Theremaininguniden- objectsatslightlylowerredshiftsisselectedusingtheBXselection tifiedsourceswereassignedredshiftprobabilitydistributions,p(z), criteria(Adelbergeretal.2004): basedontheopticalselectionfunctions(seeSection3.3.1). G−R ≥ −0.2 U −G≥ G−R+0.2 n 2.2.4 Low-redshiftinterlopers G−R ≤ 0.2(U −G)+0.4 n U GR LBG selection at z ∼ 3 is known to be extremely clean U −G<G−R+1.0. (2) n n andcontainsveryfewlow-redshiftinterlopers(Steideletal.2003). Theseobjectsare‘sub-Udropouts’,fallinginathinsliceofcolour The majority of interlopers are Galactic stars, which are not ex- spacebelowtheLyman-breakcriteria,withaselectionfunctionthat pectedtobebrightX-raysourcesandthuswillnotcontaminateour peaksaroundz∼2.5(seeSection3.3.1). sample. However, the BX selection, which does not rely on very ObjectswereselectedfromtheCFHTLSopticaldatausingthe strong features such as the Lyman break to identify candidates, same criteria. However, there are significant differences between is more susceptible to contamination from low-redshift sources, theCFHTLSfiltersetandourU GRfiltersusedintheotherfields. mainlyfromlow-redshift(z(cid:3)0.3)star-forminggalaxiesinwhich n TheRbandfallsbetweenther(cid:6)andi(cid:6)filters;thus,thetotalR-band theBalmerbreakisconfusedwiththeLymanα forestabsorption magnitudeswerecalculatedforeveryobjectusinganapproximate at z (cid:2) 2 (Adelberger et al. 2004; Reddy et al. 2006). Indeed, a colourcorrection,givenby significant number of low-redshift (z < 1.2) interlopers are iden- tified within our spectroscopically observed, X-ray-detected BX R=r(cid:6)+0.05−1.08(r(cid:6)−i(cid:6)), (3) sample (see Table 2 and Fig. 3). By examining the positions of which was determined from our model colour distributions de- these sources in the fX–fopt plane (see Fig. 4) it is clear that scribedinSection3.3.1.TheseestimatedRmagnitudeswereused five of these low-redshift interlopers occupy a distinct position, toapplythetotalmagnitudelimits,consistentwithourotherfields. associated with optically bright objects (R < 23), but with rel- However, for the selection in colour space we used the original atively low X-ray fluxes; thus, log(fX/fopt) < −1.5. These ob- u∗g(cid:6)r(cid:6) magnitudes in place of U GR, thus avoiding the effects jects are the expected bright, low-redshift star-forming galaxies, n withX-rayemissionassociatedwithstarformationprocesses.We exclude two more X-ray-detected BX sources from our analysis 2http://www4.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/CFHTLS-SG/ which fall in the same region and are thus also suspected to be docs/cfhtls.html low-redshiftcontaminants.ThefaintBXsourcewithR≈23.5and (cid:3)C 2009TheAuthors.Journalcompilation(cid:3)C 2009RAS,MNRAS401,2531–2551 Theevolution ofthehardXLFofAGN 2537 Table2. Summaryofthefieldsusedtodeterminethehigh-redshiftXLFusingrest-frameUVcolourpre-selection. Field RA Dec NHa X-ray Survey Selection Ncandd NXe Nspecf Nlowzg Nsamph name exposureb areac z<1.4 (J2000) (J2000) (1020cm−2) (ks) (arcmin2) HDF-N 12:36:55 +62:14:18 1.5 1862.9 149.1 BX 1192 9 8 2 7 LBG 292 3 2 0 3 AEGIS-X/CFHTLS 14:17:43 +52:28:25 1.2 188.7 1155.6 BX 17050 77 26 10 66 LBG 6933 30 10 0 30 Lynx 08:48:56 +44:54:50 1.0 186.5 243.4 BX 647 2 0 0 2 LBG 223 1 1 0 1 EGS1 14:22:43 +53:25:25 1.2 177.8 358.9 BX 809 8 0 0 7 LBG 329 7 0 0 7 LALACETUS 02:04:44 −05:05:34 2.2 173.1 233.3 BX 660 4 0 0 4 LBG 144 3 0 0 3 aGalacticcolumndensityfromDickey&Lockman(1990);bX-rayexposuretimeaftergoodtimeintervalandbackgroundfiltering(averageoftheindividual pointingsforAEGIS-X);ctotalsurveyareacoveredbyX-rayandopticaldata;dnumberofcandidatesfromtheopticalimagingsatisfyingthecolourselection criteria;enumberofthecolour-selectedcandidateswithsecureX-raycounterparts;fnumberoftheX-ray-detectedcandidateswithspectroscopicredshifts; gnumberofthespectroscopicallyidentifiedsamplewhicharelow-redshiftinterlopers(z <1.4);hfinalnumberofsourcesinoursampleafterexcluding spectroscopicallyidentifiedlow-redshiftinterlopersandadditionalsuspectedlow-redshiftinterlopersaccordingtotheirpositioninthefX–fopt plane(see Section2.2.4,Fig.4). 88 26 66 24 ber nitude 22 log(fX/fopt)=+1.0 m 44 ag Nu R m 0.0 20 22 -1.0 -1.5 18 00 10-17 10-16 10-15 10-14 10-13 Soft flux / erg s-1 cm-2 00 11 22 33 44 Redshift Figure4. X-rayflux(0.5–2keV)versusRmagnitudefortheBX(green triangles)andLBG(redcircles)X-ray-detectedsamples.Blackcirclesin- Figure3. DistributionofavailablespectroscopicredshiftsfortheX-ray- dicateobjectswithspectroscopicredshifts,zspec >1.4;purplediamonds detectedcolour-selectedobjects.Green:BX,red:LBGandblack:total.The indicate low-redshift interlopers with zspec < 1.4. As discussed in Sec- BX sample is contaminated by low-redshift interlopers, although around tion2.2.4anumberoftheinterlopersareassociatedwithlow-redshiftstar- halfmaybeidentifiedaslow-redshiftstar-forminggalaxiesandonthebasis forminggalaxies,whichareopticallybrightbutveryfaintinX-rays.We oftheirfX/foptratio(seeFig.4,Section2.2.4). thusexcludeallsourceswithlog(fX/fopt)<−1.5.Thiswillexcludethe low-redshiftinterlopers,inadditiontobrighthigh-redshiftstarburstgalax- iesthatmayalsocontaminatetheAGNXLFatthefaintestfluxes(seeAird log(fX/fopt) < −1.5, which has a spectroscopic redshift in the etal.2008).Objectswithzspec<1.4arealsoexcludedfromouranalysis,but correctrange,isalsoexcludedaswesuspectastarburstorigin(see interlopersassociatedwithlow-zAGNmaystillcontaminatetheremaining alsoAirdetal.2008). spectroscopicallyunidentifiedBX-selectedsample. The six remaining interlopers, however, are associated with low-redshift AGN, and thus fall within the AGN region −1.0 (cid:3) log(f /f ) (cid:3) +1.0. While any AGN which have been spec- AGN(includingQSOsandnarrow-lineAGN),thecontamination X opt troscopically identified as low-redshift interlopers are excluded fractionwasonly∼12percentandapproximatelyconsistentover fromouranalysis,additionalcontaminantsmayremainwithinour theentiremagnituderange.Clearlyamuchlarger,nearcomplete unidentified BX sample. Based on our spectroscopic sample the sampleofspectroscopicredshiftsforBX/X-ray-selectedAGNisre- fraction of low-redshift AGN contaminants may be as high as quiredtotrulydeterminetheinterloperfractionwithinoursample, ∼25percent,althoughoursampleisbiasedinthesensethatahigher andcouldalsoallowimprovementstotheselectioncriteria(suchas fractionofbrightobjectshasspectroscopicidentifications.Indeed, introducingdatafromredderwavebands)tobedevelopedtohelp in the large sample of BX-selected galaxies with spectroscopic reducethecontamination.However,giventhecurrentuncertainties, redshiftsusedbyReddyetal.(2008)thelow-redshiftcontamina- wehavechosennottomakefurthercorrectionstoaccountforthe tioninthegalaxysamplewas∼59percentforbrightcandidates interloper fraction within our sample. We thus note that the faint (R<23.5),whereasforfaintercandidatesitwasonly∼9percent. endofourXLFbasedontheBXsamplemaybeoverestimateddue Conversely,inthesampleofobjectsspectroscopicallyidentifiedas tolow-redshiftcontamination. (cid:3)C 2009TheAuthors.Journalcompilation(cid:3)C 2009RAS,MNRAS401,2531–2551 2538 J.Airdetal. 2.2.5 High-luminositysample where{d}representsthesetofobserveddatafromallsources,and i theproductinthesecondpartoftheequationisoverM-detected The total area coverage for our high-redshift sample remains rel- sources.Fortheidealizedsituationwheretheredshiftandluminos- atively small, and thus we require an additional sample of high- ityareperfectlydetermined,p(d |L ,z)willbeadeltafunction luminosityAGNtoconstrainthebrightendoftheXLF.Wehave i X at the true values, and equation (6) will generalize to the stan- chosentousebrightobjects(f >5×10−15ergs−1cm−2)from X dardmaximumlikelihoodestimator.Foroursamplep(d |L ,z)is theHasinger,Miyaji&Schmidt(2005)compilationofsurveys(ex- i X theconvolutionoftheredshiftprobabilitydistributionp(z)andthe cludingtheCDF-Ntoavoidoverlapwithourownanalysis).These PoissonlikelihoodofobtainingtheobservedX-raydata,Ncounts: samplesprovideasoft-bandselected,highlycomplete,spectroscop- icallyconfirmedsample.Wehaveincludedobjectswith1.9<z≤ (s+b)N L(N |s,b)= e−(s+b), (6) 3.5,providing30high-luminosityAGNinourhigh-redshiftsample. N! These bright, complete, spectroscopic surveys may be combined where s is calculated from the hard-band (2–10keV) flux for a withourcolourpre-selectedsamplesbyassumingatop-hatselec- source of luminosity L and redshift z, assuming (cid:12) = 1.9 and tionfunctionoverthechosenredshiftrange(seeSection3.3.2). X Galactic N . Thus, the Poissonian nature of the counts from the H X-ray sources, the associated uncertainty in the flux and the Ed- 3 A BAYESIAN APPROACH TO DETERMINING dington bias are naturally accounted for in our determination of THE XLF theXLF.Assuming(cid:12)=1.9approximatelycorrectsforabsorption effectsduetointrinsiccolumndensitiesN (cid:3)1023cm−2atz∼1,al- OurcompilationofX-raysurveysprovideslargesamplesofAGN H thoughwehavenotchosentomakeamoresophisticatedcorrection overarangeofredshiftswithwell-definedcompleteness,requiredto onasource-by-sourcebasis(seefurtherdiscussioninSection5.2). determinetheevolutionoftheXLF.However,thefaintsourcesfrom OurapproachbuildsonthelogN–logSworkofGeorgakakisetal. the Chandra fields are subject to uncertainty in both the redshift (2008),extendedtoincluderedshiftinformation,andallowsusto determination(forthosesourceswithphotometricredshiftsorinthe usetheimprovedmethodofcalculatingtheX-raysensitivity.For high-zcolourpre-selectedsamples)andtheX-rayfluxmeasurement sourceswithspectroscopicredshifts,weassumedeltafunctionsfor (duetothesmallnumbersofcountsfromthefaintestsources).This p(z).Wealsoassumedeltafunctionsfortheluminositiesofsources has led us to develop a Bayesian methodology to make accurate inboththehardandsoftX-ray-selected,largearea,brightsamples inferencesabouttheformandevolutionoftheXLF,accountingfor (Sections2.1.4,2.1.5and2.2.5). theuncertaintiesinindividualsources. 3.1 Thelikelihoodfunction 3.2 Correctingforincompleteness Thefirststepistodeterminethelikelihoodfunction,L,forwhich Theabovelikelihoodfunctiondoesnotaccountfortheincomplete- wehavefollowedtheworkofLoredo(2004).Ourindividualsources nessofoursamples.InourhardX-ray-selectedsamples,between areeffectivelyPoissonianpoints,drawnfromthedistributiongiven ∼14percent(AEGIS)and∼32percent(CDF-N,CDF-S)ofthe bytheXLF.Thus,foragivenmodelXLF,theexpectednumberof sourceslacksecureopticalcounterparts,andthushaveneitherspec- detectablesources,λ,isgivenby troscopicnorphotometricredshifts.However,wecanderiveacom- (cid:2) (cid:2) pletenesscorrectiontermtoaccountfortheincompletenessinthe dV λ= dlogL dzA(L ,z)φ(L ,z|θ), (4) likelihoodfunction. X dz X X Fig. 5(a)shows the distribution of the hard X-ray flux and op- wheretheintegralsaretakenovertheentirerangeofpossiblevalues. ticalmagnitudesofour(opticallyidentified)sources.Sourcesare A(L ,z)istheareaofthesurveysensitivetoasourceofaparticular scatteredoverarangeofopticaltoX-rayfluxratios,approximately X luminosity, L , and redshift, z, and thus a particular flux if we overtherange−1<logf /f <1althoughasmallproportionis X X opt assume a single spectral shape (power law with a photon index atlowerratiosandasignificantnumberofthishardX-ray-selected of (cid:12) = 1.9). A(L , z) effectively describes the probability of a sampleexhibitlogf /f >1.AtfaintX-rayfluxes,alargefrac- X X opt sourcebeingdetected.Theluminosityfunction,φ(L ,z|θ),isthe tion will be unidentified due to their faint optical magnitudes. In X differentialnumber densityofsources perunitcomoving volume Fig.5(b),weshowthelogf /f distributionofoursources.A X opt asafunctionofL andz,givenanassumedmodeldescribedbythe Gaussianapproximation,takingthesamplemean,μ,andstandard X setofparameters,θ.dV isthedifferentialcomovingvolumeperunit deviation,σ,isshowninred,andprovidesareasonabledescription area,asafunctionofdzz. ofthisdistribution.IfweapplyastrictmagnitudelimitofR=25.5 AsdescribedinLoredo(2004),thelikelihoodfunctionmaybe (sourcesfainterthanthislimitarenowdeemedunidentified),and constructed from the product of the probabilities of the observed assumethatalltheunidentifiedsourceswouldhaveopticalcounter- datafromtheindividualsources,giventhemodel,andtheproba- partsfainterthanthislimit(reasonablegiventheverydeepoptical bility that no other objects were detected. For a Poisson process, datawehaveusedtosearchforcounterparts),thenwecanintro- the probability of no objects being detected is simply e−λ. In the duceacorrectiontotheexpectednumberofsources,λ,givenby presenceofindividualsourceuncertainties,theprobabilityofthe equation(4),basedonthefractionofthelogf /f distribution X opt observeddata,d,fromanindividualsourcei,giventhemodelXLF probedatagivenflux.Thus, i isfoundbymarginalizingp(d |L ,z)overthemodeldistribution i X λ ofLXandz.Thus, (cid:2) (cid:2) (cid:2) dV L({di}|θ)= = dlogLX dzdz dRA(LX,z)φ(LX,z|θ)g(LX,z,R|μ,σ) (cid:2) (cid:2) (cid:2) (cid:2) (cid:3)M dV dV e−λ× dlogLX dzdzp(di |LX,z)φ(LX,z|θ), (5) = dlogLX dzdzA(LX,z)φ(LX,z|θ)C(LX,z|μ,σ), i=1 (7) (cid:3)C 2009TheAuthors.Journalcompilation(cid:3)C 2009RAS,MNRAS401,2531–2551 Theevolution ofthehardXLFofAGN 2539 30 sourceswithfaintX-rayfluxeswheretheproblemarises.Therefore, (a) toimproveourcompletenesscorrectionthelogf /f distribution X opt shouldbedeterminedsimultaneouslywiththeXLF,accountingfor R=25.5 25 theincompleteness,usingtheobserveddata(theR-magnitudesof B) thedetectedsources).Wethereforeintroduceg(LX,z,R)intothe A secondterminequation(6),modifyingthelikelihoodto ude ( 20 (cid:3)M (cid:2) magnit +1.0 L((cid:2){di}|θ,μ,σ)=e−λi=1 dlogLX R 15 log(fX/fopt)=0-1.0.0 w×hereddVwzedznepg(ldeic|tLaXn,yzu)φn(cLerXta,izn|tyθ)ign(LthXe,zm,eRaisu|μre,mσe)n,t of the(R9-) magnitudeofanindividualsource,R,whichisaminorsimplifica- 10 i tion.Theparametersμandσareintroducedasnuisanceparameters, -16 -15 -14 -13 -12 -11 log(f / erg s-1 cm-2) andwillbedeterminedalongwiththeXLF,integratingovertheir X uncertaintieswhenmakinginferencesregardingtheXLFparame- 120 ters,θ.InFig.5(b),thegreendashedlineindicatesthebest-fitting (b) (mode)values ofμ=0.24±0.01andσ =0.68±0.01forour 100 luminosityanddensityevolution(LADE)evolutionarymodel(Sec- tion4.2).Thepeakofthedistributionisclearlyshiftedtoahigher f /f ,indicatingthebiasinthesimpleestimates. 80 X opt er b 3.3 Incorporatingthehigh-zcolourpre-selectedsamples m 60 u N InSection4,wepresentresultsfortheevolutionoftheXLFover 40 thefullavailableredshiftrangebasedonourhardX-ray-selected sampleonly(usingspectroscopicandphotometricredshifts).How- 20 ever, due to the systematic bias in photo-z estimates at z (cid:2) 1.2, wealsowishtoderivetheevolutionusingourhigh-redshiftcolour 0 pre-selected samples. Due to the a priori colour selection, these -2 -1 0 1 2 samples will suffer from large, but well-defined, incompleteness. log(f /f ) Accountingforthisincompletenessandcombiningoursoft-band- X opt selected high-z sample with the hard X-ray-selected samples at Figure 5. (a) Hard (2–10keV) flux against R magnitude (AB) for our lower redshifts require a number of further modifications to our entire hard X-ray-selected sample (black circles). Black dashed lines: methodology. logfX/fopt =−1.0,0.0and+1.0,indicatingthetypicalrangeofAGN. Green lines: mean (dashed) and ±1σ (dotted) of the best-fitting Gaus- sianlogfX/foptdistribution(seeSection4.2).Bluedottedline:R=25.5 3.3.1 Opticalselectionfunctions limitforincludingopticalcounterparts.(b)Histogramofthedistribution The first step is to determine the optical selection functions for oflogfX/fopt(black)andtheGaussiandistributioncorrespondingtothe thecolourselectioncriteria.Theseweredeterminedusingthesim- samplemeanandstandarddeviation(redcurve).Thisdistributionwillbe ulation method described in Aird et al. (2008) (see also Steidel biasedduetoincompleteopticalidentifications,aswellasthedistribution ofX-rayfluxes.Weaccountfortheseeffectswhenfittingourevolutionary et al. 1999; Hunt et al. 2004; Reddy et al. 2008). Three sets of models (see Sections 3.2 and 4) and derive the logfX/fopt distribution templatespectraweredeterminedfordifferentspectroscopicclas- (greendashedcurve),whichisshiftedtohigherfX/foptratios. sifications (QSO, NLAGN or GAL; see Steidel et al. 2003), and used to generate model U GR and u∗g(cid:6)r(cid:6) colour distributions. n whereg(LX,z,R|μ,σ)describestheR-magnitudedistributionof GALandNLAGNcoloursweregeneratedusingaBruzual&Char- sourcesatagivenflux,fX(LX,z),andisderivedfromtheGaussian lot(2003)modeltemplatespectrumforagalaxywithcontinuous distributionoflogfX/fopt .g(LX,z,R|μ,σ)isnormalizedsuch star formation and an age of 1Gyr. This template spectrum was t(cid:2)hat reddenedusingtheCalzettietal.(2000)relationforobscurationby ∞ dust,withvariousextinctioncoefficientsdrawnfromthedistribu- dRg(L ,z,R|μ,σ)=1. X tionsbasedontheobservedrangeofUVspectralslopesforGAL −∞ andNLAGNsourcesinLBGsamples(Adelberger&Steidel2000; Thus,thefactor (cid:2) Steidel et al. 2002, 2003). Such modelling is not a full physical 25.5 C(L ,z|μ,σ)= dRg(L ,z,R|μ,σ) (8) descriptionfortheNLAGN,beingbasedonlyonatemplatespec- X X −∞ trum for star-forming processes, but is sufficient to simulate the isacompletenesscorrection,reducingtheexpectednumberofde- observedrangeofspectralshapesandredderdistributionofbroad- tectablesourceswithlowX-rayfluxes. bandcoloursforNLAGN.ForQSOs,wehavefollowedtheworkof However,theobserveddistribution(theredcurveinFig.5)will Huntetal.(2004).Thetemplatespectraweregeneratedbyvarying bebiasedbytheveryincompletenesswearetryingtocorrectfor, thecontinuumslopeandLyα-equivalentwidthsofacompositeof59 assourceswithR(cid:2)25.5willbemissed.Theextentofthebiaswill QSOspectra(correctedforintergalacticabsorption)fromSargent, dependonthefluxdistributionoftheX-raysources(andthusthe Steidel&Boksenberg(1989),basedontheGaussiandistributions XLF,andtheX-raysensitivity),whichdeterminesthenumberof giveninHuntetal.(2004).Thesemodelspectraforallthreetypes (cid:3)C 2009TheAuthors.Journalcompilation(cid:3)C 2009RAS,MNRAS401,2531–2551 2540 J.Airdetal. 3 3 2 2 LBG LBG G BX ’ BX U-n 1 *u-g 1 0 QSO 0 GAL NLAGN -1 -1 -0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5 G- R g’-r’ Figure6. ExamplemodelcolourdistributionsforourGAL(blackcircles),NLAGN(greensquares)andQSO(redtriangles)classifications.Thesamemodel foreachtypeisshowninUnGR(left-handpanel)andu∗g(cid:6)r(cid:6)(right-handpanel)colour-space.Themodelisredshiftedover1.0<z<4.0.Marksshowthe coloursat(cid:13)z=0.1intervals,withlargersymbolsindicating2.5<z<3.5.Thevariationbetweencoloursthroughdifferentfiltersetsleadstodifferencesin theopticalselectionfunctions(seeFig.7,Section3.3.1). GAL NLAGN QSO 1.0 0.8 ’ 0.6 ’i P(z) 0.4 *ug’r 0.2 0.0 BX L BG BX L BG BX L BG 0.8 0.6 R P(z) UG 0.4 0.2 0.0 1 2 3 1 2 3 1 2 3 4 Redshift (z) Figure7. OpticalselectionfunctionsforourBX(greensolidlines)andLBG(reddashedlines)colourselectioncriteria.Thetoprowshowstheselection functionsfortheCFHTLS-D3opticaldataandu∗g(cid:6)r(cid:6)i(cid:6)filtersets.ThebottomrowshowsselectionfunctionsintheHDF-N(withopticaldataofcomparable depth)usingUnGRfilters.Eachcolumnisforadifferentspectroscopicclassificationasindicated.Significantdifferencesinefficiencyandredshiftcoverage existbetweentheselectionfunctionsfordifferentopticaltypesandfiltersets(seediscussioninSection3.3.1). were then redshifted over the range z = 1 − 4 and intergalactic generatethereleasedcataloguesforCFHTLSisavailableon-line;3 absorptionwasappliedbysimulatingarandomlineofsighttoeach thus,weusedthisconfigurationforthosedata.Objectswereselected objectwithinterveningLyman-limitabsorptionsystemsdistributed inthei(cid:6)-bandimage,andflexibleKron(1980)styleapertureswere accordingtotheMC-NHmodelofBershady,Charlton&Geoffroy used to measure the magnitudes in other bands and calculate the (1999), as described by Hunt et al. (2004). The final spectra are output colours. Our selection functions will thus account for the multiplied by the filter transmission curves to produce the model differentsourcedetectionandphotometrytechnique,andtheeffects colour distributions. Fig. 6 compares colours for a single model ofthedifferentfiltersets. spectrum(foreachclassification)atdifferentredshiftsinbothU Fig.7comparesourfinalselectionfunctions(derivedfromthe n GRandu∗g(cid:6)r(cid:6)colourspace. simulations)forthedifferentcolourcriteria,filtersetsandoptical Thefullcolourdistributionswereusedtoaddartificialobjectsto classifications.TherearecleardifferencesbetweentheU GRand n theopticalimagingdata.Selectionfunctionsarethendetermined u∗g(cid:6)r(cid:6) selections, which we expect given the varying wavelength astheprobabilityofrecoveringanobjectwithagivenRmagnitude witheithertheLBGorBXselectionasafunctionofredshift.Objects wererecoveredusingourSEXTRACTORroutines(seeAirdetal.2008) 3http://www1.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/CFHTLS-SG/ in the Un GR fields. The SEXTRACTOR configuration file used to docs/cfhtlscat.sex (cid:3)C 2009TheAuthors.Journalcompilation(cid:3)C 2009RAS,MNRAS401,2531–2551
Description: