ebook img

The Evolution of Complexity: Simple Simulations of Major Innovations (Emergence, Complexity and Computation (37), Band 37) PDF

93 Pages·2020·4.385 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Evolution of Complexity: Simple Simulations of Major Innovations (Emergence, Complexity and Computation (37), Band 37)

Emergence, Complexity and Computation ECC Larry Bull The Evolution of Complexity Simple Simulations of Major Innovations Emergence, Complexity and Computation Volume 37 Series Editors Ivan Zelinka, Technical University of Ostrava, Ostrava, Czech Republic Andrew Adamatzky, University of the West of England, Bristol, UK Guanrong Chen, City University of Hong Kong, Hong Kong, China Editorial Board Ajith Abraham, MirLabs, USA AnaLucia,UniversidadeFederaldoRioGrandedoSul,PortoAlegre,RioGrande do Sul, Brazil Juan C. Burguillo, University of Vigo, Spain Sergej Čelikovský, Academy of Sciences of the Czech Republic, Czech Republic Mohammed Chadli, University of Jules Verne, France Emilio Corchado, University of Salamanca, Spain Donald Davendra, Technical University of Ostrava, Czech Republic Andrew Ilachinski, Center for Naval Analyses, USA Jouni Lampinen, University of Vaasa, Finland Martin Middendorf, University of Leipzig, Germany Edward Ott, University of Maryland, USA Linqiang Pan, Huazhong University of Science and Technology, Wuhan, China Gheorghe Păun, Romanian Academy, Bucharest, Romania Hendrik Richter, HTWK Leipzig University of Applied Sciences, Germany Juan A. Rodriguez-Aguilar , IIIA-CSIC, Spain Otto Rössler, Institute of Physical and Theoretical Chemistry, Tübingen, Germany Vaclav Snasel, Technical University of Ostrava, Czech Republic Ivo Vondrák, Technical University of Ostrava, Czech Republic Hector Zenil, Karolinska Institute, Sweden The Emergence, Complexity and Computation (ECC) series publishes new developments, advancements and selected topics in the fields of complexity, computation and emergence. The series focuses on all aspects of reality-based computation approaches from an interdisciplinary point of view especially from applied sciences, biology, physics, or chemistry. It presents new ideas and interdisciplinary insight on the mutual intersection of subareas of computation, complexity and emergence and its impact and limits to any computing based on physical limits (thermodynamic and quantum limits, Bremermann’s limit, Seth Lloyd limits…) as well as algorithmic limits (Gödel’s proof and its impact on calculation,algorithmiccomplexity,theChaitin’sOmeganumberandKolmogorov complexity, non-traditional calculations like Turing machine process and its consequences,…) and limitations arising in artificial intelligence. The topics are (but not limited to) membrane computing, DNA computing, immune computing, quantumcomputing,swarmcomputing,analogiccomputing,chaoscomputingand computing on the edge of chaos, computational aspects of dynamics of complex systems (systems with self-organization, multiagent systems, cellular automata, artificiallife,…),emergenceofcomplexsystemsanditscomputationalaspects,and agent based computation. The main aim of this series is to discuss the above mentioned topics from an interdisciplinary point of view and present new ideas coming from mutual intersection of classical as well as modern methods of computation.Withinthescopeoftheseriesaremonographs,lecturenotes,selected contributions from specialized conferences and workshops, special contribution from international experts. More information about this series at http://www.springer.com/series/10624 Larry Bull The Evolution of Complexity Simple Simulations of Major Innovations 123 Larry Bull University of the West of England Department ofComputer Science andCreative Technologies Bristol, UK ISSN 2194-7287 ISSN 2194-7295 (electronic) Emergence, Complexity andComputation ISBN978-3-030-40729-2 ISBN978-3-030-40730-8 (eBook) https://doi.org/10.1007/978-3-030-40730-8 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature SwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland For my girls. Preface As a computer scientist who has spent nearly thirty years drawing upon the natural worldforinspirationtomakemachinesdousefulthings,myresearchwithevolution has been somewhat separated from squishy biology. Instead of DNA, I have used evolutionwithdataand/orinstructionsforcomputerstodesignsuchthingsasmodels of Olympic athletes, arrays of interacting wind turbines, nanoparticles for cancer tumourtreatment,computersmadefromchemicalreactions,etc.Thatis,evolutionas apowerfulsearchtoolbywhichtonegotiatecomplexity.Alongsidethatwork,Ihave always turned such abstracted evolution back onto the natural phenomena to help gain insight of the underlying dynamics and emergence/benefits of each. This book brings together much of that work—both old and new—to explore a number of the key increases in complexity seen in the natural world. Whilst any increase in com- plexity has certainly not been inevitable, they have occurred and this book seeks to explain each of them purely in terms of the features offitness landscapes. Ihavebeenfortunateenoughtodiscussthisworkwithsomanypeopleoverthe manyyearsthattoattempttonamethemallherewouldbefolly.ButIwouldliketo thank the Editors for publishing me in their series. Bristol, UK Larry Bull vii Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Evolutionary Innovations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The Baldwin Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Genomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 The NK Model: Asexual Haploid Evolution. . . . . . . . . . . . . . . . . 5 2.2 Genome Growth in the NK Model . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Symbiosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 The NKCS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Endosymbiosis in the NKCS Model . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Horizontal Gene Transfer in Hereditary Endosymbiosis . . . . . . . . 25 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Sex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1 The Baldwin Effect in the NK Model . . . . . . . . . . . . . . . . . . . . . 32 4.2 Evolution of the Haploid-Diploid Cycle: The Baldwin Effect . . . . 33 4.3 Two-Step Meiosis and Recombination: Altering the Amount of Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.4 Genome Growth in Sexual Diploids . . . . . . . . . . . . . . . . . . . . . . 40 4.5 Coevolving Sexual Diploids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ix x Contents 5 Chromosomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.1 Chromosome Number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 Sex Chromosomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3 Dominance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6 Multicellularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1 Multicellularity in the NK Model . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2 Functional Differentiation and Simple Epigenetic Control . . . . . . . 66 6.3 Eusociality: Haplodiploid Multicellularity. . . . . . . . . . . . . . . . . . . 68 6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Appendix: Regulation... .... ..... .... .... .... .... .... ..... .... 75 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 87 Chapter 1 Introduction Complexityishardtodefineortomeasure,butthereissurelysomesenseinwhichelephants andoaktreesaremorecomplexthanbacteria,andbacteriathanthefirstreplicatingmolecules. [7,p.3] Lifeonearthemergedaround4billionyearsagoanditscomplexityhasbeenincreas- ingeversince.Thisbookseekstoexploretheconditionsunderwhichnaturalselection [3]wouldfavoursomeofthekeymechanismsbywhichthoseincreasesincomplex- ityhavecomeabout,usingsimplemodelsofevolutiononabstractfitnesslandscapes. Wright[11]wasperhapsthefirsttoviewnaturalevolutionasaprocessofadaptation throughamultidimensionalspaceoffitnesspeaksandtroughs(Fig.1.1,top).Turing [10]wouldlaterhighlightthepotentialuniversalityofthatviewwhenconsidering waystodesignintelligentcomputers:evolutionasageneralsearchprocess.Whilst nosimplecorrelationbetweentheamountofDNAinagivenorganismanditsper- ceived complexity exists—lilies have more DNA than humans, for example—it is clearthatthetwoareinterrelated.Fivewaysinwhichanincreaseintheamountof DNAmayoccurareexploredhere. 1.1 EvolutionaryInnovations Thefollowingsourcesofevolutionaryinnovationareconsidered: Genomes Once formed, increases inthe amount of rawmaterial available toevolutioninthegenomeisonewaythroughwhichnewfunc- tionalitiesmayemerge,potentiallyresultinginanovelproteinor newregulatorycontrol. Symbiosis Thebringingtogetherofcloselyinteractingorganismssuchthata newleveloffunctionalityisrealisedbyoneormoreofthepartners isubiquitousandwaskeytotheevolutionofeukaryotesaround 1.8billionyearsago. ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringer 1 NatureSwitzerlandAG2020 L.Bull,TheEvolutionofComplexity,Emergence,ComplexityandComputation37, https://doi.org/10.1007/978-3-030-40730-8_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.