ebook img

The Evolution of Applied Harmonic Analysis: Models of the Real World PDF

366 Pages·2004·6.512 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Evolution of Applied Harmonic Analysis: Models of the Real World

Applied and Numerical Harmonic Analysis Series Editor John J. Benedetto UniversityofMaryland Editorial Advisory Board AkramAldroubi DouglasCochran NIH,BiomedicalEngineering/ ArizonaStateUniversity Instrumentation IngridDaubechies HansG.Feichtinger PrincetonUniversity UniversityofVienna ChristopherHeil MuratKunt GeorgiaInstituteofTechnology SwissFederalInstitute ofTechnology,Lausanne JamesMcClellan WimSweldens GeorgiaInstituteofTechnology LucentTechnologies BellLaboratories MichaelUnser MartinVetterli SwissFederalInstitute SwissFederalInstitute ofTechnology,Lausanne ofTechnology,Lausanne M.VictorWickerhauser WashingtonUniversity Applied and Numerical Harmonic Analysis Published titles J.M.Cooper:IntroductiontoPartialDifferentialEquationswithMATLAB (ISBN0-8176-3967-5) C.E.D’AttellisandE.M.Ferna´ndez-Berdaguer:WaveletTheoryandHarmonicAnalysisin AppliedSciences(ISBN0-8176-3953-5) H.G.FeichtingerandT.Strohmer:GaborAnalysisandAlgorithms(ISBN0-8176-3959-4) T.M.Peters,J.H.T.Bates,G.B.Pike,P.Munger,andJ.C.Williams:TheFourierTransformin BiomedicalEngineering(ISBN0-8176-3941-1) A.I.SaichevandW.A.Woyczyn´ski:DistributionsinthePhysicalandEngineeringSciences (ISBN0-8176-3924-1) R.TolimieriandM.An:Time-FrequencyRepresentations(ISBN0-8176-3918-7) G.T.Herman:GeometryofDigitalSpaces(ISBN0-8176-3897-0) A.Procha´zka,J.Uhli˜r,P.J.W.Rayner,andN.G.Kingsbury:SignalAnalysisandPrediction (ISBN0-8176-4042-8) J.Ramanathan:MethodsofAppliedFourierAnalysis(ISBN0-8176-3963-2) A.Teolis:ComputationalSignalProcessingwithWavelets(ISBN0-8176-3909-8) W.O.BrayandCˇ.V.Stanojevic´:AnalysisofDivergence(ISBN0-8176-4058-4) G.THermanandA.Kuba:DiscreteTomography(ISBN0-8176-4101-7) J.J.BenedettoandP.J.S.G.Ferreira:ModernSamplingTheory(ISBN0-8176-4023-1) A.Abbate,C.M.DeCusatis,andP.K.Das:WaveletsandSubbands(ISBN0-8176-4136-X) L.Debnath:WaveletTransformsandTime-FrequencySignalAnalysis(ISBN0-8176-4104-1) K.Gro¨chenig:FoundationsofTime-FrequencyAnalysis(ISBN0-8176-4022-3) D.F.Walnut:AnIntroductiontoWaveletAnalysis(ISBN0-8176-3962-4) O.BratteliandP.Jorgensen:WaveletsthroughaLookingGlass(ISBN0-8176-4280-3) H.G.FeichtingerandT.Strohmer:AdvancesinGaborAnalysis(ISBN0-8176-4239-0) O.Christensen:AnIntroductiontoFramesandRieszBases(ISBN0-8176-4295-1) L.Debnath:WaveletsandSignalProcessing(ISBN0-8176-4235-8) J.Davis:MethodsofAppliedMathematicswithaMATLABOverview(ISBN0-8176-4331-1) G.BiandY.Zeng:TransformsandFastAlgorithmsforSignalAnalysisandRepresentations (ISBN0-8176-4279-X) J.J.BenedettoandA.Zayed:Sampling,Wavelets,andTomography(ISBN0-8176-4304-4) E.Prestini:TheEvolutionofAppliedHarmonicAnalysis(ISBN0-8176-4125-4) (ContinuedaftertheIndex) Elena Pres tini The Evolution of Applied Harmonic Analysis Models ofthe Real World Springer Science+Business Media, LLC Elena Prestini Department of Mathematics University of Rome "Tor Vergata" 00133 Rome Italy Library of Congress Cataloging·in·Publication Data Prestini, Elena, 1949- The evolution of applied harmonic analysis 1 Elena Prestini p. cm. -(Applied and numerica! harmonic analysis) Rev. ed. of: Applicazioni dell'analisi armonica. Milan: U1rico Hoepli, 1996. Includes bibliographical references and index. ISBN 978-0-8176-4125-2 ISBN 978-0-8176-8140-1 (eBook) DOI 10.1007/978-0-8176-8140-1 1. Harmonic analysis. I. Prestini, Elena, 1949-Applicazioni dell'analisi armonica. II. I. Title QA403.P74 2003 515' .2433-dc21 2003061722 CIP AMS Subject Classifications: 01A45, 01A50, 42-03, 42Axx, 42Al6, 42A24, 42A38, 42Bxx, 42B05, 42Bl0 ISBN 978-0-8176-4125-2 © 2004 Springer Science+Business Media New York Originally published by Birkhăuser Boston in 2004 Based on the Italian Edition, Applicazioni dell' analisi annonica, Ulrico Hoepli Editare, Milan, 19 96 On the cover (tap to bottom): Wernhervon Braun, Rosalind Franklin, Martin Ryle, Jocelyn Bell, and Joseph Fourier Ali rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhăuser Boston, c/o Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA) except forbrief excerpts in connection withreviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptati an, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not tobe taken as an expression of opinion as to whether or not they are subject to property rights. (MV) 9 8 7 6 5 4 3 2 1 SPIN 10716491 1\1\1\:birkhouser-science.com Contents Foreword ix Preface xiii 1 JosephFourier:TheManandtheMathematician 1 1.1 Anadventurouslife . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thebeginnings . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Therevolutionary . . . . . . . . . . . . . . . . . . . . . . 4 1.4 AttheÉcoleNormale . . . . . . . . . . . . . . . . . . . . 7 1.5 FromimprisonmenttotheÉcolePolytechnique . . . . . . 9 1.6 Fourier,Napoleon,andtheEgyptiancampaign. . . . . . . 12 1.7 TheprefectofIsèreandtheAnalyticalTheoryofHeat . . . 16 1.8 Fourierandthe“HundredDays” . . . . . . . . . . . . . . 22 1.9 ReturntoParis . . . . . . . . . . . . . . . . . . . . . . . 25 2 IntroductiontoHarmonicAnalysis 31 2.1 Howtrigonometricseriescameabout:thevibratingstring . 31 2.2 Heatdiffusion . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3 Fouriercoefficientsandseries . . . . . . . . . . . . . . . 43 2.4 Dirichletfunctionandtheorem . . . . . . . . . . . . . . . 46 2.5 LordKelvin,Michelson,andGibbsphenomenon . . . . . 49 vi Contents 2.6 Theconstructionofacellar . . . . . . . . . . . . . . . . . 53 2.7 TheFouriertransform . . . . . . . . . . . . . . . . . . . . 56 2.8 Dilationsandtheuncertaintyprinciple . . . . . . . . . . . 59 2.9 Translationsandinterferencefringes . . . . . . . . . . . . 59 2.10 Waves,aunifyingconceptinscience . . . . . . . . . . . . 62 3 TelecommunicationsandSpaceExploration 65 3.1 Thegreatelectricalrevolution . . . . . . . . . . . . . . . 65 3.2 Moreandmorehertz . . . . . . . . . . . . . . . . . . . . 71 3.3 TablesofFouriertransforms . . . . . . . . . . . . . . . . 76 3.4 TheDiracdeltafunctionandrelatedtopics . . . . . . . . . 79 3.5 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.6 Filters,noise,andfalsealarms . . . . . . . . . . . . . . . 84 3.7 Samplingandquantization . . . . . . . . . . . . . . . . . 87 3.8 ThediscreteFouriertransform . . . . . . . . . . . . . . . 91 3.9 ThefastFouriertransform . . . . . . . . . . . . . . . . . 93 3.10 Gaussandtheasteroids:historyoftheFFT . . . . . . . . 97 3.11 Unsteadycombustionandspacepropulsion . . . . . . . . 101 3.12 TheMarsprojectfromvonBrauntoKorolevandRubbia . 108 4 Sound,Music,andComputers 113 4.1 Understandingsound:somehistory. . . . . . . . . . . . . 113 4.2 Bats,whales,andsealions:ultrasonicreflectionsinairand water . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.3 Bels,decibels,andharmonicanalysisofasingletone . . . 117 4.4 Soundprocessingbytheear:pitch,loudness,andtimbre . 119 4.5 Thetemperedscale . . . . . . . . . . . . . . . . . . . . . 122 4.6 Analysisofcomplextones:cello,clarinet,trumpet,andbass drum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.7 ThreetenorsinVerdi’sRigoletto:dynamicspectra . . . . 125 4.8 Thebeginningsoftheelectronicmusicsynthesizers . . . . 127 4.9 Additivesynthesis . . . . . . . . . . . . . . . . . . . . . . 132 4.10 Subtractivesynthesisandfrequencymodulation . . . . . . 136 4.11 Besselfunctionsanddrums:thevibratingmembrane . . . 138 4.12 Convolutionandsomespecialeffects . . . . . . . . . . . . 141 4.13 Computermusicandartmusic . . . . . . . . . . . . . . . 142 5 FourierOpticsandtheSynchrotronLight 143 5.1 Thelongsearchonthenatureoflight . . . . . . . . . . . 143 5.2 Spectroscopy:acloselookatnewworlds . . . . . . . . . 147 Contents vii 5.3 Themathematicalmodelfordiffraction:theFourier transformintwodimensions . . . . . . . . . . . . . . . . 149 5.4 Opticaltransforms . . . . . . . . . . . . . . . . . . . . . 152 5.5 X-raysandtheunfoldingoftheelectromagneticspectrum . 157 5.6 Synchrotronradiation,firstseeninthestars . . . . . . . . 160 5.7 Uniquefeaturesofthesynchrotronlight . . . . . . . . . . 163 5.8 Storagerings,amongthebiggestmachinesintheworld . . 164 5.9 Spectrumofthesynchrotronlight . . . . . . . . . . . . . 168 5.10 Brightnessandundulators. . . . . . . . . . . . . . . . . . 173 5.11 Applicationsandthefuturisticfreeelectronlaser . . . . . 174 6 X-rayCrystallography:ProteinStructureandDNA 179 6.1 CrystallographyfromStenotovonLaue . . . . . . . . . . 179 6.2 Bragg’slawandthebasicroleofsymmetries . . . . . . . 185 6.3 Howtoseetheinvisible . . . . . . . . . . . . . . . . . . . 192 6.4 Thephaseproblemandthedirectmethods . . . . . . . . . 196 6.5 Briefhistoryofgenetics. . . . . . . . . . . . . . . . . . . 197 6.6 DNAthroughx-rays . . . . . . . . . . . . . . . . . . . . 202 6.7 Proteinstructure:workforacentury . . . . . . . . . . . . 206 6.8 Seeingthehydrogenatom . . . . . . . . . . . . . . . . . 210 6.9 Visionatthenanosecond:atime-resolvedstructure . . . . 211 7 TheRadonTransformandComputerizedTomography 215 7.1 Computerizedaxialtomography,atechniquefrom the1970s . . . . . . . . . . . . . . . . . . . . . . . . . . 215 7.2 Beyondclassicalradiology . . . . . . . . . . . . . . . . . 217 7.3 CTversusMRI . . . . . . . . . . . . . . . . . . . . . . . 222 7.4 Projections . . . . . . . . . . . . . . . . . . . . . . . . . 223 7.5 TheRadontransform . . . . . . . . . . . . . . . . . . . . 224 7.6 Inverting the Radon transform by convolution and back projections. . . . . . . . . . . . . . . . . . . . . . . . . . 227 7.7 CTimages . . . . . . . . . . . . . . . . . . . . . . . . . . 231 7.8 Localtomographyandmicrotomography . . . . . . . . . 231 8 NuclearMagneticResonance:ImagingandSpectroscopy 237 8.1 “Weareallradiostations” . . . . . . . . . . . . . . . . . 237 8.2 Nuclearspinandmagneticmoment . . . . . . . . . . . . 245 8.3 Theswingandthephenomenonofresonance . . . . . . . 247 8.4 Drivingaresonance:theLarmorfrequency . . . . . . . . 248 8.5 Relaxationprocess . . . . . . . . . . . . . . . . . . . . . 250 viii Contents 8.6 Relaxationtimes . . . . . . . . . . . . . . . . . . . . . . 251 8.7 NMRspectroscopy:chemicalshiftandcouplingconstant . 255 8.8 Prionprotein . . . . . . . . . . . . . . . . . . . . . . . . 259 8.9 CollectingNMRspectra:continuouswaveversuspulses . 261 8.10 TheroadtoNMRimagingintheworkofDamadian . . . . 263 8.11 Theprincipleofimageformation . . . . . . . . . . . . . . 266 8.12 MRI-guidedinterventions . . . . . . . . . . . . . . . . . . 270 8.13 FunctionalMRI . . . . . . . . . . . . . . . . . . . . . . . 272 9 RadioastronomyandModernCosmology 275 9.1 Astronomicalobservations: “sixthousandyearsforawitness” . . . . . . . . . . . . . 275 9.2 Howradioastronomywasborn . . . . . . . . . . . . . . . 281 9.3 Themost“mortifying"episodeofEnglishnavalhistory . . 284 9.4 Radiowavesandradiotelescopes . . . . . . . . . . . . . . 286 9.5 Resolvingpower . . . . . . . . . . . . . . . . . . . . . . 287 9.6 Interferometry . . . . . . . . . . . . . . . . . . . . . . . . 290 9.7 Theprincipleofimageformationinaradiotelescope . . . 292 9.8 Aperturesynthesis . . . . . . . . . . . . . . . . . . . . . . 295 9.9 SynthesisbyEarth’srotation . . . . . . . . . . . . . . . . 298 9.10 Quasars,pulsars,andtheBigBang . . . . . . . . . . . . . 300 9.11 A“flat”forever-expandingUniverse . . . . . . . . . . . . 306 9.12 Searchforextraterrestrialintelligence . . . . . . . . . . . 308 Appendix 311 Bibliography 315 Index 337 Foreword Two hundred years ago Baron Jean Baptiste Joseph Fourier (1768–1830) championedamathematicalideathatwastohaveaprofoundandenduring influencefarbeyondwhatcouldbeimaginedatthetime;understandingthe significanceofhisworkrequiressomehistoricalperspective. Arithmetic and trigonometry were already well polished. For example, the trigonometrical table published by Claudius Ptolemy (2nd c. A.D.) in the days of the emperors Hadrian and Antoninus was more precise and more finely tabulated than the four-figure table of sines used today in schools. Euclidean geometry was thoroughly familiar. Calculus, starting with Archimedes (287–212 B.C.), who had determined the volume of a spherebythelimitingprocessnowfamiliarasintegration,hadbeengiven its modern formulation by Gottfried Wilhelm Leibniz (1646–1716) and Isaac Newton (1642–1727). Calculus became a mighty tool of astronomy inexplainingthemovementoftheEarthandplanetsandhadanimpacton philosophybyitssuccessinshowingthatnumerouspuzzlingfeaturesofthe Universe were explicable by deduction from a few physical premises: the threelawsofmotionandthelawofgravitation.Butintegralanddifferential calculushadnotbeenbroughttoperfection;theysufferedfromlimitations whenconfrontedwithentitiesthatweredeemednonintegrableornondiffer- entiableandfromdifficultiesinhandlingcertainnotionsinvolvinginfinity andinfinitesimals.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.