ebook img

The ergodic theory of lattice subgroups PDF

136 Pages·2010·0.66 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The ergodic theory of lattice subgroups

Gorodnik June4,2009 Annals of Mathematics Studies Number 172 This page intentionally left blank Gorodnik June4,2009 The Ergodic Theory of Lattice Subgroups Alexander Gorodnik Amos Nevo PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD 2010 Gorodnik June4,2009 Copyright(cid:2)c 2010byPrincetonUniversityPress PublishedbyPrincetonUniversityPress,41WilliamStreet,Princeton,NewJersey08540 IntheUnitedKingdom:PrincetonUniversityPress,6OxfordStreet,Woodstock,Oxfordshire OX201TW AllRightsReserved LibraryofCongressCataloging-in-PublicationData Gorodnik,Alexander,1975– Theergodictheoryoflatticesubgroups/AlexanderGorodnikandAmosNevo. p.cm.—(Annalsofmathematicsstudies;no.172) Includesbibliographicalreferencesandindex. ISBN978-0-691-14184-8(hardcover)—ISBN978-0-691-14185-5(pbk) 1.Ergodictheory.2.Liegroups.3.Latticetheory.4.Harmonicanalysis.5.Dynamics.I. Nevo,Amos,1960–II.Title. QA313.G672010 (cid:3) 515.48—dc22 2009003729 BritishLibraryCataloging-in-PublicationDataisavailable Printedonacid-freepaper.∞(cid:2) press.princeton.edu PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 Gorodnik June4,2009 Contents Preface vii 0.1 Mainobjectives vii 0.2 Ergodictheoryandamenablegroups viii 0.3 Ergodictheoryandnonamenablegroups x Chapter1. Mainresults: SemisimpleLiegroupscase 1 1.1 Admissiblesets 1 1.2 ErgodictheoremsonsemisimpleLiegroups 2 1.3 Thelatticepoint–countingprobleminadmissibledomains 4 1.4 Ergodictheoremsforlatticesubgroups 6 1.5 Scopeofthemethod 8 Chapter2. Examplesandapplications 11 2.1 Hyperboliclatticepointsproblem 11 2.2 Countingintegralunimodularmatrices 12 2.3 Integralequivalenceofgeneralforms 13 2.4 LatticepointsinS-algebraicgroups 15 2.5 Examplesofergodictheoremsforlatticeactions 16 Chapter3. Definitions,preliminaries,andbasictools 19 3.1 Maximalandexponential-maximalinequalities 19 3.2 S-algebraicgroupsandupperlocaldimension 21 3.3 Admissibleandcoarselyadmissiblesets 21 3.4 Absolutecontinuityandexamplesofadmissibleaverages 23 3.5 Balancedandwell-balancedfamiliesonproductgroups 26 3.6 Roughlyradialandquasi-uniformsets 27 3.7 Spectralgapandstrongspectralgap 29 3.8 Finite-dimensionalsubrepresentations 30 Chapter4. Mainresultsandanoverviewoftheproofs 33 4.1 StatementofergodictheoremsforS-algebraicgroups 33 4.2 Ergodictheoremsintheabsenceofaspectralgap:overview 35 4.3 Ergodictheoremsinthepresenceofaspectralgap:overview 38 4.4 Statementofergodictheoremsforlatticesubgroups 40 4.5 Ergodictheoremsforlatticesubgroups:overview 42 4.6 Volumeregularityandvolumeasymptotics:overview 44 Gorodnik June4,2009 vi CONTENTS Chapter5. ProofofergodictheoremsforS-algebraicgroups 47 5.1 Iwasawagroupsandspectralestimates 47 5.2 Ergodictheoremsinthepresenceofaspectralgap 50 5.3 Ergodictheoremsintheabsenceofaspectralgap,I 56 5.4 Ergodictheoremsintheabsenceofaspectralgap,II 57 5.5 Ergodictheoremsintheabsenceofaspectralgap,III 60 5.6 Theinvarianceprincipleandstabilityofadmissibleaverages 67 Chapter6. Proofofergodictheoremsforlatticesubgroups 71 6.1 Inducedaction 71 6.2 Reductiontheorems 74 6.3 Strongmaximalinequality 75 6.4 Meanergodictheorem 78 6.5 Pointwiseergodictheorem 83 6.6 Exponentialmeanergodictheorem 84 6.7 Exponentialstrongmaximalinequality 87 6.8 Completionoftheproofs 90 6.9 Equidistributioninisometricactions 91 Chapter7. Volumeestimatesandvolumeregularity 93 7.1 Admissibilityofstandardaverages 93 7.2 Convolutionarguments 98 7.3 Admissible,well-balanced,andboundary-regularfamilies 101 7.4 Admissiblesetsonprincipalhomogeneousspaces 105 7.5 TauberianargumentsandHo¨ldercontinuity 107 Chapter8. Commentsandcomplements 113 8.1 Latticepoint–countingwithexpliciterrorterm 113 8.2 Exponentiallyfastconvergenceversusequidistribution 115 8.3 Remarkaboutbalancedsets 116 Bibliography 117 Index 121 Gorodnik June4,2009 Preface 0.1 MAINOBJECTIVES Let G be a locally compact second countable (lcsc) group and let (cid:2) ⊂ G be a discrete lattice subgroup. The present volume is devoted to the study of the fol- lowingfourproblemsinergodictheoryandanalysisthatpresentthemselvesinthis context,namely: I. ProveergodictheoremsforgeneralfamiliesofaveragesonG, II. Solve the lattice point–counting problem (with explicit error term) for gen- eraldomainsinG, III. Proveergodictheoremsforarbitrarymeasure-preservingactionsofthelattice subgroup(cid:2), IV. Establish equidistribution results for isometric actions of the lattice sub- group(cid:2). We will give a complete solution to these problems for fairly general averages and domains in all noncompact semisimple algebraic groups over arbitrary local fieldsandanyoftheirdiscretelatticesubgroups. Ourresultsalsoapplytolattices inproductsofsuchgroupsandthustoallsemisimple S-algebraicgroupsandtheir lattices.Infact,manyofourargumentsapplyingreatergeneralitystillandserveas ageneraltemplateforprovingergodictheoremsforactionsofagenerallcscgroup G andofalatticesubgroup(cid:2). Wewillelaborateonthatfurtherinourdiscussion below. Letusproceedtogiveoneconcreteexampleofourresults. Considerthelattices (cid:2) =SL (Z)⊂SL (R)=G andletσ :SL (R)→SL (R)beanyfaithfullinear n n n N representation. Let m be a Haar measure on G. Given any norm on M (R), G N letG = {g ∈G; log(cid:8)σ(g)(cid:8)<t}. Wewillestablish,inparticular,thefollowing t ergodictheoremsforactionsofthegroup G andthelattice(cid:2) (whichwestatefor simplicityinlessthantheirfullgenerality). TheoremA. 1. Inanyergodicmeasure-preservingactionofGonaprobabilityspace(Y,ν), for f ∈ L2(Y), (cid:2) (cid:2) 1 f(g−1y)dm (g)−→ fdν ast →∞ mG(Gt) g∈Gt G Y pointwisealmosteverywhereandinthe L2-norm. Gorodnik June4,2009 viii PREFACE 2. Furthermore,ifn ≥ 3,orn = 2andtheactionhasaspectralgap,thenfor almosteverypointtheconvergencetothelimitisexponentiallyfast: (cid:3) (cid:2) (cid:2) (cid:3) (cid:3) (cid:3) (cid:3)(cid:3) 1 f(g−1y)− fdν(cid:3)(cid:3)≤C(y, f)e−θt, mG(Gt) g∈Gt Y with θ > 0 an explicit function of the spectral gap and the rate of volume growthofG . t 3. ThenumberoflatticepointsinG satisfies t (cid:4) (cid:5) |(cid:2)∩Gt| =(volG/(cid:2))−1+O e−θ(cid:3)t , volG t withθ(cid:3) >0anexplicitfunctionofθ. 4. Inanyergodicmeasure-preservingactionof(cid:2)onaprobabilityspace(X,μ), for f ∈ L2(X),setting(cid:2) =G ∩(cid:2): t t (cid:2) (cid:6) 1 f(γ−1x)−→ fdμ ast →∞ |(cid:2) | t γ∈(cid:2) X t pointwisealmosteverywhereandinthe L2-norm. 5. Furthermore,ifn ≥ 3,orn = 2andtheactionhasaspectralgap,thenfor almosteverypointtheconvergencetothelimitisexponentiallyfast: (cid:3) (cid:3) (cid:3) (cid:6) (cid:2) (cid:3) (cid:3)(cid:3) 1 f(γ−1x)− fdμ(cid:3)(cid:3)≤C(x, f)e−θ(cid:3)(cid:3)t, (cid:3)|(cid:2) | (cid:3) t γ∈(cid:2) X t withθ(cid:3)(cid:3) > 0anexplicitfunctionofthespectralgapandtherateofvolume growthofG . t 6. Iftheactionof(cid:2) isanisometricactiononacompactmetricspace,within- variantergodicprobabilitymeasureoffullsupport(e.g.,aprofinitecomple- tionof(cid:2)),thentheconvergenceholdsforallpointsandisuniform,provided that f iscontinuous. In the following two sections, we will make some comments aimed at putting theforegoingresultsinperspectiveandgiveabriefoutlineofourapproachtotheir proof. 0.2 ERGODICTHEORYANDAMENABLEGROUPS Classicalergodictheory,developedbyPoincare,vonNeumann,andBirkhoff,stud- ies a measurable space (X,B) equipped with a probability measure μ and an ac- tion T of a one-parameter group that preserves the measure. A basic problem is t tounderstandthestatisticaldistributionoftheorbits{Ttx}t∈R forμ-genericpoints Gorodnik June4,2009 PREFACE ix Figure1 Distributionoforbits x ∈ X. Givenameasurablefunction f : X → Randaninitialpoint x ∈ X,one considerstheaveragingoperator (cid:2) 1 t (A f)(x)= f(T x)ds, t s 2t −t whichsamplesthevaluesof f onpartofthetrajectory{Ttx}t∈Randaveragesthem withuniformdistributionontheinterval. Ast → ∞,thequantity(A f)(x)givesanincreasinglyaccuratemeasurement t ofthedistributionofthetrajectorystartingatx,sothatcomputinglimt→∞(At f)(x) is of fundamental importance. This problem was solved by von Neumann and Birkhoff who showed that under a suitable irreducibility assumption (namely, er- godicity), (cid:2) lim(A f)(x)= f dμ. (0.1) t→∞ t X In von Neumann’s formulation, the convergence holds in L2-norm, and in Birk- hoff’s,μ–almosteverywhere.Whentheactionisbyisometriesofacompactmetric space,anextensionofWeyl’sequidistributiontheoremassertsthattheconvergence isuniformandholdsforeveryinitialpointx,provided f iscontinuous. Classicalexamplesofdynamicalsystemsdescribetheevolutionofphysicalsys- temsintimeandarenaturallydescribedbyactionsoftheone-parametergroupR. Inamoregeneralformulation,thebasicgoalofergodictheoryistoanalyzethesta- tisticaldistributionofgrouporbitsindynamicalsystemsconsistingofaprobability space(X,B,μ)andalocallycompactgroupGactingonX bymeasure-preserving transformations. Fixinga(right-invariant)Haarmeasurem onG andanincreas- G ing family of compact subsets G of G with m (G ) → ∞, one considers the t G t averagingoperators (cid:2) 1 (A f)(x)= f(g−1x)dm (g), t m (G ) G G t Gt which constitute a sampling of the values of f along the orbit G ·x with respect to (w.r.t.) the Haar-uniform probability measure on G . Under the assumption of t ergodicityoftheG-action(i.e.,thatanymeasurablesetinvariantunderG iseither

Description:
The results established in this book constitute a new departure in ergodic theory and a significant expansion of its scope. Traditional ergodic theorems focused on amenable groups, and relied on the existence of an asymptotically invariant sequence in the group, the resulting maximal inequalities ba
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.