ebook img

The Effects of Prestrain and Subsequent Annealing on Tensile Properties of CP-Ti PDF

15 Pages·2017·9.14 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Effects of Prestrain and Subsequent Annealing on Tensile Properties of CP-Ti

metals Article The Effects of Prestrain and Subsequent Annealing on Tensile Properties of CP-Ti LeChang,Chang-YuZhou*andXiao-HuaHe SchoolofMechanicalandPowerEngineering,NanjingTechUniversity,Nanjing211816,China; [email protected](L.C.);[email protected](X.-H.H.) * Correspondence:[email protected];Tel./Fax:+86-25-5813-9951 AcademicEditor:MarkT.Whittaker Received:14February2017;Accepted:14March2017;Published:17March2017 Abstract: The aim of the present work is to investigate the effects of prestrain and subsequent annealingontensilepropertiesofcommercialpuretitanium(CP-Ti). Accordingtotensiletestresults, yieldstrengthandultimatetensilestrengthincreasewiththeincreaseofprestrain. Elongationand uniformstraindecreaselinearlywithprestrain. Inthecaseofprestrainthatishigherthan3.5%,the macro-yieldofspecimenschangesfromgradualyieldingtodiscontinuousyielding. Itissupposed thatconsiderablenumbersofdislocationsintroducedintothematerialleadtotheappearanceof yieldplateau. Thequantitativeanalysisofthecontributionofdislocationhardeningtothestrain hardeningshowsthatdislocation-associatedmechanismsplayanimportantroleinstrainhardening. Moreover,amodifiedFields-Backofenmodelisproposedtopredicttheflowstressofprestrained CP-Tiatdifferentstrainrates.Bothstrainratesensitivityandstrainhardeningexponentdecreasewith prestrain. Fracturesurfacesofthespecimensshowthatfracturemechanismofalltestedspecimensis dimplefracture. ThemoreductiledeformationinprestrainedCP-Tiafterannealingindicatesthatits ductilityisimprovedbyannealing. Keywords: CP-Ti;prestrain;yieldplateau;tensileproperties;flowstress;fracture 1. Introduction Duringthemanufactureofmaterials(stamping, coldrolling, equalchannelangularpressing, bending) and the installation and service history of the equipment components (such as creep, overload),differentdegreesofplasticdeformationwillhappeninthematerials. Theextentofprior plastic strain introduced into the material can significantly change the mechanical properties and consequentlyaffecttheplasticdeformationbehavior. Atpresent,theinvestigationoftheinfluence of prestrain on the materials has been focused on steels [1–7], titanium alloys [8–10], aluminum alloys[11,12],magnesiumalloys[13–15],Zr-basedalloys[16]andsoon.Usually,priorheavycold workleadstoaconsiderableincreaseinstrengthbycreatingdislocationbarrierstoinhibitsubsequent dislocationmovementduringplasticdeformationatroomtemperature. Forinstance,Zhangetal.[2] foundthatbypre-strainingandbakehardening,thestrengthofC–Mn–SiTRIPsteelwasenhanced. Further, they supposed that the unlocking from weak carbon atmospheres of dislocations newly formed during prestraining led to the appearance of yield point on the stress–strain curve [3]. Leeetal.[6,7] found that work hardening rate and strain rate sensitivity (SRS) of 304 L stainless steelweredependentonthevariationofprestrain. Sarkeretal.[13,14]suggestedthatthevariation of strain hardening rate of AM30 magnesium alloy with pre-straining was related to deformation twinninganddetwinning.Thus,itcanbeseenthatprestrainhasimportanteffectsonthesubsequent plastic deformation behavior for many materials. Also, it provides that the effects of prestrain on the performance of hexagonal close-packed materials are associated with twinning structures producedinthepriordeformation[13–15]. Manyresearchershavestudiedtheeffectsofpriorsevere Metals2017,7,99;doi:10.3390/met7030099 www.mdpi.com/journal/metals Metals2017,7,99 2of15 Metals 2017, 7, 99 2 of 15 deformation, such as cold rolling and equal channel angular pressing (ECAP) on mechanical plasticdeformation,suchascoldrollingandequalchannelangularpressing(ECAP)onmechanical properties of CP-Ti [17–19]. The activation of twinning in CP-Ti is affected by many factors, such as properties of CP-Ti [17–19]. The activation of twinning in CP-Ti is affected by many factors, such deformation temperature, strain rate, deformation value, deformation direction [20,21]. Prior as deformation temperature, strain rate, deformation value, deformation direction [20,21]. Prior deformation (cold rolling and ECAP) produces many twins in the initial microstructure of CP-Ti, deformation(coldrollingandECAP)producesmanytwinsintheinitialmicrostructureofCP-Ti,which which is different from tensile prestrain [18,19,22–24]. The effects of stretching prestrain on the isdifferentfromtensileprestrain[18,19,22–24]. Theeffectsofstretchingprestrainonthemechanical mechanical properties of CP-Ti have not been examined. Thus, in this paper, different amounts of propertiesofCP-Tihavenotbeenexamined. Thus,inthispaper,differentamountsofprestrainwere prestrain were applied to CP-Ti and a uniaxial tensile experiment was conducted to investigate the appliedtoCP-Tiandauniaxialtensileexperimentwasconductedtoinvestigatetheeffectsofprestrain effects of prestrain on mechanical properties, work hardening rate, flow stress and fracture onmechanicalproperties,workhardeningrate,flowstressandfracturemechanism. mechanism. 2. ExperimentalMaterialsandProcedures 2. Experimental Materials and Procedures ThematerialsusedinthepresentstudywereCP-Tiintheformofacold-rolledandannealedplate. The materials used in the present study were CP-Ti in the form of a cold-rolled and annealed ThechemicalcompositionwasgiveninTable1. Thespecimenswith3mmthickness(seeFigure1) plate. The chemical composition was given in Table 1. The specimens with 3 mm thickness (see Figure weremachinedfromtheas-receivedplatebywireelectricaldischargemachining. Inordertoexclude 1) were machined from the as-received plate by wire electrical discharge machining. In order to theeffectofsurfaceroughness,thespecimensweregroundandpolishedbymetallographicabrasive exclude the effect of surface roughness, the specimens were ground and polished by metallographic paper. The tensile testing was carried out by Instron tensile experimental equipment (INSTRON, abrasive paper. The tensile testing was carried out by Instron tensile experimental equipment Norwood,MA,USA).Thestrainwasautomaticallymeasuredbyextensometer(INSTRON,Norwood, (INSTRON, Norwood, MA, USA). The strain was automatically measured by extensometer MA, USA). Different levels of pre-deformation along rolling direction were applied at the same s(ItNraSinTRraOteN(, 0N.0o0r0w5oso−d1), MwiAth, UthSeAc)o. nDtirfofleroefnetx lteevneslos mofe tperre.-Tdhefeonr,mthateiosnp eacliomnegn rsowllienrge duinrelocatidoend waenrde raeplpoalideedd atto thfrea scatumree .sTtrhaeins trraatien (0ra.0te00d5u sr−i1n) gwriethlo tahdei ncgonrtarnogl eodf efrxotemns0o.0m00e0te5rt. oT0h.e0n0,4 ths−e 1s.pIencaimddenitsio wn,etroe unloaded and reloaded to fracture. The strain rate during reloading ranged from 0.00005 to 0.004 s−1. investigatetheeffectsofsubsequentannealingontensilepropertiesofprestrainedsamples,isothermal In addition, to investigate the effects of subsequent annealing on tensile properties of prestrained heat-treatment was conducted using a vacuum furnace equipped with an auto tune temperature csaomntprolellse, ris(oHthUeArmHaOl NheGa,t-Sturezahtomue,nCt hwinaas) .coTnhdeuacntendea ulisninggt eam vpaecruautumr efsurwnearcee 5e0q0u◦ipCpaendd w6i0t0h ◦aCn wauittho tune temperature controller (HUAHONG, Suzhou, China). The annealing temperatures were 500 °C dwell times ranging from 30 min to 1 h. The detailed annealing experimental scheme was listed and 600 °C with dwell times ranging from 30 min to 1 h. The detailed annealing experimental scheme inTable2. Themicrostructurewascharacterizedusingopticalmetallography.Thespecimenswere was listed in Table 2. The microstructure was characterized using optical metallography. The mechanically ground and chemically etched in a solution consisting of 10 mL nitric acid, 2 mL specimens were mechanically ground and chemically etched in a solution consisting of 10 mL nitric hydrofluoricacidand88mLdistillatedwater. Studyonthefracturesurfaceoftensilespecimenswas acid, 2 mL hydrofluoric acid and 88 mL distillated water. Study on the fracture surface of tensile carriedoutusingaJSM-6360LVscanningelectronmicroscope(JEOL,Tokyo,Japan). specimens was carried out using a JSM-6360LV scanning electron microscope (JEOL, Tokyo, Japan). Table1.Chemicalcompositionofusedcommercialpure(CP)-titanium(wt.%). Table 1. Chemical composition of used commercial pure (CP)-titanium (wt. %). Element Ti Fe C N H O Element Ti Fe C N H O CompositioCnomBpaolsainticoen Ba0l.a0n6ce 0.060. 010.01 <<00..0011 0.0010 .0001.12 0.12 TTaabbllee 22.. AAnnnneeaalliinngg eexxppeerriimmeennttaall sscchheemmee.. Annealing PPreressttrraaiinn ((εεpprree))//%% 500 °C, 30 min 500 °C, 40 mAinnn ea5li0n0g °C, 60 min 600 °C, 30 min 500◦C,30min 500◦C,40min 500◦C,60min 600◦C,30min 1 √√ √√ - √√ 1 - 2 √√ √√ √√ - 2 - √ √ √ √ 33.5.5 √ √ √ √ √ √ √ 55 √ √ √ -- √ √ √ 66.5.5 √ √ -- √ FFiigguurree 11.. TThhee ggeeoommeettrryy ooff tthhee tteesstt ssppeecciimmeennss.. Metals2017,7,99 3of15 Metals 2017, 7, 99 3 of 15 33.. RReessuullttss aanndd DDiissccuussssiioonn 3.1. TensilePropertiesofAs-ReceivedCommercialPure(CP)-Ti 3.1. Tensile Properties of As-Received Commercial Pure (CP)-Ti According to uniaxial tensile experiment, mechanical properties of CP-Ti were determined. According to uniaxial tensile experiment, mechanical properties of CP-Ti were determined. Engineeringstress–straincurvesoftheas-receivedmaterialweregiveninFigure2. Plasticdeformation Engineering stress–strain curves of the as-received material were given in Figure 2. Plastic processcanbedividedintothreestagesbythethreecharacteristicpoints(A,B,C)onthetensilecurve. deformation process can be divided into three stages by the three characteristic points (A, B, C) on Thefirstfeaturepointisyieldstrengthpoint(pointA),deformationbeforethispointistheelastic the tensile curve. The first feature point is yield strength point (point A), deformation before this deformationstage. Obviously,intherangeof0.00005–0.004s−1,theyieldofCP-Tiiscontinuousas point is the elastic deformation stage. Obviously, in the range of 0.00005–0.004 s−1, the yield of CP-Ti noyieldplateauappears. Thesecondfeaturepointisthehighestpoint(pointB).Generally,when is continuous as no yield plateau appears. The second feature point is the highest point (point B). maximumtensileforcereaches,sampleneckingstarts,thecorrespondingpointBisthedemarcation Generally, when maximum tensile force reaches, sample necking starts, the corresponding point B is betweenuniformplasticdeformationandnon-uniformplasticdeformation. Whenplasticdeformation the demarcation between uniform plastic deformation and non-uniform plastic deformation. When isconcentrated,load-bearingcapacitydecreasesquickly,thecorrespondingfeaturepointispointC. plastic deformation is concentrated, load-bearing capacity decreases quickly, the corresponding feature Thestrainofdiffuseneckingandlocalizedneckingwereexpressedasfollows: point is point C. The strain of diffuse necking and localized necking were expressed as follows: εεd𝑑==n𝑛 (1(1) ) εεl𝑙==22n𝑛 (2(2) ) wwhheerree εεd iiss iinniittiiaall ssttrraaiinn ooff ddiiffffuussee nneecckkiinngg,, εεl iiss iinniittiiaall ssttrraaiinn ooff llooccaalliizzeedd nneecckkiinngg aanndd nn iiss ssttrraaiinn d l hhaarrddeenniinngg iinnddeexx.. TThhee ssttrreessss––ssttrraaiinn ccuurrvvee iinn ppllaassttiicc ssttaaggee iiss ddiivviiddeedd iinnttoo tthhrreeee ssttaaggeess,, vviiaa uunniiffoorrmm ddeeffoorrmmaattiioonn,, ddiiffffuussee nneecckkininggs tsataggeea nanddlo lcoaclaizliezdedn encekciknignsgt asgtaegbey btyh ethtwe otwpoe rppeernpdeincudliacrullianre lsi.nAess. tAhes wthoer wkohrakr dhaenrdinegnienxgp eoxnpeonnteinst disi fdfeifrfeenrtenutn udnedredri dffiefrfeernetnstt srtarianinr artaetse,s,d disitsitningguuisishha arreeaa ooff ssttrreessss––ssttrraaiinn ccuurrvvee wwaass oonnllyy ggiivveenn aatt ssttrraaiinn rraattee ooff 00..00000055 ss−−11, ,aass sshhoowwnn iinn FFiigguurree 22.. IItt ccaann bbee sseeeenn tthhaatt CCPP--TTii hhaass oobbvviioouuss ssttrraaiinn rraattee sseennssiittiivviittyy.. WWiitthh tthhee iinnccrreeaassee ooff ssttrraaiinn rraattee,, tteennssiillee ssttrreessss––ssttrraaiinn ccuurrvvee ooff CCPP--TTii aasscceennddss.. MMoorreeoovveerr,, tthhee yyiieelldd ssttrreennggtthh aanndd tteennssiillee ssttrreennggtthh iinnccrreeaassee aanndd tthhee eelloonnggaattiioonn ddeeccrreeaasseess.. FFiigguurree 22.. EEnnggiinneeeerriinngg ssttrreessss––ssttrraaiinn ccuurrvveess ooff aass--rreecceeiivveedd CCPP--TTii.. 33..22.. TTeennssiillee PPrrooppeerrttiieess ooff PPrreessttrraaiinneedd SSppeecciimmeennss TThhee pprreesstrtaraininw wasatsa kteankefrno mfrothme uthneif ourmnifpolramst icpdlaesftoircm daetifoonrmzoantieonan dzotnhee dainspde rtshieo ndiinssptearbsiiloitny irnegstiaobnil(i1ty% r,e2g%io,n3 .(51%%,, 52%%,, 63..55%%,, 150%%, ,61.55%%,, 1r0e%sp,e 1c5ti%ve, lrye)s.pAecctciovredlyin).g Atcoctoerndsiinleg sttor etesns–ssilter asitnrecsus–rvstersaoinf cduifrfvereesn otfp rdeisftfreariennetd psrpeesctrimainenesd, asspeshciomwennsin, aFsig suhroew3an, iitnc aFnigbuerese 3ena, thita tc,aanf tebre psreee-nst rtehtacht,i nagft,etre npsriele- ssttrreestcsh–sintrga,i ntecnusrivlee asstrceesnsd–ss.trBaointh cyuiervlde satrsecnegntdhs.a nBdotuhl tiymiealtde tsetnresnilgetsht reanngdt huilnticmreaatsee .teTnhseilset rsetnrgenthgtohf iCnPc-rTeiaissee. nThhaen scterdenagttthh eofc oCsPto-Tfid ius cetinlihtay,nacsedfr aactt uthree sctorsati nofd decurcetaislietsy,a also tfrwaictthuprer essttrraaiinn .dBeycrceoamseps aar ilnogt wthiethe npgriensetreariinn.g Bsytr ceosms–pstarraiinngc tuhrev eensgoifn3e.e5r%in,g5 %straenssd–6st.5ra%inp cruesrtvreasi noefd 3.s5p%ec, i5m%e nans,di t6c.5a%n bperesseternaitnheadt sepnegcinimeeernisn,g its tcraenss –bset rsaeiennc uthrvate senofgitnheeesreinspge sctirmesesn–sstarraeinc locuser,vtehsa otfm tehaenses wspheecnimperensst raarien cislorsaen, gtihnagt mfroeman3s. 5w%hteon6 p.5r%es,tflraoiwn sistr erassnignicnrge afsreosms li3g.5h%tly two i6th.5p%r,e sfltorawin s.tWrehsse ninpcrreesatsraeisn srleigahchtleys w10i%th apnrdesatbroavine., Wtheheunlt ipmreastetrsatirne nregathchiessr a1p0%id laynrde aacbhoevdea, nthdey uieltlidmsatrteen sgtrtehnigstvhe irsy rcalposideltyo rteeancshileeds tarnendg ythie.ldIt sistrwenogrtthh inso vtienrgy thclaotsaes tpor etesntrsaiilne rsetarecnhgesth3.. 5I%t i,st hweomrtahc rnoo-tyiinegld thchaat nagse psrferostmraginr ardeuaachlyesie l3d.5in%g, ttohed imscaocnrtoin-yuioeulds ychiealndginegs ,fraosmsh gorwadnuianl Fyiigeuldrein3gb t.oT dhiescdoinsctionnutoinuuso yuieslidnicnrge,a asse sohfoflwonw isnt rFeisgsusrhe o3wb.s Tthhee adpispceoanrtainnuceouosf yinieclrdeapslea toefa fulo.w stress shows the appearance of yield plateau. Metals2017,7,99 4of15 Metals 2017, 7, 99 4 of 15 FFiigguurree 33.. EEnnggiinneeeerriinngg ssttrreessss––ssttrraaiinn ccuurrvveess ooff ddiiffffeerreenntt pprreessttrraaiinneedd ssppeecciimmeennss.. ((aa)) 00%%––1155%% pprreessttrraaiinneedd CCPP--TTii aanndd ((bb)) tthhee aappppeeaarraannccee ooff yyiieelldd ppllaatteeaauu.. In order to evaluate the variation of flow stress with true strain, work hardening rate θ (dσ/dε) Inordertoevaluatethevariationofflowstresswithtruestrain,workhardeningrateθ(dσ/dε) is derived from the true stress–strain curve. Figure 4 displays variations of θ with true strain for as- is derived from the true stress–strain curve. Figure 4 displays variations of θ with true strain for received and prestrained CP-Ti. An often reported feature for pure titanium, in particular in as-received and prestrained CP-Ti. An often reported feature for pure titanium, in particular in compression conditions, consists in a three-stage character of deformation curve [25,26]. Work compression conditions, consists in a three-stage character of deformation curve [25,26]. Work hardening rate of as-received CP-Ti shows three decrease stages (A, B and C stage), as shown in hardening rate of as-received CP-Ti shows three decrease stages (A, B and C stage), as shown in Figure 4a. Work hardening rate decreases sharply at the beginning of plastic deformation (stage A) Figure4a.Workhardeningratedecreasessharplyatthebeginningofplasticdeformation(stageA) and then decreases gradually at moderate strain (stage B). In stage C, work hardening rate decreases andthendecreasesgraduallyatmoderatestrain(stageB).InstageC,workhardeningratedecreases slowly with strain, as the slopes flatten with the increase of true strain. Between stages A and B the slowlywithstrain,astheslopesflattenwiththeincreaseoftruestrain. BetweenstagesAandBthe transition occurs at a true plastic strain of 0.018, between stages B and C at a true plastic strain of transitionoccursatatrueplasticstrainof0.018,betweenstagesBandCatatrueplasticstrainof0.096. 0.096. The transition points between stages A and B and that between stages B and C of as-received ThetransitionpointsbetweenstagesAandBandthatbetweenstagesBandCofas-receivedCP-Tiare CP-Ti are consist with results of Becker et al. [27] and Hama et al. [28]. For prestrained CP-Ti in Figure consistwithresultsofBeckeretal.[27]andHamaetal.[28]. ForprestrainedCP-TiinFigure4b,itsθis 4dbe,p ietns dθe nist odneptreunedsetnrat ionna ntrdupe rsetsrtarainin a.nWdi tphrtehsetrianicnr.e Wasietho ftphree sintrcariena(sεe of≥ p2re%st)r,aainri s(eεpsrtea ≥g e2%B)o,f aw roisrek pre stage B of work hardening rate occurs. Stage B is characterized by an increasing strain hardening rate hardeningrateoccurs. StageBischaracterizedbyanincreasingstrainhardeningratewithtruestrain with true strain at the range of 0.5%–2%. With increasing prestrain, the rise tendency in stage B is attherangeof0.5%–2%. Withincreasingprestrain,therisetendencyinstageBismoreremarkable. mInotrhee rceamsaerokfaεble. ≥In 3th.5e% c,asster aoifn εphrea ≥r d3e.5n%in, gstrraatien ahtatrhdeeneinndg oraftset aagt ethAe eisnnde ogfa sttiavgee, aAls ios ninedgiactaivtees, athlsaot pre indicates that yield plateau appears in tensile stress–strain curves, which is consist with Figure 3b. yieldplateauappearsintensilestress–straincurves,whichisconsistwithFigure3b. Additionally, Additionally, compared with as-received CP-Ti, θ of prestrained CP-Ti decreases, indicating the comparedwithas-receivedCP-Ti,θofprestrainedCP-Tidecreases,indicatingthedecreaseofwork decrease of work hardening ability. Li et al. [29] and Ghaderi et al. [30] investigated the effect of grain hardeningability. Lietal.[29]andGhaderietal.[30]investigatedtheeffectofgrainsizeonthetensile size on the tensile deformation mechanisms of CP-Ti and found that as grain size decreased to about deformationmechanismsofCP-Tiandfoundthatasgrainsizedecreasedtoabout26µm,yieldplateau 26 μm, yield plateau occurred. In this paper, the grain size of CP-Ti is about 30 μm, as shown in occurred. Inthispaper,thegrainsizeofCP-Tiisabout30µm,asshowninFigure5a,determined Figure 5a, determined by linear intercept method. Li et al. [29] supposed there were two possible bylinearinterceptmethod. Lietal.[29]supposedthereweretwopossiblereasonsfortheobserved reasons for the observed variation of the macro-yield. First is the high number of dislocation tangles variationofthemacro-yield. Firstisthehighnumberofdislocationtanglesandthemobiledislocation and the mobile dislocation density. The second reason is the presence of deformation twinning. density. Thesecondreasonisthepresenceofdeformationtwinning. However,asgrainsizedecreases However, as grain size decreases to 30 μm, the activation of twinning in CP-Ti during tensile to30µm,theactivationoftwinninginCP-Tiduringtensiledeformationisnon-significant[29]. Thus, deformation is non-significant [29]. Thus, ascribing the initial yield plateau of CP-Ti during tensile ascribingtheinitialyieldplateauofCP-Tiduringtensiledeformationtothepresenceoftwinningis deformation to the presence of twinning is unreasonable. It is no doubt that dislocation structure unreasonable. Itisnodoubtthatdislocationstructureexistsintheprestrainedsamplesanditsdensity exists in the prestrained samples and its density increases with prestrain. However, the volume increaseswithprestrain. However,thevolumefractionoftwinningistremendouslysmall,asshownin fraction of twinning is tremendously small, as shown in Figure 5b–f, though its density increases with Figure5b–f,thoughitsdensityincreaseswithprestrain. Almostnotwinningstructurecanbeobserved prestrain. Almost no twinning structure can be observed in 2%–3.5% prestrained samples and few in2%–3.5%prestrainedsamplesandfewtwinsexistsin5%–15%prestrainedsamplesindicatedby twins exists in 5%–15% prestrained samples indicated by white arrows. According to quantitative whitearrows. Accordingtoquantitativestatisticalanalysisofmicrostructureintheprocessoftensile statistical analysis of microstructure in the process of tensile deformation along rolling direction [31– deformationalongrollingdirection[31–34],thetwinvolumefractionisalwaysconsiderablysmalland 34], the twin volume fraction is always considerably small and the plastic deformation can be theplasticdeformationcanbeattributedtodislocationslip. Therefore,asprestrainreaches3.5%,high attributed to dislocation slip. Therefore, as prestrain reaches 3.5%, high dislocation density in the dislocationdensityintheinitialmicrostructureleadstothepresenceofyieldplateau. initial microstructure leads to the presence of yield plateau. Metals2017,7,99 5of15 Metals 2017, 7, 99 5 of 15 Metals 2017, 7, 99 5 of 15 7000 6000 676000000000 ((aa)) ssttrraa iin0n . r0raa0tt0ee05s-1 565000000000 ((bb)) 00..00000055ss--11 pprreesst t0rraa%iinn 5000 00..000000055ss-1-1 4000 01%% /MPa/MPa 34534000000000000000 AA 000...0000000445ss-s-11-1 /MPa/MPa23423000000000000000 123562356%%.%.%.%.5555%%%% 22000000 BB 11000000 1000 C 0 10000 C 0 AA BB CC 00.00 0.04 0.08 0.12 0.16 0.20 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.00 0.04 t0r.u0e8 strain0.12 0.16 0.20 0.00 0.02 0.04 0t.0ru6e s0t.r0a8in0.10 0.12 0.14 0.16 true strain true strain FigFuigreur4e. T4.h Tehvea rviaartiioatnioonf wofo wrkohrka rhdaerndiennginragt erawtei twhittrhu etrsutera sitnr.a(ina). A(as) -rAesc-erievceedivCedP -CTiPa-Ttid aiftf edriefnfetrsetnrta in Figure 4. The variation of work hardening rate with true strain. (a) As-received CP-Ti at different ratsetsraainnd ra(tbe)s parneds t(rba)i nperdesCtraPi-nTeida tC0P.-0T0i0 a5t s0−.010.05 s−1. strain rates and (b) prestrained CP-Ti at 0.0005 s−1. Figure 5. Metallographic figures of different prestrained samples: (a) as-received; (b) 2%; (c) 3.5%; (d) Figure 5. Metallographic figures of different prestrained samples: (a) as-received; (b) 2%; (c) 3.5%; (d) Fig5u%r;e (e5). 1M0%et aanlldo g(fr)a 1p5h%ic pfirgesutrraeisnoedf dspifefecirmenetnsp.r Tewstrinasin aerde isnadmicpatleeds: b(ya )wahsi-tree acreriovweds ;in(b F)ig2u%r;e (5cd)–3f..5 %; 5%; (e) 10% and (f) 15% prestrained specimens. Twins are indicated by white arrows in Figure 5d–f. (d)5%;(e)10%and(f)15%prestrainedspecimens.TwinsareindicatedbywhitearrowsinFigure5d–f. The variations of strength and ductility of CP-Ti as functions of tensile prestrain are shown in The variations of strength and ductility of CP-Ti as functions of tensile prestrain are shown in Figures 6 and 7 respectively. It is observed that with the increase of prestrain, both yield strength and FigTuhreesv 6a arinadt i7o nresspofecsttirveenlyg.t Iht iasn odbsdeurvcetidli tthyaot fwCitPh- tThiea isnfcurenacstei oonf sproefsttreanisni,l ebopthre ysiterladin starerengsthho awnnd in tensile strength increase. The increment in yield strength with the amount of prestrain is gradually Figteunresisle6 satnredn7gtrhe sinpcercetaivsee.l yT.hIet iisncorbesmerevnet dint hyaietlwd istthretnhgetihn wcrietahs tehoef apmreosutnrat ionf, pbroetshtryaiienl diss gtrreandgutahllayn d slow, which can be seen from the slope of variation of yield strength with the increase of prestrain. tenssloilwe,s wtrehnicght hcainn cbree aseseen. Tfrhoemi nthcree smloepnet oinf vyaieriladtisotnr eonfg ytihelwd istthretnhgetha mwoituhn tthoe finpcrreesatsrea ionf ipsrgesrtardaiuna. lly The increase of yield strength with prestrain can be rationalised by following two reasons. One is that sloTwh,ew inhcircehascea onf byeieslde esntrefrnogmth twhieths lporpesetroafinv acarina tbieo nraotifonyaielilsdedst breyn fogltlhowwiintgh ttwhoe rineacsroenass.e Oonfep irse tshtarat in. dislocation density increases quickly with increasing prestrain. As a result, the resistance to start Thdeiisnloccreaatisoeno dfeyniesiltdy sitnrecrnegatshesw qituhicpkrleys twraitihn icnacnrebaesirnagti opnreaslitsreadinb. yAfso all orwesiunlgt, ttwheo rreesaissotannsc.eO tno esitsartth at plastic deformation on reloading increases sharply with increasing prestrain. The other is that as displolacsattiico dnedfoenrmsiatytioinnc roena sreesloqaudiicnkgly inwcirtehasinesc rsehaasirnpglyp wreistthr aiinnc.rAeassianrge spurlets,ttrhaeinr.e sTihstea noctheetro isst athrtapt laass tic prestrain increases, few twins also contribute to the increase of yield strength. The yield strength depforremstraatiino ninocnreraesleosa, dfeinwg tiwnicnrse aaslesos schoanrtprilbyuwte ittho itnhcer ienacsrienagsep oref sytriealidn .sTtrhenegotthh. eTrhies tyhiaeltda sstprernegsttrha in increases more and more slowly with prestrain. The logarithmic curve of the yield strength versus incirnecarseeass,efse mwotrwe iannsda lmsoocreo nstloriwbulyt ewtoithth periensctrraeians.e Tohfey lioegldarsittrhemngict hc.uTrvhee oyfi ethlde sytireelndg stthreinngcrthea vseerssmuso re the prestrain is linear. Thus, a power law can be used to describe the relationship between prestrain the prestrain is linear. Thus, a power law can be used to describe the relationship between prestrain andmoreslowlywithprestrain. Thelogarithmiccurveoftheyieldstrengthversustheprestrainis and yield strength, expressed as follow: and yield strength, expressed as follow: linear. Thus,apowerlawcanbeusedtodescribetherelationshipbetweenprestrainandyieldstrength, expressedasfollow: σσ==6688..0088εε𝑝𝑝𝑟𝑟𝑒𝑒00..4433++330055..3344 ((33)) IItt iiss sshhoowwnn tthhaatt tthhee ccuurrvvee ooff tthheeσ EEq=quua6at8tii.oo0nn8 ε((33pr))e ii0ss.4 cc3oo+nnss3iis0stt5ee.nn3tt4 wwiitthh tthhee oorriiggiinnaall ddaattaa ppooiinntt,, aanndd tthhee ( 3) correlation coefficient R is 0.999. When prestrain is less than 6.5%, ultimate tensile strength increases corIrteilsatsihoonw coneftfhicaitetnht eRc ius r0v.9e9o9f. WthheeEnq puraetsitornain(3 i)s ilsescso tnhsaisnt e6n.5t%w, uitlhtimthaeteo rteignisnilael sdtraetnagptho iinntc,raeansdest he slowly with prestrain. As prestrain increases up to 10%, ultimate tensile strength increases rapidly corsrloelwatlyio wnictohe pffirecsietrnatinR. iAss0 .p9r9e9s.trWainh einncprereassetrsa uinp itsol e1s0s%t,h ualnti6m.5a%te, tuenltsimilea stetretenngstihl einsctrreenasgetsh rianpcirdelays es and yield strength is close to tensile strength. According to relationships between uniform strain, and yield strength is close to tensile strength. According to relationships between uniform strain, slowlywithprestrain. Asprestrainincreasesupto10%,ultimatetensilestrengthincreasesrapidly anedellooynnigeglaadttiioosnntr e((εnε))g,, ttthoottiaasll ceelllooosnneggtaaottiiootennn ((sεεitltooettaall s==tr eεεpnprreeg ++th εε.)) Aaannccddo prpdrreeinssttgrraatiionn,,r ebblooattthhio uunnnsihiffoioprrmsmb ssetttrrwaaiienne anannuddn eeifllooonnrmggaattsiitoornna in, decrease linearly with prestrain. As prestrain increases up to 10%, plastic deformation of CP-Ti decrease linearly with prestrain. As prestrain increases up to 10%, plastic deformation of CP-Ti eloqnugiacktiloyn de(εv)e,lotoptsa ilnetolo tnhgea dtiifofnus(eε ntoetaclk=inεgp sreta+geε.) Haonwdepvreers, ttroatainl ,elboontghatuionnif oofr mCPs-Ttria rienmaaninds ecloonnsgtaantito n quickly develops into the diffuse necking stage. However, total elongation of CP-Ti remains constant decarbeoauste l3i0n.e5a%rl, yswligithhtlpy relesstsr atihna.nA sthper easst-rraeicneiivnecdre amseasteuripalt,o t1h0a%t ,mpelaanstsi ctdhee fotortmala tdiounctoilfitCy Pk-Teeipqsu iicnk ly about 30.5%, slightly less than the as-received material, that means the total ductility keeps in developsintothediffuseneckingstage. However,totalelongationofCP-Tiremainsconstantabout 30.5%, slightly less than the as-received material, that means the total ductility keeps in constant. Duringtheinitialprestrainprocessthehighertheprestrainis,thelowerelongationonreloadingis. MMeettaallss 22001177,, 77,, 9999 66 ooff 1155 cMcooenntasslsttaa2n0n1tt7.. , D7D,uu99rriinngg tthhee iinniittiiaall pprreessttrraaiinn pprroocceessss tthhee hhiigghheerr tthhee pprreessttrraaiinn iiss,, tthhee lloowweerr eelloonnggaattiioo6nno foo1nn5 rreellooaaddiinngg iiss.. 555500 550000 445500 MPaMPa440000 yyiieelldd ssttrreennggtthh stress/stress/333305050000 RR==00.9.99977 uullttiimmaattee tteennssiillee ssttrreennggtthh 225500 220000 00 22 44 66 88 1100 1122 1144 1166 pprreessttrraaiinn//%% FFFiiiggguuurrreee 666... VVVaaarrriiiaaatttiiiooonnn ooofff ssstttrrreeennngggttthhh pppaaarrraaammmeeettteeerrrsss... 00..4400 00..3355 3300..55%% metersmeters0000....23235050 ductility paraductility para000000......112112050050 uetuetolnolontoitanifanlfogl og srasrtmatmtrtriai oa osisinntnntrraaiinn 00..0055 00..0000 00 22 44 66 88 1100 1122 1144 1166 pprreessttrraaiinn//%% FFFiiiggguuurrreee 777... VVVaaarrriiiaaatttiiiooonnn ooofff ddduuuccctttiiillliiitttyyy pppaaarrraaammmeeettteeerrrsss wwwiiittthhh aaammmooouuunnnttt ooofff ppprrreeessstttrrraaaiiinnn... 333...333... TTTeeennnsssiiillleee PPPrrrooopppeeerrrtttiiieeesss ooofff PPPrrreeessstttrrraaaiiinnneeeddd SSSpppeeeccciiimmmeeennnsss aaafffttteeerrr AAAnnnnnneeeaaallliiinnnggg IIInnn ooorrdrddeererrt ottfoou rfftuuhrrettrhhaeenrr a alaynnzaaellytyhzzeee ptthhheeen oppmhheeennnooomnmoeefnndooinns c ooonff tiddniiusscocouonnsttyiinineuuldoouiunssg yoyicieeclulddriisnniggn hooiccgcchuuerrrss p irinen s thhraiigginhheeedrr pspprreeescsttirmraaieinnneesdd, ssspupebecscieimmqeuenensns,,t ssauunbbnsseeeqaqluuineengntt w aannansneecaaollininndggu wcwtaeasds cctooonndrdeuumcctoteevdde ttodo i rsreleommcoaovtvieoe nddsii.ssllAoocccacatotiiorodnnissn.. g AAtccoccooNrrddaiitnnioggn ttaool NmNaailttiiitooannrayall s mmtainillidittaaarrrydy ssottfaantnhddeaaPrrdde o oopff l tethh’see R PPeeepoouppblleel’i’scs RoRfeepCpuuhbibnlliiacc [oo3ff5 C]C,hhsitinrneaas [s[33r55e]]l,,i essvttrrienessgss trreeemlliieepvveiirnnaggtu ttreeemmipspeienrraattthuuerreer a iisns giinne tothhfee4 r4raa5nn–gg5e9e 5 oof◦f C4444a55n––5d599h55 e °°aCCti anangnddh hoheledaatitniinngggt hihmoolelddiiisnngfgr ottiimmmee1 5iiss t fofrroo3mm60 11m55 ittnoo. 33I66n00 o mmrdiinen.r. IItnno ooersrddtaeebrr l titosoh eespsttraaobbplliiessrhh h pperraootpipneegrr hpheaearatatiimnngge t ppeararsra,amtmheeetteperrrses,,s ttthrhaeei pnperredesststrrpaaeiincnieemdd e ssnppseecwciimemreeenncsso wnwdeerureec tcceoodnndhdueuaccttt-eetddre hhaetemaatt-e-ttnrreteaaatttmmtheeennttt e aamtt ttphheeer tateetmumrppeeeorrfaat5tuu0rr0ee ◦ ooCff 5w500i00th °°C3C0 w–w6ii0tthhm 33i0n0––a66n00d mm6i0inn0 aa◦nnCddw 66i00t0h0 °3°C0C m wwiiintthhr e 33s00p memcitininv rereelsysp.pTeechctteiivvreeelslyyu..l tTTshhseeh orrewessuuthllttasst sswhhohowewn ttphhraaetts wtwrahhieennne d pprsrepessettcrriaamiinneeendds sasppreeecchiimemaeetnendss aaartree5 h0he0eaa◦ttCeedd, t ahatte 55y00i00e l°°dCCa,, ntthhdee t yyeinieeslldidl e aasnntddre ttneegnntsshiillene ossttrlroeennngggtethhr dnnoeoc llrooennagsgeeerra dsdeehccorrleedaaissneeg aatssi mhhooelldudipinngtgo tti4imm0eem uuipnp . tAtood 44d00i tmmioiinnna.. lAAlydd,ddcioittmiioonpnaaalrllleyyd,, ccwoomimthppaparrreeedds t wrwaiiittnhhe pdprrseepsstetrrcaaiiminneeeddn s ssppweeicctihimmoeuenntssa wnwniittehhaooliuunttg aa,nnynnieeealadlliinangng,d, yytiieeenlldds i alaenndsdt trteeennnsgsiitllhee sdstterrecenrneggattshhe .ddeTecchrraeeatasmsee.e. TaTnhhsaattw mmheeeanannhss o wwldhhieennng hhtoiomllddeiinnrgega ttciimhmeees rrteoeaa4cch0heemss ittnoo 4a40t0 5 mm00iinn◦ aCatt, 55m000o0 s°°tCCo,, f mmdooisssltto oocfaf tddioiissnllosocccaaattniioonbnses cecalainnm bibneea eteelliidmm.iAinnatatttehedde.. s AaAmtt tethhteeim ssaeam,maeef t tetiirmmheee,,a atafftttreeerra thhmeeaeatnt tttrraeetaa6ttm0m0ee◦nnCtt aaatnt 6d6003000 °°mCC i anannhddo l33d00i n mmgiitnnim hheoo,lldydiiiennlggd tatiimnmdee,t, e yyniieseillldde asantnrdde n ttgeetnnhssiiollefe psstrtrereesnntrggattihhn eoodff sppprreeescstitrmraaieinnneesdda rsseppeeecqciiummaelenntoss taahrroee s eeeqqouufaatllh tetooa tsthh-rooessceee ioovffe tdthheme aaastse--rrreieaccele.iivTveehdda tmminaadtteeicrriaiaatlel.. s TTthhhaaattt irinnedcdriiyccasatttaeelssl i tzthhaataitto rnreepccrrryoyscstetaaslsllliiozzfaagttiirooannin ppcrrooouccleedsssbs eoorff e gagrlriaaziiennd ccaoonuudllddb obbtehe rdreeiasallloiizzceaedtdi o aannnsdd, t wbboointthhn idndigisslslootrccuaatctitioounnress,s, tatwwndiinnonntihinneggr sdstterrufueccctttuusrrheesas v aaenndbd e ooettnhheerrer mddeeoffveecectdtss thhhaarvvoeeu bgbeheeehnne rraeetmm-trooevvaeetdmd tethhnrrtooauutgg6hh0 h0hee◦aaCtt--attrnreedaatt3mm0eemnntit n aatth 66o00l0d0 i°°nCCg aatnnimdd e 33.00A mmcicinno hrhdooillnddgiinntgog tmtiimmeteea..l AlAocgcccroaorprddhiiinncggfi tgtoou mrmeseetotaafllldlooiggffrreaarppehnhiticcp ffriieggsuutrrraeeissn oeofdf ddsiaiffmffeeprreelennstt appfrtreeesrsttarranaininneeeaddli nssagammatpp5lle0es0s aa◦fCftteearr n aadnnn4n0eeaamlliiinnngg, gaartt a 55i0n000s i°°zCCe aaannnddd s44h00a mpmeiinnd,,o ggnrraoaitinnc hssiaizzneeg aean,nadds ssshhhaoapwpeen ddiono Fnnioogttu ccrhehaa8nn.gNgeeo,, atawss sisnhhnooiwwngnn i isinno FbFisiggeuruvrreee d 88.i. n NNtoho e ttwtwwiinonnnpiinenrggc e iisns toopbbrsseeesrrtvvraeeiddn eiindn tsthhpeee ctitwmwoeo n ppaeenrrdcceetnwntt i nppnrrieenssgttrrsaatiirnnueecddtu srseppseeiccniimmtheeenn fi avanenddp ettrwwceiinnnntnpiinnrgegs tssrttarriuunccettduursrepesse ciiinnm etthnheek effieivvpees appmeerrecceaensnttt h ppersreeesswttrriaatihinnoeeuddt sasppnenecceiiammlieennng .kkTeeheepips asslaasmmoeiem aapssl itethhseetshseea twwtwiitthihnoonuuitnt gaannsntnreeuaaclltiiunnrgge.. s TTinhhipiss r eaasllstsrooa iinimmedppllsiiepesse cttihhmaaett n ttswwciionnunnlidinnngg’ tssbttreruuaccnttunurereeassl i niingn ptpwrreeisnsttsrr.aaiTinnheeeddr essfppoeercceii,mmtheeennssh eccoaoutultldrdenna’’tttm bbeeen aatnntnenemeaaplliiennrgga tttuwwrieinnass.n. TdThhheeorreledffoionrrege,, tttihhmee e hhweeaaettr ettrreeeasatttammbeleinnstht teteedmmappsee5rr0aa0ttuu◦rrCee aaannnddd h4h0oollmddiiinnng,g w ttiihmmiceeh wwceaernreee eelissmttaaibbnllaiistsehhetehdde aadss i 5s5l00o00c a°°CtCio aannnsddg e44n00 e mmraiitnne,d, wwbhhyiicpchhre ccsaatrnna eienlliimamniidnnaarteteem ttahhieen ddthiissellootwccaaitntiioso.nnEss n gggeeinnneeerreaartiteneddg bsbtyyr e ppsrsre–essstttrrraaaiiinnn caaunnrdde s rreoemfmpaariienns tttrhhaeei n ttewwdiinnspss..e EcEinnmggeiinnneseeearrfiitnnegrg assnttrrneeessass–l–isnsttgrraaaiinrne ccsuuhroreewss noofif n ppFrreiegsstutrrraaeiinn9e.eddIt ssipspeoecbciismmereevnnessd aatffhtteearrt ayaninennledeaaplliilnnaggte aaarruee osshfhoroewwlannt i ivinne FFhiigigguuhrreeer 99p.. rIIett s iitssr aooibbnsse(eεrrpvvreeedd≥ tth3ha.a5tt% yy)iieesllpdde pcpillmaatteeeanauus doofif s rareepllapatteiivaveres hhaiifggthehererra nppnrreeessattlrrianaiignn. ((Aεεpplrrese o≥≥, 3w3..5o5%%rk)) hssappreedcceiimmnienenngss r dadtiiessaaoppfpppeeraaerrssst r aaaffitnteeerrd aaCnnnPne-eTaaliliinanfggt.e. rAAallnssono,,e wawlioonrrgkk ihshaacrarddlceeunnliianntgeg d rraaattceec ooorffd ppinrregesstttorraatiirnnueeedds CtCrPePs--sTT–iis atarffatteienrr acanunnrnveeeaa.lliiAnnggs miiss o ccsaatllcocuuflldaatitseelddo caaacctcciooornrddsiininsgge lttioom ttirrnuuaeet essdttrreaesfstsse––rsstatrrnaaniinne accluuinrrvgve,e.i. tAAisss emmxpoosestct tooefdf ddtihissallotocctahatteiioovnnassr iiiasst ieeollinimmoiifnnθaattfeeoddr apaffrtteeesrrt raaanninnneeedaallsiinpngeg,c, iiimtt ieissn seexxwppieetchctteaednd n ttehhaaaltit n ttghheeis vvcaaorrniiasaittsiiotonwn iootfhf θθth fafootrro pfprareses-srttreracaieinniveeeddd ssCppePec-ciTimmi,eeannssss hwwoiiwtthhn aainnnnnFeeiagaluliinnregg 1 ii0ss . cWcooonnrsskiisshtt awwridittehhn ttihhnaagtt rooafft eaasss--orrefecaceelliivvsepedde c CCimPP-e-TTniis,, aaasrs e sshphooowswitnniv iinen aFFniigdguunrreoe 1r1i00s..i nWWgoosrrtkka g hheaarcrdadneennbiienngog b rrasaetteresvs e oodff . aaAllll d sspdpeietcciioimmnaeelnnlyss, atahrreee ptprooassniitstiiivtvieeo naasnnddb e nntwoo erreiisnsiinndggi f sfsettaraeggnee t ccsaatnan g bbeese ooobfbsθseerarvvreeeddc..o AnAsddidsdtiiettiniootnnwaallilltyyh,, ttthhheoe s tetrraainnnssFiittiiigoounnrsse bb4ee.ttwTwheeeeernne fddoiriffeffe,errietennistt MMeettaallss 22001177,, 77,, 9999 77 ooff 1155 MMeettaallss 22001177,, 77,, 9999 77 ooff 1155 stages of θ are consistent with those in Figure 4. Therefore, it is obviously demonstrated that the high ssttaaggeess ooff θθ aarree ccoonnssiisstteenntt wwiitthh tthhoossee iinn FFiigguurree 44.. TThheerreeffoorree,, iitt iiss oobbvviioouussllyy ddeemmoonnssttrraatteedd tthhaatt tthhee hhiigghh doibsvloiocautsiloyn ddeemnsointys tirna tperdestthraaitntehde shpiegchimdeisnlso craetsiuolnts dine nthsiet yapinpeparreasntrcaei nofe dyiesplde cpilmateenasu roensu rletlsoainditnhge ddiissllooccaattiioonn ddeennssiittyy iinn pprreessttrraaiinneedd ssppeecciimmeennss rreessuullttss iinn tthhee aappppeeaarraannccee ooff yyiieelldd ppllaatteeaauu oonn rreellooaaddiinngg aanpdp eraisrianngc estoafgey ioefl dwpolrakte haaurdoennrienlgo ardatine.g andrisingstageofworkhardeningrate. aanndd rriissiinngg ssttaaggee ooff wwoorrkk hhaarrddeenniinngg rraattee.. FFFFiiiigggguuuurrrreeee 8 888.... M MMMeeeettttaaaallllllllooooggggrrrraaaapppphhhhiiiicccc f ffifiiigggguuuurrrreeeessss o oooffff d dddiiiiffffffffeeeerrrreeeennnntttt p ppprrrreeeessssttttrrrraaaaiiiinnnneeeedddd ss ssaaaammmmpppplllleeeessss aa aafffftttteeeerrrr hh hheeeeaaaatttt----ttttrrrreeeeaaaattttmmmmeeeennnntttt ( ( ((555500000000 ◦ ° °°CCCC,,,, 44 440000 m mmmiiiinnnn)))):::: (a) two percent prestrain with annealing; (b) five percent prestrain with annealing. Twins are (((aaa))) ttwtwwooop eppreecrreccneetnnptt rpepsrrteerssattirrnaaiwinn i twwhiiattnhhn aeaannlnnineegaal;lii(nnbgg);; fi ((vbbe)) pffeiivrvceee nppteeprrcrceeesnntttr appinrreewssttirrtahaiinann wnweiiatthhli naagnn.nnTeewaaillniinnsgga..r eTTiwwndiinnicss a taaerrdee indicated by white arrows in Figure 8b. biinnyddwiicchaatiteteedda bbryryo wwwhhsiiittnee aFarirgrroouwwress 8 iibnn . FFiigguurree 88bb.. Figure 9. Engineering stress–strain cures of prestrained specimens after annealing (500 °C, 40 min). FFFiiiggguuurrreee 999... EEEnnngggiiinnneeeeeerrriiinnnggg ssstttrrreeessssss–––ssstttrrraaaiiinnn cccuuurrreeesss ooofff ppprrreeessstttrrraaaiiinnneeeddd ssspppeeeccciiimmmeeennnsss aaafffttteeerrr aaannnnnneeeaaallliiinnnggg (((555000000 ◦°°CCC,,, 444000 mmmiiinnn)))... Figure 10. Three stages of work hardening rate in prestrained specimens after annealing: Sharp FFFiiiggguuurrreee 111000... TTThhhrrreeeeee ssstttaaagggeeesss ooofff wwwooorrrkkk hhhaaarrrdddeeennniiinnnggg rrraaattteee iiinnn ppprrreeessstttrrraaaiiinnneeeddd ssspppeeeccciiimmmeeennnsss aaafffttteeerrr aaannnnnneeeaaallliiinnnggg::: SSShhhaaarrrppp decrease in stage A, moderate decrease in stage B and slow decrease in stage C. dddeeecccrrreeeaaassseee iiinnn ssstttaaagggeee AAA,,, mmmooodddeeerrraaattteee dddeeecccrrreeeaaassseee iiinnn ssstttaaagggeee BBB aaannnddd ssslllooowww dddeeecccrrreeeaaassseee iiinnn s sstttaaagggeee C CC... Metals2017,7,99 8of15 Furtherquantitativeanalysisofthecontributionofdislocationhardeningtothestrainhardening of the material was made. In this paper, two parameters (∆σ , ∆σ ) were introduced, expressed 1 2 asfollows: ∆σ =σ −σ (4) 1 R RA ∆σ =σ −σ (5) 2 RA S ∆σ ,∆σ representshardeningcontributionsfromdislocationsassociatedmechanismsandother 1 2 mechanisms, respectively. σ , σ andσ refertoyieldstrengthofas-receivedCP-Ti, prestrained S R RA specimensandprestrainedspecimenswithannealing,respectively. FromFigure11,itcanbeseen thatbelowthestrainoftwopercent,thehardeningmainlycomesfromthedislocationsassociated mechanismsandotherhardeningmechanismsarenotimportantatthisstage(about3–4MPa).Asstrain increasesto3.5%,∆σ (about21–31MPa)increasesfast. Withtheincreaseofstrain,thecontributionon 2 strainhardeningfromboththedislocationsassociatedmechanismsandothermechanismsincreases. Nevertheless,accordingtothevariationof∆σ /(∆σ +∆σ )withprestraininFigure11,despitethe 1 1 2 decreaseofcontributionfromdislocationhardening,dislocationsassociatedmechanismsstilloccupy 80%oftheoverallstrainhardening. Therefore,dislocationsplayanimportantroleinstrainhardening ofCP-Tiduringroomtemperaturetensilealongrollingdirection. Also,itindicatesthatdislocationslip isthepredominantplasticdeformationmechanism. ThisisconsistentwiththeresultsofAmouzou[31] andRothetal.[33]. BasedonTaylor-typerelationsbetweendislocationdensityandlocalflowstress, thequantifiedcontributionofdislocationdensitytotheincreaseofstrengthisexpressedasfollows: σ = σ +MαGbρ1/2 (6) p 0 where M, α, G and b are the Taylor factor, Taylor constant, shear modulus and Burgers vector, respectively;andσ isthelatticefrictionstress. Accordingtotheliterature[31],therelationbetween 0 dislocationdensity(ρ)andtensilestrain(ε)islinear: ρ= a +a ε (7) 1 2 wherea anda areconstants. Thus,thevariationofdislocationhardeningstress(∆σ )withprestrain 1 2 1 (ε )shouldsatisfythefollowingrelationship: pre ∆σ = c +c (cid:0)a +a ε (cid:1)1/2 (8) 1 1 2 1 2 pre wherec andc areconstants. FromFigure11,itisobviouslythattherelationshipbetween∆σ and 1 2 1 ε satisfiesEquation(8)andthecorrelationcoefficientRis0.97. Afterannealingtreatment,ultimate pre tensilestrengthdecreases, comparedwithprestrainedspecimens.Thedecreaseofultimatetensile strength in the 3.5% prestrained specimen is maximum, as shown in Figure 12. The elongation of prestrainedspecimensincreasesafterannealing,asshowninFigure13. Whenprestrainislessthan 3.5%,theelongationofprestrainedspecimensafterannealingishigherthantheas-receivedCP-Ti. However,whenprestrainisabovefivepercent,theelongationofprestrainedspecimensafterannealing startstodecreasecomparedwiththeas-receivedCP-Ti. Thisindicatesthatbyproperheattreatment andcertainpriorplasticdeformation,boththestrengthandductilityofCP-Ticanbeimproved. Metals2017,7,99 9of15 MMMeeetttaaalllsss 222000111777,,, 777,,, 999999 999 ooofff 111555 FFFFiiiigggguuuurrrreeee 11111111.... TTTThhhheeee qqqquuuuaaaannnnttttiiiiffiffiiieeeedddd aaaannnnaaaallllyyyyssssiiiissss ooooffff eeeeffffffffeeeeccccttttssss ooooffff ddddiiiissssllllooooccccaaaattttiiiioooonnnnssss aaaassssssssoooocccciiiiaaaatttteeeedddd mmmmeeeecccchhhhaaaannnniiiissssmmmmssss ((((∆ΔΔΔσσσσ1111)))) aaaannnndddd ooootttthhhheeeerrrr mmmmeeeecccchhhhaaaannnniiiissssmmmmssss ((((Δ∆ΔΔσσσσ2222)))) oooonnnn ssssttttrrrraaaaiiiinnnn hhhhaaaarrrrddddeeeennnniiiinnnngggg.... FFFFiiiigggguuuurrrreeee 11112222.... DDDDeeecccelllciiinlnnieene eooofffo uuuflllttutiiimmlmtiaaamttteeea tttteeeennntssseiiinllleees issslttetrrreeesnnntrgggetttnhhhg aaatffhfttteeearrr f aaatennnrnnneeaeaanalllniiinnneggga:l:: i σσσnbbbg---RRR:,,, σσσσbbbb----RRRR---AAA,,,, σΔΔΔbσσσ- Rrrre-eeAppp,rrreee∆sssσeeennnrttte tttpeeenrnnessssiiilelleeen sststttrtrreeeennnnsgggitttlhhhe osootfffr epppnrrrgeeetssshtttrrroaaafiiinnnpeeerddeds tsrsspappieeenccceiiimdmmeseepnnnsess,c,, imppprrreeeensssstttr,rraaapiiirnnneeeesdddtr asssipnppeeeecdcciiimmmspeeeennncsssi m wwweniiitttshhhw aaaitnnnhnnnaeeenaaalnlliiinennagggl inaaagnnnddda n tdtthhhteeeh eddddiiifffiffffeeeferrreereennnnccceceee bbbbeeeettttwwwweeeeeeeennnn pppprrrreeeessssttttrrrraaaaiiiinnnneeeedddd aaaannnndddd pppprrrreeeessssttttrrrraaaaiiiinnnneeeedddd ssssppppeeeecccciiiimmmmeeeennnnssss wwwwiiiitttthhhh aaaannnnnnnneeeeaaaalllliiiinnnngggg.... FFFFiiiigggguuuurrrreeee 11113333.... EEEElllloooonnnnggggaaaattttiiiioooonnnn ooooffff pppprrrreeeessssttttrrrraaaaiiiinnnneeeedddd ssssppppeeeecccciiiimmmmeeeennnnssss wwwwiiiitttthhhh aaaannnnnnnneeeeaaaalllliiiinnnngggg.... 3333....4444.... CCCCoooonnnnssssttttiiiittttuuuuttttiiiivvvveeee MMMMooooddddeeeellll ooooffff PPPPrrrreeeessssttttrrrraaaaiiiinnnneeeedddd CCCCPPPP----TTTTiiii TTTThhhheeee FFFFiiiieeeellllddddssss----BBBBaaaacccckkkkooooffffeeeennnn mmmmooooddddeeeellll [[[[33336666]]]],,,, eeeexxxxpppprrrreeeesssssssseeeedddd aaaassss ffffoooolllllllloooowwwwssss:::: σσσσ====𝑘k𝑘𝑘εεεεn𝑛𝑛𝑛εε.εε̇ṁ𝑚̇𝑚𝑚 (((999()9)) ) iiisss cccooommmmmmooonnnlllyyy uuussseeeddd tttooo qqquuuaaannntttiiitttaaatttiiivvveeelllyyy dddeeessscccrrriiibbbeee ttthhheee eeeffffffeeeccctttsss ooofff ssstttrrraaaiiinnn rrraaattteee ssseeennnsssiiitttiiivvviiitttyyy aaannnddd ssstttrrraaaiiinnn sissstttrrrceeeonnnmgggtmtthhhoeeennnnliiiynnngggu soooennnd sssttttorrreeeqsssusssa–––nsssttttrrritaaaaiiintnni v ccceuuulryrrvvvdeeeesss s ooocffrf itttbhhheeee t hhhhooeommmefoofoegggceeetnsnneeoeooofuuustsssr assstittnrrraaariiiannnt essstttsrrreeeennnnsgggittttihhhveeeintnnyiiinnnagggn drrreeesgggtiriioooaninnn,,, wswwtrhhheeeenrrrgeeet khkk eiiisssn tittnhhhgeee sosstttnrrreeesnnntgggrettthhhss ccc–oooseeterffffaffiiiicccniiieeecnnnuttt,,r, vnnne iiissss totthhhfeeet hsssttterrraaahiiinnno m hhhaaaorrrgdddeeeennnneiiionnnugggs eeexsxxtppprooaoninnneeennnstttt,,,r eaaannnngdddt hmmme iniisssi nttthhhgeee r sssetttgrrraaaioiiinnnn ,rrraaawttteeeh sesseeernennssskiiitttiiiivvvsiiittttyhyy e eeexxxsppptroooennnneeegnnntthtt... AAAccccccooorrrdddiiinnnggg tttooo tttrrruuueee ssstttrrreeessssss–––ssstttrrraaaiiinnn cccuuurrrvvveeesss ooofff ppprrreeessstttrrraaaiiinnneeeddd CCCPPP---TTTiii aaattt dddiiiffffffeeerrreeennnttt ssstttrrraaaiiinnn rrraaattteeesss,,, ttthhheee vvvaaarrriiiaaatttiiiooonnn ooofff ssstttrrraaaiiinnn rrraaattteee ssseeennnsssiiitttiiivvviiitttyyy iiinnndddeeexxx mmm(((lllooogggσσσ⁄⁄⁄lllooogggεεε̇̇)̇)) wwwiiittthhh ppprrreeessstttrrraaaiiinnn iiisss ppprrreeessseeennnttteeeddd iiinnn FFFiiiggguuurrreee 111444aaa... SSSRRRSSS ooofff ppprrreeessstttrrraaaiiinnneeeddd Metals2017,7,99 10of15 coefficient,nisthestrainhardeningexponent,andmisthestrainratesensitivityexponent. According totruestress–straincurvesofprestrainedCP-Tiatdifferentstrainrates,thevariationofstrainrate Metals 2017, 7, 99 10 of 15 . sensitivityindexm(logσ/logε)withprestrainispresentedinFigure14a. SRSofprestrainedCP-Ti dCePc-rTeia sdeesclrienaesaersl ylwinietahrlpyr ewstirtahi np.rSetsrtarianinh.a rSdtreaniinn gheaxrdpeonnienngt ne(xlpogonσe/nlto gn(ε)loagnσd⁄lsotgreεn) gathndc osetfrfiecniegntht kc(oσe/ffεicniε.emn)t okf(σp⁄rεe𝑛sεṫr𝑚a)i noef dprCePst-rTaiinatedd iCffPer-Teni tats tdraififnerreantet sstarraeinc arlactuesla atered cianlcFuiglautered 1i4nb F,cig.uTrhee 1v4abl,uc.e Tshoef svtarlauinesh oafr dsternaiinn ghaerxdpeonnienngt eaxnpdonsternetn agnthd csotreeffingcitehn ctoaelfmfiocisetnkt eaelpmcoosnt skteaenpt caotndsitfafenrte antt dstifrfaeirnenrat tsetsr,aains srhatoews,n asin shFoigwunre in14 Fbi,gcu.rBeo 1th4bn,ca. nBdotkhd ne carnedas ke dweictrheapsree swtriathin p.rBeassteradino.n Beaxspeedr iomn eenxtpdearitma,emn,t ndaatnad, mk,a ns faunndc tki oans sfuonfcptrioesntsr aoifn pwreesrterafiitnte wdearse ffoitltloedw as:s follows: 𝑚=−0.17ε +0.03 (10) m = −0.17ε𝑝𝑟𝑒+0.03 (10) pre n𝑛==−−11..1199εε𝑝𝑟𝑒00.8.877++00..1144 (1(111) ) pre 𝑘k ==−−44444400..7700εεp𝑝r𝑟e𝑒++885599.4.499 (1(122) ) Figure 14. Variation of parameters with prestrain: (a) Strain rate sensitivity; (b) strain hardening Figure 14. Variation of parameters with prestrain: (a) Strain rate sensitivity; (b) strain hardening eexxppoonneenntt aanndd ((cc)) ssttrreennggtthh ccooeefffificciieenntt.. Thus, the modified Fields–Backofen model containing prestrain is finally obtained as follows: Thus,themodifiedFields–Backofenmodelcontainingprestrainisfinallyobtainedasfollows: σ=(−4440.70ε +859.49)ε−1.19ε𝑝𝑟𝑒0.87+0.14ε̇−0.17ε𝑝𝑟𝑒+0.03 (13) 𝑝𝑟𝑒 σ= (cid:0)−4440.70ε +859.49(cid:1)ε−1.19εpre0.87+0.14ε.−0.17εpre+0.03 (13) pre In order to investigate the prominence of the modified constitutive model, comparisons between the experimental data and the flow stress predicted by the modified constitutive model at different Inordertoinvestigatetheprominenceofthemodifiedconstitutivemodel,comparisonsbetween strain rates are shown in Figure 15. In addition, the predictability of the constitutive equation is theexperimentaldataandtheflowstresspredictedbythemodifiedconstitutivemodelatdifferent verified via employing standard statistical parameters, such as absolute deviation (ΔA) and strain rates are shown in Figure 15. In addition, the predictability of the constitutive equation is vcoerrirfieeladtivoina ceomepffliocyieinngt (sRta),n adsa srhdoswtanti isnti cFaiglupraer a1m5ae–tedr.s A,stu dcihffearseanbts sotlruatien draetveisa,t itohne v(∆aAlu)easn odf ccoorrrreellaattiioonn coefficient R in Figure 15a–d are above 0.97, hence the modified Fields-Backofen model shows a very coefficient(R),asshowninFigure15a–d. Atdifferentstrainrates,thevaluesofcorrelationcoefficient high degree of goodness of fit. It is found that the absolute deviation of flow stress obtained from the R in Figure 15a–d are above 0.97, hence the modified Fields-Backofen model shows a very high modified constitutive model varies from 1.87 to 6.88 MPa. The constitutive equations gives the least degree of goodness of fit. It is found that the absolute deviation of flow stress obtained from the absolute deviation of 1.87 at 0.004 s−1 of as-received CP-Ti and the largest absolute deviation of 6.88 modifiedconstitutivemodelvariesfrom1.87to6.88MPa. Theconstitutiveequationsgivestheleast aabt s0o.0lu00te05d esv−1i aotfi o3n.5%of p1.r8e7starta0in.0e0d4 ssa−m1polfea. sT-hreucse,i vtheed pCrPop-Toisaendd cothnestliatrugteivset aebqsuoaltuitoend perveisaetniotns ao fg6o.o8d8 estimate of the plastic flow stress for prestrained CP-Ti at different strain rates.

Description:
CP-Ti at different strain rates. Both strain rate sensitivity and strain hardening exponent decrease with prestrain. Fracture surfaces of the specimens
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.