ebook img

The Effective Average Action Beyond First Order PDF

0.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Effective Average Action Beyond First Order

The Effective Average Action Beyond First Order ∗ H. Ballhausen Institute for Theoretical Physics, Heidelberg University Philosophenweg 16, 69120 Heidelberg, Germany A derivative expansion of the effective average action beyond first order yields renormalization group functional flow equations which are used for the computation of critical exponents of the Isinguniversalityclass. Thecriticalexponentν inD=3isconsistentwithhigh-precisionmethods. The effective average action Derivative expansion beyond first order TheeffectiveaverageactionΓ [ϕ](see[1]and[2,3,4,5]) In a second order derivative expansion of the effective k 4 isafunctionalofthefieldsϕ. Itinterpolatesbetweenthe average action there are contributions from up to four 0 classicalactionS atsomemicroscopicultravioletscaleΛ nonvanishing momenta. These are parametrized by the 0 and the effective action Γ: ΓΛ = S, limk→0Γk = Γ. Its effectiveaveragepotentialandonerespectivelythreelin- 2 dependence onthe momentumscalek is describedby an earlyindependentwavefunctionrenormalizationsinfirst n exact renormalization group functional flow equation: respectively second order: a 8 J ∂kΓk = 12Tr{(Γ(k2)+Rk)−1∂kRk} Γk =R dD+xZ{Uk((ρρ)) 1∂ ϕ∂µϕ 0v3 1 wwtliumhimtekhr→ecruΛetΓsRop(kff2ke)cftuisntcotthiotehanneswdeficiltoeihlnmddtsqh2→feaun0pndRrcotkRipo(ekqnr2at)dliee>sdneoli0rtmieveskan→tasi0uverRminkoogmf=teΓhn0ke-, +++ZZZCDBA,,,,kkkk(((ρρρ)))····4244111!!!!ϕ∂ϕµµ∂ϕϕµ∂∂∂µµµ∂ϕϕµ∂∂ϕνν∂ϕϕν∂∂∂νννϕϕϕ+O(∂6)} → ∞ 7 above limit properties of Γk. Universal properties of the This truncation has been the starting point for a recent 0 renormalizationgroup flow, however,are independent of investigation in [6]. There an additional field expansion 3 0 the actual choice of Rk. of the potential and the wave function renormalizations 3 The flow of Γ(2) and higher n-point-functions can be de- in powers of ρ is done. Here we keep the full field de- 0 k pendence butinsteadgoonlyonestepbeyondfirstorder h/ rived from the flow of Γk by functional derivation, e.g. andtakeonlyUk,ZA,k andZD,k intoaccountdue tothe p-t ∂kΓ(k2) =1TTr{rΓΓ(k3()42)((ΓΓ(k(22))++RRk))−−32∂∂kRRk} following reasoning: e − 2 { k k k k k} WhileZ andZ directlycontributetoΓ(2) andthus h A,k D,k k (3) (4) (5) enter all flow equations as q2 and q4 terms in the de- : wherethe flowofΓ wouldinvolveΓ andΓ andso v k k k nominators of the integrands, Z and Z only give on. Inordertoendupwithaclosedsystemoffunctional B,k C,k i X flow equations one needs to do a finite truncation of Γ . additive contributions to the four-point-vertex and the k three-point-vertex respectively. Also, their flow requires r a In the following we concentrateona one-componentreal ∂ Γ(4) and∂ Γ(3). ThisiswhyweneglectZ andZ k k k k B,k C,k scalar field ϕ : IRD IR. There are the invariants in this paper which corresponds to a truncation beyond → ρ= 12ϕϕandρq2 = 12∂µϕ∂µϕfeaturingtheO(1)symme- first and below second order. try of the Ising universality class. Here the lowest order truncation of the effective average action reads We hope that this improvesthe criticalexponentν com- pared to first order calculations. On the other hand, the Γ = dDx U (ρ)+ 1∂ ϕ∂µϕZ +O(∂2) k R { k 2 µ k } anomalous dimension η is related to the momentum de- pendence of the wave function renormalization and will in terms of the effective average potential U (ρ) and a k probably suffer from the missing contributions. fieldindependentwavefunctionrenormalizationZ . The k effective averagepropagator Substituting U := U , Z := Z and Z := 2!ϕϕZ k 0 A,k 1 4! D,k Γ(2)(q2)+R (q2)=U′(ρ)+2ρU′′(ρ)+q2Z +R (q2) the truncation thus reads: k k k k k k gives the flow of the effective average potential Γ = dDx U(ρ) k R { +Z (ρ) 1∂ ϕ∂µϕ ∂kUk(ρ)= 12R (2dπD)qDUk′(ρ)+2ρUk′′∂(ρk)R+kq2Zk+Rk(q2) +Z01(ρ)·· 221!!∂µµ∂µϕ∂ν∂νϕ+O(∂4)} and ∂kZk can be determined from ∂q2∂kΓ(k2)(q2)|q2=0. and the next step is to derive ∂kU, ∂kZ0 and ∂kZ1: 2 Renormalization group flow equations Scale invariant flow equations Expanding the fields ϕ(x) = ϕ¯+χ(x) in small fluctua- As we are interested in critical phenomena of second or- tions χ(x) = eiqxχ(q) in momentum space around der phase transitions corresponding to fix points in the Pq a constant background ϕ¯ yields the n-point-functions renormalization group flow, we write the flow equations Γ(n)(q ,...,q )= δ δ Γ= δ δ Γ : in explicitely scale invariant form. 1 n δϕ(q1)···δϕ(qn) δχ(q1)···δχ(qn) |χ=0 Γ(2)(q, q)=U′+2ρU′′+q2 Z +q4 Z Tothisendonesubstitutesz (σ)=Z (ρ)/Z (ρ )(where 0 1 0 0 0 k Γ(2)(p,−−p)=U′+2ρU′′+p2··Z0+p4··Z1 ρuk=iskt−hdeUr,utnn=ingLmnikn,imηu=m o∂fULn(ρZ)()ρ, σ)=etcZ.0(sρukch)kt2h−aDtρ, Γ(3)(p,q, p q)= − − t 0 k Γ(3)(p+q−, −q, p)=√2ρ 3U′′+2ρU′′′ ′ ′ ′′ ++((pp24++−(2ppq−2)(p+q)q+2)3·pZ20′q{2+2(pq)q2+q4)·Z1′ } ∂−tucc0=·II(201−2+η)u +(D−2+η)σu Γ(4)(p,q, q, p)=3U′′+12ρU′′′+4ρ2U′′′′ − 1· 2 +(p2−+q−2) (Z′ +2ρZ′′) ′ +(p4+4p2q·2+0q4)·(Z01′ +2ρZ1′′) ∂+tz40σ=c0ηc0z·+((D−2+−η)0σ+DzD0 J40+ D2K41) +8σc c (0+1DI0 2+ DJ1+ 2K2) These are inserted into 0 1· D 3 − D 4 D 4 +4σc c (1+2DI1 4+ DJ2+ 2K3) ∂kΓ= 12R (2dπD)pDΓ(2)(p∂,k−Rp()p+2)R(p2) +8σc10c12··(0+DD3DI331−− 4+DDDJ442+ DD2K443) ∂kΓ(2)(q, q) +4σc1c2·(4+D8DI32− 12+D2DJ43+ D4K44) =R (2d−πD)pD(ΓΓ(2(3)()p(p2,)q+,−Rp(−p2q)))Γ2((3Γ)((2p)+((qp,+−qq),2−)p+)R∂(k(pR+(pq2)2))) +c4σc2Ic02·(4+D6DI33− 8+DDJ44+ D2K45) 1 dDp Γ(4)(p,q,−q,−p) ∂kR(p2) −c4·42I1 − 2R (2π)D (Γ(2)(p2)+R(p2))2 − 5· 2 and yield the flow equations ∂ z =(2+η)z +(D 2+η)σz′ t 1 1 − 1 +2σc c ( K0) ∂kU =∂kΓ +4σc0c0·( 0+ 2DJ0+ 8+D K41) ∂kZ0 = ∂∂q2 ∂kΓ(2) |q2=0 +2σc01c11··( 0+D2DI30−− 10+DD4DJ441+ 20DD+D K442) ∂ Z = 1 ∂ ∂ ∂ Γ(2) +4σc c ( 0+ 2DI0 8+ 6DJ1+ 36+18D+D2K2) k 1 2∂q2∂q2 k |q2=0 0 2· D 3 − D 4 D(D+2) 4 +4σc c ( 4+ 8DI1 32+ 8DJ2+ 64+30D+D2K3) In orderto be able to perform the q2-derivatives one has 1 2· D 3 − D 4 D(D+2) 4 toexpandthedenominatorcontaining(p+q)2. LetN = +2σc2c2·(16+D22DI32− 72+D12DJ43+ 96D+4(D2D++2)D2K44) Γ(2)(p2)+R(p2) and M =Γ(2)((p+q)2)+R((p+q)2): c I0 − 5· 2 1 = 1 (2pq+q2)N˙ + (2pq+q2)2N˙2 1(2pq+q2)2N¨ +... where for abbreviation we have used the constants M N − N2 N3 − 2 N2 Then the mixed scalar products (pq) can also be elimi- w =u′+2σu′′ nated: c =w′ 0 ′ 21R (2dπD)pDf(p2,q2)·(pq)2 = 21R (2dπD)pDf(p2,q2)p2Dq2 cc12 ==zz01′ 12R (2dπD)pDf(p2,q2)·(pq)4 = 21R (2dπD)pDf(p2,q2)D(pD4q+42) cc3 ==zw′′++22σσzw′′′′ 12R (2dπD)pDf(p2,q2)·(pq)k =0 for all odd k c45 =z01′ +2σz01′′ This finally gives the explicit flow equations: and the momentum integrals ∂kU =1·IhN1i Inm(w,z0,z1,η)[r]:= 21R (2dπD)pD (w+p(2pz20)+mp4∂˜zt1r+r)n ∂kZ0 =4ρC02·Ih− NN˙4 + D4 pN2N5˙2 − D2 pN2N4¨i+... Jnm(w,z0,z1,η)[r]:= 21R (2dπD)pD (p2()wm+(pz20z+0+2pp24zz11++rr˙))n∂˜tr ∂kZ1 =2ρC02·Ih2NN˙52 − NN¨4i+... Knm(w,z0,z1,η)[r]:= 12R (2dπD)pD(p2()wm+p22(zz00++2pp42zz11++rr)˙n)2+1∂˜tr Ihf(p2)i= 21R (2dπD)pD f(p2) ∂kR(p2) − 21R (2dπD)pD ((wp+2)pm2z(02+z1p+4zr¨1)+∂˜rt)rn ′′ ′′′ C0 =3U +2ρU which will be discussed next: 3 Momentum integrals Critical exponents The momentum integrals I, J and K can be computed Starting with a quartic potential u = 1(ρ κ )2 the 2 − Λ efficiently in case of a linear cutoff. For the choice [7, 8, flow equations are discretized on a grid and numerically 9, 10, 11] R =Z (k2 q2)Θ(k2 q2) one has solved for different values of κ . During the evolution k k Λ − − towards k 0, the running minimum of the potential r =(1 p2) Θ(1 p2) ( u′(κ) = 0→) may either end up in the massless sponta- − · − r˙ = Θ(1 p2) (1 p2) δ(1 p2) neouslybrokenphase(m=0,κ )orinthemassive − − − − · − symmetric phase ( m2 k2u′(0),→κ∞=0 ). r¨=2δ(1 p2)+(1 p2) δ′(1 p2) ∼ − − · − ∂˜tr = kZ∂kkkR2k =(2−η+p2η)·Θ(1−p2) cThhaeraccrtietirciazeldκbcylefiaxdspotointassoefcoanlldcoourpdleirngpshaansedtvraannissihtiionng and I, J and K are reduced to a single integral H: masses. Finetuningκ aroundκ thenyieldsthecritical Λ c exponent ν through the scaling law m T T ν and c Inm =(2−η)Hnm the establishedproportionality|κΛ−κc|∼∼||T−−Tc||. The +ηHm+1 critical exponent η may be identified with the fix point n ∗ η of the anomalous dimension. Jm =(z 1)Im n 0− n +2z Im+1 1 n The critical exponents for the universality class of the Km =2(z 1)2Im three dimensional Ising model obtained in this way are n 0− n+1 compared in Table 1 to values obtained in leading order +8(z 1)z Im+1 0− 1 n+1 ( Z1 =0, Z0 =1, also known as ’local potential approx- +8z12Inm++12 imation’ ), lowest order beyond leading order ( Z1 = 0, 2z Im Z = const, here called ’lowest order’ ), and full first − 1 n 0 vD(w+z0+z1)−n order beyond leading order ( Z1 = 0, here called ’first − order’ ). where H is a special case of a hypergeometric function Theexponentsareinagreementwithformercalculations Hm(w,z ,z ) using the effective average action. For brevity we quote n 0 1 = 1 dDp (p2)m Θ(1−p2) only results which are basedon simulations as similar as 2R (2π)D(w+p2z0+p4z1+r)n possible. Still they differ in that they either use a field 1 expansion(anexpansionofuandz inpowersofρ)ora =v dx xa DR ((w+1)+(z0−1)x+z1x2)n different infrared regulator or both. This might explain 0 the numerical differences. 1 = vD dx xa (1 bx cx2)−n (w+1)n R · · − − 0 For comparison we also give results from different ap- 1 ∞ k/2 proaches. Anextensivereviewofdifferenttechniquesand = vD dx xa xk (n+k−l−1)!k!cl bk−2l (w+1)n R · · P k! P (n−1)! l! (k−2l)! recent results can be found in [13]. We adopt their over- 0 k=0 l=0 all estimates of exponents and errors. In addition we ∞ k/2 1 = vD (n+k−l−1)!cl bk−2l dxxa+k quote some of the newestandprecisestresults fromhigh (w+1)n kP=0lP=0 (n−1)! l! (k−2l)!R0 temperature expansions, perturbation series at fixed di- ∞ k/2 mension,ǫ-expansionsandMonte Carlosimulationsplus = vD (n+k−l−1)!cl bk−2l 1 (w+1)n P P (n−1)! l! (k−2l)!a+k+1 some additional references. k=0l=0 with Conclusion and outlook v−1 =2D+1πD/2Γ(D/2) D a=m+ D 1 The critical exponent ν has significantly improved com- 2 − pared to first order. This is the first calculation using a b= 1−z0 linear cutoff that is consistent with high precision meth- 1+w c= z1 ods. On the other hand, the anomalous dimension is −1+w sensitiveto the neglectedcontributionsas canbe seenin The series expansion and reordering is valid and conver- comparison to [6]. Its error has even increased in com- gent as long as 1 bx cx2 = 0 for x [0;1]. Which is parison to first order. the case, as the e−ffectiv−e aver6age propa∈gator stays finite Hencetheinclusionoftheneglectedwavefunctionrenor- at all times. malizations should be the next step. 4 ν η effective average action to leading order ( this paper, Z =0, Z =1 ) 0.6491 0 1 0 effective average action to lowest order ( this paper, Z =0, Z =const ) 0.6271 0.1120 1 0 effective average action to first order ( this paper, Z =0 ) 0.6255 0.0503 1 effective average action beyond first order ( this paper ) 0.6303 0.0793 effective average action to leading order ( field expansion [11] ) 0.6496 0 effective average action to lowest order ( field expansion [12] ) 0.6262 0.1147 effective average action to first order ( exponential cutoff [14] ) 0.6307 0.0470 effective average action to second order ( exp. cutoff, field exp. [6] ) 0.632 0.033 literature values from the review [13] 0.6301(4) 0.0364(5) 25th-order high-temperature expansion [15], see also [16] 0.63012(16) 0.03639(15) seven-loop perturbation series at fixed D=3 [17], see also [18] 0.6303(8) 0.0335(6) five-loop order ǫ expansion with boundary conditions [18] 0.6305(25) 0.0365(50) Monte Carlo simulation [19], see also [20, 21] 0.6297(5) 0.0362(8) TABLE 1: Critical exponents of the three dimensional Ising universality class ∗ Electronic address: [email protected] [1] J. Berges, N. Tetradis and C. Wetterich, [12] D. F. Litim, Phys.Rept.363 (2002) 223-386 [hep-ph/0005122]. private communication. [2] C. Wetterich, [13] A. Pelissetto, E. Vicari, Nucl.Phys. B 352 (1991) 529. Phys. Rept.368 (2002) 549-727 [cond-mat/0012164]. [3] C. Wetterich, [14] S. Seide, C. Wetterich, Z. Phys.C 57 (1993) 451. Nucl. Phys. B 562 (1999) 524 [cond-mat/9806372]. [4] C. Wetterich, [15] M. Campostrini, A. Pelissetto, P.Rossi, E. Vicari, Phys.Lett. B 301 (1993) 90. Phys. Rev.E 65 (2002) 066127 [cond-mat/0201180]. [5] N.Tetradis, C. Wetterich, [16] P. Butera, M. Comi, Nucl.Phys. B 422 (1994) 541-592 [hep-ph/9308214]. Phys. Rev.B 65 (2002) 144431 [hep-lat/0112049]. [6] L. Canet, B. Delamotte, D. Mouhanna, J. Vidal, [17] F. Jasch, H. Kleinert, [hep-th/0302227]. J. Math. Phys. 42 (2001) 52 [cond-mat/9906246]. [7] D.F. Litim, [18] R. Guida, J. Zinn-Justin, Phys.Rev.D 64 (2001) 105007 [hep-th/0103195]. J. Phys.A 31 (1998) 8103 [cond-mat/9803240]. [8] D.F. Litim, [19] M. Hasenbusch, Phys.Lett. B 486 (2000) 92-99 [hep-th/0005245]. Int.J. Mod. Phys. C 12 (2001) 991. [9] D.F. Litim, [20] H. W. J. Bl¨ote, L. N. Shchur,A. L. Talapov, JHEP 0111 (2001) 059 [hep-th/0111159]. Int.J.Mod.Phys.C10(1999)1137[cond-mat/9912005]. [10] D.F. Litim, [21] H. G. Ballesteros, L. A.Fern´andez, V.Mart´ın-Mayor, Int.J. Mod. Phys.A 16 (2001) 2081 [hep-th/0104221]. A. Mun˜oz Sudupe,G. Parisi, J. J. Ruiz-Lorenzo, J. Phys.A 32 (1999) 1 [cond-mat/9805125]. [11] D.F. Litim, Nucl.Phys. B 631 (2002) 128-158 [hep-th/0203006].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.