The Effective Average Action Beyond First Order ∗ H. Ballhausen Institute for Theoretical Physics, Heidelberg University Philosophenweg 16, 69120 Heidelberg, Germany A derivative expansion of the effective average action beyond first order yields renormalization group functional flow equations which are used for the computation of critical exponents of the Isinguniversalityclass. Thecriticalexponentν inD=3isconsistentwithhigh-precisionmethods. The effective average action Derivative expansion beyond first order TheeffectiveaverageactionΓ [ϕ](see[1]and[2,3,4,5]) In a second order derivative expansion of the effective k 4 isafunctionalofthefieldsϕ. Itinterpolatesbetweenthe average action there are contributions from up to four 0 classicalactionS atsomemicroscopicultravioletscaleΛ nonvanishing momenta. These are parametrized by the 0 and the effective action Γ: ΓΛ = S, limk→0Γk = Γ. Its effectiveaveragepotentialandonerespectivelythreelin- 2 dependence onthe momentumscalek is describedby an earlyindependentwavefunctionrenormalizationsinfirst n exact renormalization group functional flow equation: respectively second order: a 8 J ∂kΓk = 12Tr{(Γ(k2)+Rk)−1∂kRk} Γk =R dD+xZ{Uk((ρρ)) 1∂ ϕ∂µϕ 0v3 1 wwtliumhimtekhr→ecruΛetΓsRop(kff2ke)cftuisntcotthiotehanneswdeficiltoeihlnmddtsqh2→feaun0pndRrcotkRipo(ekqnr2at)dliee>sdneoli0rtmieveskan→tasi0uverRminkoogmf=teΓhn0ke-, +++ZZZCDBA,,,,kkkk(((ρρρ)))····4244111!!!!ϕ∂ϕµµ∂ϕϕµ∂∂∂µµµ∂ϕϕµ∂∂ϕνν∂ϕϕν∂∂∂νννϕϕϕ+O(∂6)} → ∞ 7 above limit properties of Γk. Universal properties of the This truncation has been the starting point for a recent 0 renormalizationgroup flow, however,are independent of investigation in [6]. There an additional field expansion 3 0 the actual choice of Rk. of the potential and the wave function renormalizations 3 The flow of Γ(2) and higher n-point-functions can be de- in powers of ρ is done. Here we keep the full field de- 0 k pendence butinsteadgoonlyonestepbeyondfirstorder h/ rived from the flow of Γk by functional derivation, e.g. andtakeonlyUk,ZA,k andZD,k intoaccountdue tothe p-t ∂kΓ(k2) =1TTr{rΓΓ(k3()42)((ΓΓ(k(22))++RRk))−−32∂∂kRRk} following reasoning: e − 2 { k k k k k} WhileZ andZ directlycontributetoΓ(2) andthus h A,k D,k k (3) (4) (5) enter all flow equations as q2 and q4 terms in the de- : wherethe flowofΓ wouldinvolveΓ andΓ andso v k k k nominators of the integrands, Z and Z only give on. Inordertoendupwithaclosedsystemoffunctional B,k C,k i X flow equations one needs to do a finite truncation of Γ . additive contributions to the four-point-vertex and the k three-point-vertex respectively. Also, their flow requires r a In the following we concentrateona one-componentreal ∂ Γ(4) and∂ Γ(3). ThisiswhyweneglectZ andZ k k k k B,k C,k scalar field ϕ : IRD IR. There are the invariants in this paper which corresponds to a truncation beyond → ρ= 12ϕϕandρq2 = 12∂µϕ∂µϕfeaturingtheO(1)symme- first and below second order. try of the Ising universality class. Here the lowest order truncation of the effective average action reads We hope that this improvesthe criticalexponentν com- pared to first order calculations. On the other hand, the Γ = dDx U (ρ)+ 1∂ ϕ∂µϕZ +O(∂2) k R { k 2 µ k } anomalous dimension η is related to the momentum de- pendence of the wave function renormalization and will in terms of the effective average potential U (ρ) and a k probably suffer from the missing contributions. fieldindependentwavefunctionrenormalizationZ . The k effective averagepropagator Substituting U := U , Z := Z and Z := 2!ϕϕZ k 0 A,k 1 4! D,k Γ(2)(q2)+R (q2)=U′(ρ)+2ρU′′(ρ)+q2Z +R (q2) the truncation thus reads: k k k k k k gives the flow of the effective average potential Γ = dDx U(ρ) k R { +Z (ρ) 1∂ ϕ∂µϕ ∂kUk(ρ)= 12R (2dπD)qDUk′(ρ)+2ρUk′′∂(ρk)R+kq2Zk+Rk(q2) +Z01(ρ)·· 221!!∂µµ∂µϕ∂ν∂νϕ+O(∂4)} and ∂kZk can be determined from ∂q2∂kΓ(k2)(q2)|q2=0. and the next step is to derive ∂kU, ∂kZ0 and ∂kZ1: 2 Renormalization group flow equations Scale invariant flow equations Expanding the fields ϕ(x) = ϕ¯+χ(x) in small fluctua- As we are interested in critical phenomena of second or- tions χ(x) = eiqxχ(q) in momentum space around der phase transitions corresponding to fix points in the Pq a constant background ϕ¯ yields the n-point-functions renormalization group flow, we write the flow equations Γ(n)(q ,...,q )= δ δ Γ= δ δ Γ : in explicitely scale invariant form. 1 n δϕ(q1)···δϕ(qn) δχ(q1)···δχ(qn) |χ=0 Γ(2)(q, q)=U′+2ρU′′+q2 Z +q4 Z Tothisendonesubstitutesz (σ)=Z (ρ)/Z (ρ )(where 0 1 0 0 0 k Γ(2)(p,−−p)=U′+2ρU′′+p2··Z0+p4··Z1 ρuk=iskt−hdeUr,utnn=ingLmnikn,imηu=m o∂fULn(ρZ)()ρ, σ)=etcZ.0(sρukch)kt2h−aDtρ, Γ(3)(p,q, p q)= − − t 0 k Γ(3)(p+q−, −q, p)=√2ρ 3U′′+2ρU′′′ ′ ′ ′′ ++((pp24++−(2ppq−2)(p+q)q+2)3·pZ20′q{2+2(pq)q2+q4)·Z1′ } ∂−tucc0=·II(201−2+η)u +(D−2+η)σu Γ(4)(p,q, q, p)=3U′′+12ρU′′′+4ρ2U′′′′ − 1· 2 +(p2−+q−2) (Z′ +2ρZ′′) ′ +(p4+4p2q·2+0q4)·(Z01′ +2ρZ1′′) ∂+tz40σ=c0ηc0z·+((D−2+−η)0σ+DzD0 J40+ D2K41) +8σc c (0+1DI0 2+ DJ1+ 2K2) These are inserted into 0 1· D 3 − D 4 D 4 +4σc c (1+2DI1 4+ DJ2+ 2K3) ∂kΓ= 12R (2dπD)pDΓ(2)(p∂,k−Rp()p+2)R(p2) +8σc10c12··(0+DD3DI331−− 4+DDDJ442+ DD2K443) ∂kΓ(2)(q, q) +4σc1c2·(4+D8DI32− 12+D2DJ43+ D4K44) =R (2d−πD)pD(ΓΓ(2(3)()p(p2,)q+,−Rp(−p2q)))Γ2((3Γ)((2p)+((qp,+−qq),2−)p+)R∂(k(pR+(pq2)2))) +c4σc2Ic02·(4+D6DI33− 8+DDJ44+ D2K45) 1 dDp Γ(4)(p,q,−q,−p) ∂kR(p2) −c4·42I1 − 2R (2π)D (Γ(2)(p2)+R(p2))2 − 5· 2 and yield the flow equations ∂ z =(2+η)z +(D 2+η)σz′ t 1 1 − 1 +2σc c ( K0) ∂kU =∂kΓ +4σc0c0·( 0+ 2DJ0+ 8+D K41) ∂kZ0 = ∂∂q2 ∂kΓ(2) |q2=0 +2σc01c11··( 0+D2DI30−− 10+DD4DJ441+ 20DD+D K442) ∂ Z = 1 ∂ ∂ ∂ Γ(2) +4σc c ( 0+ 2DI0 8+ 6DJ1+ 36+18D+D2K2) k 1 2∂q2∂q2 k |q2=0 0 2· D 3 − D 4 D(D+2) 4 +4σc c ( 4+ 8DI1 32+ 8DJ2+ 64+30D+D2K3) In orderto be able to perform the q2-derivatives one has 1 2· D 3 − D 4 D(D+2) 4 toexpandthedenominatorcontaining(p+q)2. LetN = +2σc2c2·(16+D22DI32− 72+D12DJ43+ 96D+4(D2D++2)D2K44) Γ(2)(p2)+R(p2) and M =Γ(2)((p+q)2)+R((p+q)2): c I0 − 5· 2 1 = 1 (2pq+q2)N˙ + (2pq+q2)2N˙2 1(2pq+q2)2N¨ +... where for abbreviation we have used the constants M N − N2 N3 − 2 N2 Then the mixed scalar products (pq) can also be elimi- w =u′+2σu′′ nated: c =w′ 0 ′ 21R (2dπD)pDf(p2,q2)·(pq)2 = 21R (2dπD)pDf(p2,q2)p2Dq2 cc12 ==zz01′ 12R (2dπD)pDf(p2,q2)·(pq)4 = 21R (2dπD)pDf(p2,q2)D(pD4q+42) cc3 ==zw′′++22σσzw′′′′ 12R (2dπD)pDf(p2,q2)·(pq)k =0 for all odd k c45 =z01′ +2σz01′′ This finally gives the explicit flow equations: and the momentum integrals ∂kU =1·IhN1i Inm(w,z0,z1,η)[r]:= 21R (2dπD)pD (w+p(2pz20)+mp4∂˜zt1r+r)n ∂kZ0 =4ρC02·Ih− NN˙4 + D4 pN2N5˙2 − D2 pN2N4¨i+... Jnm(w,z0,z1,η)[r]:= 21R (2dπD)pD (p2()wm+(pz20z+0+2pp24zz11++rr˙))n∂˜tr ∂kZ1 =2ρC02·Ih2NN˙52 − NN¨4i+... Knm(w,z0,z1,η)[r]:= 12R (2dπD)pD(p2()wm+p22(zz00++2pp42zz11++rr)˙n)2+1∂˜tr Ihf(p2)i= 21R (2dπD)pD f(p2) ∂kR(p2) − 21R (2dπD)pD ((wp+2)pm2z(02+z1p+4zr¨1)+∂˜rt)rn ′′ ′′′ C0 =3U +2ρU which will be discussed next: 3 Momentum integrals Critical exponents The momentum integrals I, J and K can be computed Starting with a quartic potential u = 1(ρ κ )2 the 2 − Λ efficiently in case of a linear cutoff. For the choice [7, 8, flow equations are discretized on a grid and numerically 9, 10, 11] R =Z (k2 q2)Θ(k2 q2) one has solved for different values of κ . During the evolution k k Λ − − towards k 0, the running minimum of the potential r =(1 p2) Θ(1 p2) ( u′(κ) = 0→) may either end up in the massless sponta- − · − r˙ = Θ(1 p2) (1 p2) δ(1 p2) neouslybrokenphase(m=0,κ )orinthemassive − − − − · − symmetric phase ( m2 k2u′(0),→κ∞=0 ). r¨=2δ(1 p2)+(1 p2) δ′(1 p2) ∼ − − · − ∂˜tr = kZ∂kkkR2k =(2−η+p2η)·Θ(1−p2) cThhaeraccrtietirciazeldκbcylefiaxdspotointassoefcoanlldcoourpdleirngpshaansedtvraannissihtiionng and I, J and K are reduced to a single integral H: masses. Finetuningκ aroundκ thenyieldsthecritical Λ c exponent ν through the scaling law m T T ν and c Inm =(2−η)Hnm the establishedproportionality|κΛ−κc|∼∼||T−−Tc||. The +ηHm+1 critical exponent η may be identified with the fix point n ∗ η of the anomalous dimension. Jm =(z 1)Im n 0− n +2z Im+1 1 n The critical exponents for the universality class of the Km =2(z 1)2Im three dimensional Ising model obtained in this way are n 0− n+1 compared in Table 1 to values obtained in leading order +8(z 1)z Im+1 0− 1 n+1 ( Z1 =0, Z0 =1, also known as ’local potential approx- +8z12Inm++12 imation’ ), lowest order beyond leading order ( Z1 = 0, 2z Im Z = const, here called ’lowest order’ ), and full first − 1 n 0 vD(w+z0+z1)−n order beyond leading order ( Z1 = 0, here called ’first − order’ ). where H is a special case of a hypergeometric function Theexponentsareinagreementwithformercalculations Hm(w,z ,z ) using the effective average action. For brevity we quote n 0 1 = 1 dDp (p2)m Θ(1−p2) only results which are basedon simulations as similar as 2R (2π)D(w+p2z0+p4z1+r)n possible. Still they differ in that they either use a field 1 expansion(anexpansionofuandz inpowersofρ)ora =v dx xa DR ((w+1)+(z0−1)x+z1x2)n different infrared regulator or both. This might explain 0 the numerical differences. 1 = vD dx xa (1 bx cx2)−n (w+1)n R · · − − 0 For comparison we also give results from different ap- 1 ∞ k/2 proaches. Anextensivereviewofdifferenttechniquesand = vD dx xa xk (n+k−l−1)!k!cl bk−2l (w+1)n R · · P k! P (n−1)! l! (k−2l)! recent results can be found in [13]. We adopt their over- 0 k=0 l=0 all estimates of exponents and errors. In addition we ∞ k/2 1 = vD (n+k−l−1)!cl bk−2l dxxa+k quote some of the newestandprecisestresults fromhigh (w+1)n kP=0lP=0 (n−1)! l! (k−2l)!R0 temperature expansions, perturbation series at fixed di- ∞ k/2 mension,ǫ-expansionsandMonte Carlosimulationsplus = vD (n+k−l−1)!cl bk−2l 1 (w+1)n P P (n−1)! l! (k−2l)!a+k+1 some additional references. k=0l=0 with Conclusion and outlook v−1 =2D+1πD/2Γ(D/2) D a=m+ D 1 The critical exponent ν has significantly improved com- 2 − pared to first order. This is the first calculation using a b= 1−z0 linear cutoff that is consistent with high precision meth- 1+w c= z1 ods. On the other hand, the anomalous dimension is −1+w sensitiveto the neglectedcontributionsas canbe seenin The series expansion and reordering is valid and conver- comparison to [6]. Its error has even increased in com- gent as long as 1 bx cx2 = 0 for x [0;1]. Which is parison to first order. the case, as the e−ffectiv−e aver6age propa∈gator stays finite Hencetheinclusionoftheneglectedwavefunctionrenor- at all times. malizations should be the next step. 4 ν η effective average action to leading order ( this paper, Z =0, Z =1 ) 0.6491 0 1 0 effective average action to lowest order ( this paper, Z =0, Z =const ) 0.6271 0.1120 1 0 effective average action to first order ( this paper, Z =0 ) 0.6255 0.0503 1 effective average action beyond first order ( this paper ) 0.6303 0.0793 effective average action to leading order ( field expansion [11] ) 0.6496 0 effective average action to lowest order ( field expansion [12] ) 0.6262 0.1147 effective average action to first order ( exponential cutoff [14] ) 0.6307 0.0470 effective average action to second order ( exp. cutoff, field exp. [6] ) 0.632 0.033 literature values from the review [13] 0.6301(4) 0.0364(5) 25th-order high-temperature expansion [15], see also [16] 0.63012(16) 0.03639(15) seven-loop perturbation series at fixed D=3 [17], see also [18] 0.6303(8) 0.0335(6) five-loop order ǫ expansion with boundary conditions [18] 0.6305(25) 0.0365(50) Monte Carlo simulation [19], see also [20, 21] 0.6297(5) 0.0362(8) TABLE 1: Critical exponents of the three dimensional Ising universality class ∗ Electronic address: [email protected] [1] J. Berges, N. Tetradis and C. Wetterich, [12] D. F. Litim, Phys.Rept.363 (2002) 223-386 [hep-ph/0005122]. private communication. [2] C. Wetterich, [13] A. Pelissetto, E. Vicari, Nucl.Phys. B 352 (1991) 529. Phys. Rept.368 (2002) 549-727 [cond-mat/0012164]. [3] C. Wetterich, [14] S. Seide, C. Wetterich, Z. Phys.C 57 (1993) 451. Nucl. Phys. B 562 (1999) 524 [cond-mat/9806372]. [4] C. Wetterich, [15] M. Campostrini, A. Pelissetto, P.Rossi, E. Vicari, Phys.Lett. B 301 (1993) 90. Phys. Rev.E 65 (2002) 066127 [cond-mat/0201180]. [5] N.Tetradis, C. Wetterich, [16] P. Butera, M. Comi, Nucl.Phys. B 422 (1994) 541-592 [hep-ph/9308214]. Phys. Rev.B 65 (2002) 144431 [hep-lat/0112049]. [6] L. Canet, B. Delamotte, D. Mouhanna, J. Vidal, [17] F. Jasch, H. Kleinert, [hep-th/0302227]. J. Math. Phys. 42 (2001) 52 [cond-mat/9906246]. [7] D.F. Litim, [18] R. Guida, J. Zinn-Justin, Phys.Rev.D 64 (2001) 105007 [hep-th/0103195]. J. Phys.A 31 (1998) 8103 [cond-mat/9803240]. [8] D.F. Litim, [19] M. Hasenbusch, Phys.Lett. B 486 (2000) 92-99 [hep-th/0005245]. Int.J. Mod. Phys. C 12 (2001) 991. [9] D.F. Litim, [20] H. W. J. Bl¨ote, L. N. Shchur,A. L. Talapov, JHEP 0111 (2001) 059 [hep-th/0111159]. Int.J.Mod.Phys.C10(1999)1137[cond-mat/9912005]. [10] D.F. Litim, [21] H. G. Ballesteros, L. A.Fern´andez, V.Mart´ın-Mayor, Int.J. Mod. Phys.A 16 (2001) 2081 [hep-th/0104221]. A. Mun˜oz Sudupe,G. Parisi, J. J. Ruiz-Lorenzo, J. Phys.A 32 (1999) 1 [cond-mat/9805125]. [11] D.F. Litim, Nucl.Phys. B 631 (2002) 128-158 [hep-th/0203006].