ebook img

The Effect of Temperature Cycling and Transients on the Dielectric Properties of Transformer ... PDF

99 Pages·2011·4.06 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Effect of Temperature Cycling and Transients on the Dielectric Properties of Transformer ...

High Voltage Technology and Asset Management The Effect of Temperature Cycling and Transients on the Dielectric Properties of Transformer Impregnated Insulation J.W.B. Kers, BSc. Master of Science Thesis Author: J.W.B. Kers Student number: 1304542 E-mail address: Abstract This master’s thesis project is a part of the Sinergie project (sponsored by Agentschap NL, 2007-2012) which is dedicated to analyze the functionality of the grid of the future. The European Union has advanced plans to decarbonize the power sector onwards the year 2050 and therefore the use of renewable energy sources is expected to increase. The distributed energy generation from, for example, wind turbines and solar cells are not constant during a day as the wind speeds and incoming solar radiation vary. Therefore an increase in power transport between different regions throughout Europe is expected. During operation, transformers heat up or cool down depending on the varying loads. These variations in load depend mostly on the time of the day, as consumers require more power at specific times of the day. The high electric field strengths, which are a result of peaking power transport, combined with these thermal cycles have their impact on transformer insulation. The grid of the future will still be partly composed of today’s components and asset management strategies will be used to replace components, such as transformers, just before their end of life. The aforementioned renewable energy sources are often connected to the grid via power electronic converters. These convertors introduce transient spikes in the grid. Therefore the effect of both temperature cycling and transients on transformer insulation are investigated in this research. Chapter 2 includes a literature study on transformers. Transformers are essential parts of the electric grid. They can be found at the generation, transmission and distribution level. During operation, degradation factors influence the state of the transformer insulation. The insulation experiences environmental ageing factors such as pyrolysis, oxidation and hydrolysis. Chapter 3 shows the measurements which have been performed. Three series of experiments have been performed on transformer paper samples with a thickness of 0.060mm. These series consist of AC breakdown tests, time to breakdown tests and tangents delta measurements. The breakdown voltage increases from 3.11kV to 3.59kV (11V/˚C) when the temperature is increased from 16.6˚C to 60˚C. Up to 80˚C, the breakdown voltage decreases to 3.12kV (23.5V/˚C) when temperature is increased to 80˚C. The time to breakdown is determined at 2.91kV and the time 63.2% of the samples fail increases from 48.4 to 82.1 and 147 hours when temperature is increased from 40˚C to 60˚C and 80˚C, respectively. In the third series, transient spikes of 1kV superimposed on a 2.22kV AC waveform and samples are stressed for 22 hours. The transients are applied in a range from 1kHz up to 10kHz and it can be observed that the tangents delta increases with 6.4% compared to stressing with 2.22kV AC only. The results of the main experiments are interpreted in Chapter 4. Based on this interpretation, a model is made that can be used to calculate the accelerated ageing factors of the insulation and to incorporate the interaction between oil and paper. Measurement data should be used to calculate the loss of life due to daily loading cycles. Two loading scenarios are compared and it is shown that when renewable energy sources increase transport and introduce transients in the grid, ageing of transformers is accelerated. Contents 1 Introduction ..................................................................................................................................... 1 1.1 What is a transformer? ............................................................................................................ 1 1.2 Introduction on transformer paper impregnated insulation .................................................. 2 1.3 Goal of the master’s thesis ...................................................................................................... 3 1.3.1 Background information .................................................................................................. 3 1.3.2 Research objectives ......................................................................................................... 3 1.3.3 Thesis approach ............................................................................................................... 4 1.4 Thesis outline........................................................................................................................... 4 2 Literature study ............................................................................................................................... 5 2.1 Applications of transformers ................................................................................................... 5 2.2 Parts in a transformer ............................................................................................................. 6 2.2.1 Core ................................................................................................................................. 6 2.2.2 Windings .......................................................................................................................... 6 2.2.3 Tap changer ..................................................................................................................... 6 2.2.4 Paper................................................................................................................................ 7 2.2.5 Oil .................................................................................................................................... 7 2.3 Ageing processes in a transformer .......................................................................................... 7 2.3.1 Environmental factors ..................................................................................................... 7 2.3.2 Degradation effects on the oil ......................................................................................... 8 2.3.3 Degradation effects on the paper ................................................................................. 11 2.3.4 Diagnostic techniques ................................................................................................... 14 2.4 Conclusions ............................................................................................................................ 16 3 Experiments and results ................................................................................................................ 17 3.1 Experiment 1: AC breakdown ................................................................................................ 17 3.1.1 Initial results .................................................................................................................. 17 3.1.2 Goal................................................................................................................................ 17 3.1.3 Temperature .................................................................................................................. 17 3.1.4 Procedure ...................................................................................................................... 18 3.1.5 Hypothesis ..................................................................................................................... 20 3.1.6 Test setup ...................................................................................................................... 20 3.1.7 Results ........................................................................................................................... 22 3.1.8 Analysis .......................................................................................................................... 25 3.1.9 Summary ........................................................................................................................ 29 3.2 Experiment 2: Time to breakdown ........................................................................................ 30 3.2.1 Goal................................................................................................................................ 30 3.2.2 Temperature .................................................................................................................. 30 3.2.3 Procedure ...................................................................................................................... 30 3.2.4 Hypothesis ..................................................................................................................... 30 3.2.5 Test setup ...................................................................................................................... 30 3.2.6 Results ........................................................................................................................... 31 3.2.7 Analysis .......................................................................................................................... 32 3.2.8 Summary ........................................................................................................................ 33 3.3 Experiment 3: Tangents delta ............................................................................................... 34 3.3.1 Goal................................................................................................................................ 34 3.3.2 Temperature .................................................................................................................. 34 3.3.3 Voltage ........................................................................................................................... 34 3.3.4 Procedure ...................................................................................................................... 35 3.3.5 Hypothesis ..................................................................................................................... 35 3.3.6 Test setup ...................................................................................................................... 35 3.3.7 Results ........................................................................................................................... 36 3.3.8 Analysis .......................................................................................................................... 41 3.3.9 Summary ........................................................................................................................ 42 3.4 Conclusions ............................................................................................................................ 43 4 Results interpretation and modeling ............................................................................................ 45 4.1 Interpretation of measurement results ................................................................................ 45 4.1.1 AC breakdown tests ....................................................................................................... 45 4.1.2 Time to breakdown tests ............................................................................................... 45 4.1.3 Tangents delta tests ...................................................................................................... 45 4.2 The ageing model .................................................................................................................. 46 4.2.1 The general form of the model ..................................................................................... 46 4.2.2 Model parameters ......................................................................................................... 46 4.2.3 Measurement data ........................................................................................................ 48 4.2.4 Processed data .............................................................................................................. 49 4.2.5 Asset strategy ................................................................................................................ 52 5 Conclusion ..................................................................................................................................... 57 5.1 Conclusions ............................................................................................................................ 57 5.2 Recommendations................................................................................................................. 57 Appendix A: Raw measurement data .................................................................................................... 59 Initial results AC breakdown tests ..................................................................................................... 59 Final results AC breakdown test ........................................................................................................ 61 Appendix B: Weibull plots ..................................................................................................................... 63 Analysis AC breakdown tests ............................................................................................................. 63 Analysis time to breakdown tests ..................................................................................................... 70 Weibull parameter calculations .................................................................................................... 70 Weibull plots .................................................................................................................................. 72 Extra measurements with transients ............................................................................................ 74 Analysis tangents delta tests ............................................................................................................. 75 Appendix C: Extra measurement setup information ............................................................................ 77 Measurement setup AC breakdown tests ......................................................................................... 77 Measurement setup time to breakdown tests ................................................................................. 78 Measurement setup tangents delta tests ......................................................................................... 79 Appendix D: Characterization of the paper ........................................................................................... 81 Dielectric spectrograph tests............................................................................................................. 81 Appendix E: Model calculations ............................................................................................................ 85 Bibliography ........................................................................................................................................... 87 Acknowledgements ............................................................................................................................... 91 1 Introduction In the future, the use of renewable energy sources will increase as the European Union has advanced plans to decarbonize the power sector onwards the year 2050 [1]. These energy sources do not deliver constant power like today’s coal- and gas-fired power plants. The distributed energy generation from, for example, wind turbines and solar cells are not constant during a day. The wind speeds and incoming solar radiation vary, causing power transport between different regions throughout Europe to increase. The grid of the future will still be partly composed of today’s components as neither the money nor the manpower is available to replace all components. To overcome reliability problems, in-depth knowledge about the grid’s assets will be used to replace components just before their end of life. Therefore, current components, like paper-oil transformers, will be further stressed. In a transformer, the insulation is the most critical parameter for it cannot be replaced (e.g. like contaminated oil) and insulation failures are severe in both number and in cost [2]. When more power is transported through these transformers, higher average- and peak-temperatures are reached during the daily temperature cycle. Therefore, faster ageing of the various parts in a transformer can be expected. As mentioned before, more power is coming from renewable sources. Consequently, transients can be expected as well. Transients are steep waveforms superimposed on the normal AC waveform and are caused by fast switching of the power electronic converters. These converters are involved in converting the power from, for example, wind turbines and solar panels to an AC waveform. This thesis therefore focuses on the effect of both temperature and transients on transformer paper insulation. This chapter starts with a brief explanation of the transformer in section 1.1. Section 1.2 will discuss the impregnated paper insulation used in transformers. Section 1.3 contains the goal of the thesis and background information which puts it in context. The thesis outline is displayed in final section 1.4. 1.1 What is a transformer? The first transformer was made by Faraday in the year 1831 [3]. A transformer is a device that transforms voltage and current to a level required by the next application. In the electric grid, many stages are required to let companies and consumers use electric power in a safe and efficient way. Transformers are one of the main components required to meet this goal. The operating principle of a transformer is based on magnetomotive force. An alternating voltage is put on the primary winding causing a current flow. The alternating current sets up a magnetomotive force hence an alternating flux in the core. This alternating flux induces an electromotive force in the secondary windings [4]. If a load is connected to the secondary windings, a current will flow to the load. As can be seen in Figure 1-1, there are windings at the each leg of the core. The voltage induced is proportional to the windings ratio. The general equation is: 1 Figure 1-1 Simple scheme of a three phase transformer. An alternating voltage on the windings eventually causes, through physics, an alternating flux in the core. This flux induces an electromotive force in the other windings [39] 1.2 Introduction on transformer paper impregnated insulation Transformers consist of copper windings in coil alike shape. The windings are not allowed to touch each other and are isolated using impregnated paper which is shown in Figure 1-2. Impregnated means that the paper insulation is first dried in a vacuum and then saturated with an impregnating medium such as mineral oil [5]. After isolating the wires, the windings are put in a transformer tank and the tank is filled with mineral oil. Figure 1-2 The copper wires are insulated by using transformer paper. This solid transformer insulation is manufactured at Smit Transformatoren B.V. 2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.