Mon.Not.R.Astron.Soc.000,000–000(0000) Printed5January2016 (MNLaTEXstylefilev2.2) The discovery, monitoring and environment of SGRJ1935+2154 G.L. Israel,1⋆ P. Esposito,2,3 N. Rea,4,5 F. Coti Zelati,6,4,7 A. Tiengo,8,9,10 6 S. Campana,7 S. Mereghetti,8 G.A. Rodriguez Castillo,1 D. Go¨tz,11 M. Burgay,12 1 0 A. Possenti,12 S. Zane,13 R. Turolla,14,13 R. Perna,15 G. Cannizzaro,16 and J. Pons 17 2 1OsservatorioAstronomicodiRoma,INAF,viaFrascati33,I-00040MonteporzioCatone,Italy n 2IstitutodiAstrofisicaSpazialeeFisicaCosmica-Milano,INAF,viaE.Bassini15,I-20133Milano,Italy a 3Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA J 4AntonPannekoekInstituteforAstronomy,UniversityofAmsterdam,Postbus94249,NL-1090-GEAmsterdam,TheNetherlands 3 5InstitutodeCienciasdel’Espacio(ICE,CSIC–IEEC),CarrerdeCanMagrans,S/N,08193,Barcelona,Spain 6Universita`dell’Insubria,viaValleggio11,I-22100Como,Italy ] 7INAF–OsservatorioAstronomicodiBrera,viaBianchi46,I-23807Merate(LC),Italy E 8INAF–IstitutodiAstrofisicaSpazialeeFisicaCosmica,viaE.Bassini15,I-20133Milano,Italy H 9IUSS–IstitutoUniversitariodiStudiSuperiori,piazzadellaVittoria15,I-27100Pavia,Italy . 10INFN–IstitutoNazionalediFisicaNucleare,SezionediPavia,viaA.Bassi6,I-27100Pavia,Italy h 11AIMCEA/Irfu/Serviced’Astrophysique,OrmedesMerisiers,F-91191Gif-sur-Yvette,France p 12OsservatorioAstronomicodiCagliari,viadellaScienza5,09047,Cagliari,Italy - 13MullardSpaceScienceLaboratory,UniversityCollegeLondon,HolmburySt.Mary,Dorking,SurreyRH56NT,UK o 14DipartimentodiFisicaeAstronomia,Universita`diPadova,viaF.Marzolo8,I-35131Padova,Italy r t 15DepartmentofPhysicsandAstronomy,StonyBrookUniversity,StonyBrook,NY11794,USA s 16Universita` diRoma”LaSapienza”,P.leA.Moro5,00185,Roma,Italy a 17DepartamentdeF`ısicaAplicada,Universitatd’Alacant,Ap.Correus99,03080Alacant,Spain [ 1 v 7 5January2016 4 3 0 ABSTRACT 0 Wereportonthediscoveryofanewmemberofthemagnetarclass,SGRJ1935+2154,andon . 1 its timing and spectral propertiesmeasured by an extensive observationalcampaign carried 0 outbetweenJuly2014andMarch2015withChandraandXMM-Newton(11pointings). 6 We discovered the spin period of SGRJ1935+2154 through the detection of coher- 1 ent pulsations at a period of about 3.24s. The magnetar is slowing-down at a rate of : v P˙=1.43(1)×10−11ss−1andwithadecreasingtrendduetoanegativeP¨ of−3.5(7)×10−19 i ss−2.Thisimpliesasurfacedipolarmagneticfieldstrengthof∼2.2×1014G,acharacteristic X age of about3.6kyrand,a spin-downluminosityLsd ∼1.7×1034ergs−1. The sourcespec- r a trum is well modelled by a blackbody with temperature of about 500eV plus a power-law componentwithphotonindexofabout2.Thesourceshowedamoderatelong-termvariabil- ity, with a flux decay of about 25% during the first four months since its discovery, and a re-brighteningofthesameamountduringthesecondfourmonths. The X-ray data were also used to study the source environment. In particular, we dis- coveredadiffuseemissionextendingonspatialscalesfromabout1′′ uptoatleast1′ around SGRJ1935+2154 both in Chandra and XMM-Newton data. This component is constant in flux(atleastwithinuncertainties)anditsspectrumiswellmodelledbyapower-lawspectrum steeperthanthatofthepulsar.Thoughascatteringhalooriginseemstobemoreprobablewe cannotexcludethatpart,orall,ofthediffuseemissionisduetoapulsarwindnebula. Key words: stars: neutron – stars: magnetars – X-rays: bursts – X-rays: individual: SGRJ1935+2154 1 INTRODUCTION Large observational and theoretical efforts have been devoted in the past years to unveil the nature of a sample of peculiar high- ⋆ E-mail:[email protected] energypulsars,namelytheAnomalousX-rayPulsars(AXPs)and 2 G.L. Israelet al. theSoftGamma-rayRepeaters(SGRs).Theseobjectsarebelieved Table1.SummaryoftheSwift,ChandraandXMM-Newtonobservations tobeisolatedneutronstarsandpoweredbytheirownmagneticen- usedinthisworkandcarriedoutbetweenJuly2014andMarch2015. ergy,storedinasuper-strongfield,andarecollectivelyreferredto asmagnetars(Duncan&Thompson1992;Paczynski1992).They Mission/Obs.ID Instrument Date Exposure sharesimilartimingproperties(spinperiodP inthe2–12srange (ks) and period derivative P˙ in the 10−13–10−11 ss−1, range). Their X-rayluminosity,typicallyLX∼1033–1035ergs−1,generallyex- SSwwiifftt//660033448888000002 XXRRTT JJuull56 34..43 ceedstherotationalenergylossrate,whilethetemperaturesofthe Swift/603488004 XRT Jul7 9.3 thermalcomponentobservedintheirspectraareoftenhigherthan Swift/603488006 XRT Jul8 3.7 thosepredictedbymodelsofnon-magneticcoolingneutronstars. Swift/603488008 XRT Jul13 5.3 Their (surface dipolar) magnetic fields inferred from the dipolar- Swift/603488009 XRT Jul13 3.0 loss formula are generally of the order of B∼1014 – 1015 G. Chandra/15874 ACIS-S Jul15 10.1 However, recently low dipole field magnetars have been discov- Swift/603488010 XRT Jul16 7.1 ered,whichbehaveastypicalmagnetarsbutwithdipolarmagnetic Chandra/15875 ACIS-Sa Jul28 75.4 fieldaslow as6×1012G, i.e.in therange of normal radio pul- Chandra/17314 ACIS-Sa Aug31 29.2 sars(Reaetal.2010):thesesourcespossiblystorelargemagnetic XMM/0722412501 EPIC Sep26 19.0 XMM/0722412601 EPIC Sep28 20.0 energy in other components of their magnetic field (Turollaetal. XMM/0722412701 EPIC Oct04 18.0 2011;Reaetal.2013). XMM/0722412801 EPIC Oct16 9.7 Sporadically, magnetars emit high energy (up to the MeV XMM/0722412901 EPIC Oct24 7.3 range)burstsandflareswhichcanlastfromafractionofaseconds XMM/0722413001 EPIC Oct27 12.6 tominutes,releasing∼1038÷1047 ergs−1,oftenaccompaniedby XMM/0748390801 EPIC Nov15 10.8 long-lived(uptoyears)increasesofthepersistentX-rayluminosity XMM/0764820101 EPIC Mar25 28.4 (outbursts).Theseeventsmaybeaccompaniedortriggeredbyde- a Datacollectedincontinuousclockingmode(CC). formationsorfracturesoftheneutronstarcrustand/orlocal/global rearrangements of the star magnetic field. The detection of these energeticeventsprovidesthemainchanneltoidentifynewobjects (Stamatikosetal. 2014). Follow-up observations carried out by ofthisclass. Chandra on 2014 July 15 and 29 allowed us to precisely lo- Afundamentalquestionaboutmagnetarconcernstheirevolu- cate the source and detect its spin period (P=3.25s; Israeletal. tionary link to their less magnetic siblings, the rotation-powered 2014)confirmingthatSGRJ1935+2154isindeedamagnetar.The pulsars. A number of unexpected results, both from known and SGRJ1935+2154 position is coincident with the center of the newly discovered magnetars, drasticallychanged our understand- Galacticsupernovaremnant(SNR)G57.2+0.8ofundeterminedage ing of these objects. In 2004, while studying the emission prop- andatapossible,butuncertain,distanceof9kpc(Sunetal.2011; ertiesofthebrightX-raytransientmagnetarXTEJ1810−197,the Pavlovic´etal.2013). sourcewasdiscoveredtobeabrighttransientradiopulsar,thefirst InthispaperwereportontheresultsofanXMM-Newton and oftheclass(Camiloetal.2006).Todayweknowthat4outofthe Chandra observational campaign covering the first 8 months of about25knownmagnetars,areoccasionallyshiningasradiopul- SGRJ1935+2154’soutburst.Ourobservationalcampaignisongo- sarsintheoutburstphase.Alltheradio“active”magnetarsarechar- ingwithXMM-Newton,anditslong-termresultswillbereported acterizedbyaquiescentX-rayoverspin-downluminosityratioof elsewhere. We also report upper limitson the radio emission de- LX/Lsd <1(Reaetal.2012). rived from Parkes observations (Burgayetal. 2014). We first re- Energeticpulsarsareknowntoproduceparticleoutflows,of- portonthedataanalysis,thensummarizetheresultsweobtained tenresultinginspectacularpulsarwindnebulae(PWNe)ofwhich fortheparameters,propertiesandenvironmentofthisnewmagne- the Crab is the most famous example (Weisskopfetal. 2000). tar.Finallywediscussourfindingsinthecontestofthemagnetar Magnetars are expected to produce particle outflows as well, ei- scenario. therinquiescenceorduringoutburstsaccompanyingbrightbursts. Giventhestrongmagneticfieldsassociatedwiththisclassofneu- tron stars, the idea of a wind nebula around a magnetar is thus promising. There has not been yet a confirmed detection of such 2 X–RAYOBSERVATIONS anebula, butsomecases of“magnetically powered” X-raynebu- 2.1 Chandra laearound pulsars withrelativelyhigh magnetic fieldshavebeen suggested.Apeculiarextendedemissionhasbeenreportedaround ChandraobservationsofSGRJ1935+2154 werecarriedoutthree the rotating radio transient RRAT J1819-1458 (Reaetal. 2009; timesduringJulyandAugust2014(seeTable1)inresponsetothe Camero-Arranzetal.2013),withanominalX-rayefficiencyηX ∼ detectionofshortSGR-likeburstsfromthesource.Thefirstdataset 0.2, too high to be only rotationally powered. The authors sug- wasacquiredwiththeACIS-SinstrumentinFaintimaging(Timed gestedthattheoccurrenceofthenebulamightbeconnected with Exposure)and1/8subarraymode(timeresolution:∼0.44s),while the high magnetic field (B = 5×1013 G) of the pulsar. Similarly, the subsequent two pointings were obtained with the ACIS-S in Younesetal.(2012)reportedthediscoveryofapossiblewindneb- Faint timing (Continuous Clocking) mode (time resolution 2.85 ulaaroundSwiftJ1834−0846,withanX-rayefficiencyηX ∼0.7 ms). (butseeEspositoetal.2013foradifferentinterpretationinterms ThedatawerereprocessedwiththeChandraInteractiveAnal- ofdustscatter). ysisofObservationssoftware(CIAO,version4.6)usingthecalibra- SGRJ1935+2154 is a newly discovered member of the tionfilesavailableintheChandraCALDB4.6.3database.Thesci- magnetar family, and was discovered thanks to the detection entificproductswereextractedfollowingstandardprocedures,but of low-Galactic latitude short bursts by Swift on 2014 July 5 adoptingextractionregionswithdifferentsizeinordertoproperly The monitoringof SGRJ1935+2154 3 subtracttheunderlyingdiffusecomponent(seeSection3.2andFig- 3 ANALYSISANDRESULTS ure 1). Correspondingly, for the first observation (Faint imaging) weused circular regions of 1.5′′ (and 3.0′′) radius for thesource 3.1 Position (and diffuseemission) associated toabackground annular region WeusedtheChandraACIS-Sobservationcarriedouton2014July with1.6′′ and 3.0′′ (10′′, 15′′) for the inner and outer radius, re- the15th, the only one inimaging mode, inorder toprecisely lo- spectively.Furthermoreweusedrectangularboxesof3′′×2′′(and cateSGRJ1935+2154.Onlyonebrightsourcewasdetectedinthe 4′′×2′′)sidesalignedtotheCCDreadoutdirectionfortheremain- S7 CCD operating at 1/8 of the nominal field of view. The re- ingtwoobservationsinCCmode.Forthebackgroundweusedtwo finedpositionofthesource,calculatedwithWAVDETECT,isR.A.= rectangularboxesof1.5′′ ×1.5′′ (and2′′ ×2′′)atthesidesofthe 19h34m55s.5978s,Dec.=+21o53′47′.′7864(J2000.0;statisticalun- sourceextractionregion.Forthespectra,theredistributionmatrices certaintyof0′.′02)witha90%confidenceleveluncertaintyradius andtheancillaryresponsefileswerecreatedusingSPECEXTRACT. of 0′.′7. This position is consistent with that of SGRJ1935+2154 For the timing analysis, we applied the Solar system barycentre obtained by Swift: R.A. = 19h34m55s.68s, Dec. = +21o53′48′.′2, correctiontothephotonarrivaltimeswithAXBARY. J2000.0, radius of 2′.′3 at 90% confidence level (Cummingsetal. 2014). Correspondingly, we are confident that the source we de- tectedintheChandraimageisindeedthesourcefirstdetectedby SwiftBATandlaterbyXRTandresponsiblefortheobservedSGR- 2.2 XMM-Newton likebursts. XMM-Newton observations of SGRJ1935+2154 were carried out betweenSeptemberandMarch2015(seeTable1)tomonitorthe 3.2 Spatialanalysis sourcedecayandstudythesourceproperties.Weusedthedatacol- lected with the European Photon Imaging Camera (EPIC), which Upon visual inspection of the X-ray images, it is apparent that consistsoftwoMOS(Turneretal.2001)andonepn(Stru¨deretal. SGRJ1935+2154 isembedded inapatch of diffuse emission. To 2001) CCD detectors. The raw data were reprocessed using the assessthisindetail,webuiltforeachpnobservationaradialpro- XMM-NewtonScienceAnalysisSoftware(SAS,version14.0)and fileinthe0.4–10keVbandandfitapointspreadfunction(approxi- the calibration files in the CCF release of 2015 March. The pn matedbyaKingmodel;Readetal.2011)toit.Ineachinstance,the operated in Full Window (time resolution of about 73 ms) while innerpartoftheprofilecanbefitbyaKingmodelwithusualcore the MOSs were set in Small Window (time resolution of 300 radiusandslopevalues,whereasatradii≈30–40′′thedatastartto ms), therefore optimized for the timing analysis. The intervals exceedsignificantlythemodelprediction.Sinceweobtainedcon- of flaring background were located by intensity filters (see e.g. sistentresultsfromallthe2014observations,werepeatedthesame DeLuca&Molendi2004)andexcludedfromtheanalysis.Source analysis on thestacked images inorder toimprove the signal-to- photons were extracted from circles with radius of 40′′. The pn noiseratioofthedata.Wealsoselectedthephotonsinthe1–6keV background was extracted froman annular region withinner and energy range, since the spectral analysis (see Section3.4) shows outerradiiof45′′and90′′,respectively(alsointhiscasethechoice thatthediffuseemissionismoreprominentinthisband.Thecom- wasdictated by thediffuse emissioncomponent; Section3.2 and bined2014XMM-NewtonprofileisshowninblackinFig.1.The Figure1).PhotonarrivaltimeswereconvertedtotheSolarsystem diffuseemissionemergesat&30′′ fromSGRJ1935+2154andex- barycenter usingthe SAStask BARYCENusingthesourcecoordi- tendstoatleast70′′.Itishowevernotpossibletodeterminewhere nateasinferredfromtheChandrapointings(seeSection3.1).The the feature ends, because of both the low-signal to noise at large ancillaryresponsefilesandthespectralredistributionmatricesfor distance from the point source and the gaps between the CCDs. thespectral analysis weregenerated with ARFGEN and RMFGEN, The profile of the latest XMM-Newton dataset has been obtained respectively.Inordertomaximizethesignaltonoiseratiowecom- separately fromtheremaining datasetsin order tolook for shape bined,whenneeded,thespectrafromtheavailableEPICcameras variabilitiesofthediffusecomponentonlongtimescales.Thetwo andaveragedtheresponsefilesusingEPICSPECCOMBINE.Inpar- pnprofilesareinagreementwithintheuncertainties(determinedby ticular,thelattercommand wasroutinelyappliedforthestudyof usingaKolmogorov–Smirnovtestthatthereisasubstantialprob- thedimdiffuseemission. ability(¿50%) that the twoprofiles have been extracted from the same distribution), though a possible shift of the diffuse compo- nent,towardslargerradii,mightbepresentinthe30′′-40′′ radius interval. 2.3 Swift AsimilaranalysiswascarriedoutbyusingthelongestChan- dradataset.ThoughthelatterisinCCmode,thefieldisnotpartic- The Swift X-Ray Telescope (XRT) uses a front-illuminated ularlycrowdedandonlyfaintpoint-likeobjectsaredetectedinthe CCD detector sensitive to photons between 0.2 and 10 keV fieldofview.Correspondingly,itisstillpossibletogatherinforma- (Burrowsetal. 2005) . Two readout modes can be used: pho- tionoversmallerscalesthanintheXMM-Newtondata.theACIS- ton counting (PC) and windowed timing (WT). The PC mode SPSFwassimulatedusingtheChandraRayTracer(ChaRT)and provides images and a 2.5s time resolution; in WT mode only Model of AXAF Response to X-rays (MARX v5.0.0-0) software one-dimensional imaging is preserved with a time resolution of packages1.TheresultofthisanalysisisshowninblueinFigure1. 1.766ms. Data were processed with XRTPIPELINE (version 12), DiffuseemissionisclearlypresentintheChandradataandstarts and ltered and screened with standard criteria, correcting for ef- becomingdetectableatadistanceof>1′′ fromthesource.Dueto fective area, dead columns, etc. Events wereextracted from a 20 poor statistics we have no meaningful information at radii larger pixel radius region around the source position. For spectroscopy weusedthespectralredistributionmatricesinCALDB(20130101, v014forthePC),whiletheancillaryresponselesweregenerated 1 Formoredetailsonthetasksseehttp://cxc.harvard.edu/chart/index.html withXRTMKARF. andhttp://space.mit.edu/cxc/marx/index.html 4 G.L. Israelet al. 22:00:03.5 Table2.TiminEgporecshulTts0.(MJD) 56926.0 Validityrange(MJD) 56853.6–56976.4 57:07.1 PP˙((TT00))(s) 13..24435(016)5×0(11)0−11 P¨(T0)(s−1) −3.5(7)×10−19 54:10.7 νν˙((TT00))((HHzz)s−1) 0−.310.3861060(32)3(×1)10−12 ν¨(T0)(Hzs−2) 3.3(7)×10−20 21:51:14.3 rχm2νs(rde.soi.df.u)al(ms) 505.57(6) Bp(Gauss) 2.2×1014 48:17.9 Lτcsd(y(re)rgs−1) 13.6700×1034 45:21.5 36.0 24.0 12.0 19:35:00.0 48.0 36.0 34:24.0 XMM-Newtonwas0.11±0.02ctss−1 and0.21±0.01ctss−1,re- spectively.Coherentpulsationsataperiodofabout3.24swerefirst 6 discoveredinthe2014July29ChandradatasetcarriedoutinCC 0 1 mode(Israeletal.2014).Thepulseshapeisnearlysinusoidaland pn 2014 doesnotshowvariationsasafunctionoftime.Alsothepulsedfrac- 5 pn 2015 0 tion,definedasthesemi-amplitudeofthesinusoiddividedbythe 1 ACIS 2014 −2 source average count rate, is timeindependent (withinuncertain- n mi 4 ties)andinthe17%÷21%range(1σuncertaintyofabout1.5%). 0 rc 1 Additionally,thepulseshapedoesnotdependontheenergyrange, a s 0 thoughashiftinphaseofabout0.16cyclesisclearlydetectedbe- unt 00 tweenthesoft(0.5-1.5keV)andhard(3.0-12.0keV)energybands, o 1 withhardphotonsanticipatingthesoftones(seeFigure2). C 0 A refined value of P=3.244978(6) s (1σ confidence level; 0 1 epoch56866.0MJD)wasinferredbasedonaphase-coherentanal- ysis. Due to thelong timeelapsed between the epoch of the first perioddeterminationandthoseoftheotherChandraobservations we were not able to further extend the timing solution based on the Chandra data. Therefore, we inferred a new phase-coherent o 2 ati solution by means of the seven XMM-Newton pointings carried R out between the end of September and mid November 2014 (red 1 filledcirclesinleft panel of Figure2). The new solution alsoin- cludedafirstperiodderivativecomponent:P=3.2450656(2)sand 0 50 100 P˙=1.37(3)×10−11 s s−1 (1σ confidence level; epoch 56926.0 Radius (arcsec) MJD;χ2of3.1for4degreeoffreedom). Figure 1. Top: 98ks-long XMM-Newton PN image of the region around Thelattertimingsolutionwasaccurateenoughtoincludethe SGRJ1935+2154;the1.4GHzradiomapofSNRG57.2+0.8isalsoshown previousChandrapointings(blackfilledcirclesinleftpanelofFig- (bluecontoursfromtheVLAGalacticPlaneSurvey,Stiletal.2006;upper ure2).Thefinaltimingsolution,encompassingthewholedataset, image).TheXMM-NewtonimagehasbeensmoothedwithaGaussianfunc- isreportedinTable2andincludesasecondperiodderivativeacting tionwitharadiusof4′′andmagentacontoursaredisplayedinordertoem- inthedirectionofdeceleratingtherateofperiodchangeP˙.Thein- phasisetheextendedemissionaroundSGRJ1935+2154.Theblackdashed clusionofthenewP¨componenthasaF-testprobabilityof8×10−4 circle marks adistance of90′′ from theSGRJ1935+2154 position. Bot- and10−7 ofnotbeingneeded (whenconsideringonlytheXMM- tom:2014and2015XMM-NewtonandChandrasurfacebrightness(black Newtondatasetsorthewholetenpointingsinthefit,respectively). crosses,purplesquaresandbluecrosses,respectively)asafunctionofthe Moreover, the new timing solution implies a r.m.s. variability of distance fromSGRJ1935+2154 compared with their Point Spread Func- tions(PSF;redlines;lowerplot).TheratiosbetweenthedataandthePSF only55ms,correspondingtoatimingnoiseleveloflessthan2%, areplottedinthelowestpanel. wellwithinthevaluerangeobservedinisolatedneutronstars. Wenotethatthesecondperiodderivativewefoundisunlikely toresultfromachange,asafunctionoftime,ofthepulseprofiles, than∼15′′.Therefore,wearenotabletoassessifthediffusestruc- which are almost sinusoidal and show no evidence for variation turesdetectedbyXMM-NewtonandChandraareunrelatedtoeach (seerightpanelofFigure2). otherorlinkedsomehow. Wenoticethatthisanalysisisvalidundertheassumptionthat thelocationandgeometryoftheemittingregionremainsconstant throughouttheobservations,assuggestedbystudiesofothertran- 3.3 Timinganalysis sientmagnetars(seePerna&Gotthelf2008;Albanoetal.2010). The 0.5-10keV events were used to study the timing properties The accuracy of the timing solution reported in Table2 is ofthepulsar. Theaveragecount rateobtainedfromChandra and not good enough to coherently include the March 2015 XMM- The monitoringof SGRJ1935+2154 5 55 0 −− .5 3 (a) − 1 .5 Phase (rad) −20−15−10−20−15−10 nd shifted Intensity 2 ((bc)) 1.5−2.0 2.0−3.0 3.0−1 Eenergy (keV) uals (s) 0.20.40.20.4 Normalized a ((de)) 2.0 0.5−12 d 00 Resi 0.20.2 1 (f) −− −50 0 50 0 0.5 1 1.5 2 Time (d − 16926.0 TJD) Phase Figure2.Left:SGRJ1935+2154’sphaseevolutionasafunctionoftimefittedwithaalinearplusaquadraticplusacubiccomponents(upperpanel).The residualswithrespecttoourbestphase-coherentsolutionarereportedinthelowerpanel,inunitsofseconds.BlackandreddpointsmarktheChandraand XMM-Newtonobservations,respectively.Right:ChandraplusXMM-Newtonbackground-subtractedpulseprofiles(arbitraryshiftedonthey-axis).Fromtop tobottomtheyreferto:(a)0.5-1.5keV,(b)1.5-2.0keV,(c)2.0-3.0keV,(d)3.0-12.0keVand(e)0.5-12.0keV.Thedashedorangecurvemarksthebestfit(by assumingamodelwithtwosinusoids)ofprofile(a):asystematicshifttowardssmallerphases(advanceintime)asafunctionofenergyisevident.Profile(f) hasbeenobtainedbyaligningprofilesfrom(a)to(d). Newtondata.Correspondingly, weinferredtheperiodforthislat- freedom,hereafterd.o.f.,fortheChandraandXMM-Newtonspec- estpointingsimilarlytowhat reportedabovefindingabestvalue tra,respectively).Acanonicaltwo-componentmodeloftenusedto ofP=3.24528(6) s(95%confidencelevel;epoch57106.0MJD). modelmagnetars,i.e.anabsorbedBBplusPL,resultedinagood This is less than 2σ away from the expected period extrapolated fit with reduced χ2 of 0.99 (280 d.o.f.) and 1.03 (405 d.o.f.) for from the timing solution in Table2. The pulse profile parameters theChandraandXMM-Newtonspectra,respectively.Theinclusion changed significantlywithrespect totheprevious datasetswitha of a further spectral component (the BB in the above procedure) pulsedfractionofonly5±1%(1σ)andamoreasymmetricshape. wasevaluatedtohaveaformalF-testprobabilityequalto4.5σand 7.0σ (forChandra andXMM-Newton,respectively) ofbeingsig- nificant. 3.4 Spectralanalysis A fluxvariation, of the order of about 25%, was clearly de- tectedbetweentheChandraandXMM-Newton2014pointings.On For the phase-averaged spectral analysis (performed with XSPEC the other hand no significant flux variation was detected among 12.8.2 fitting package; Arnaud 1996) we started by considering spectra of XMM-Newton observations. Correspondingly, in order all the datasets together. Then, we concentrated on the 29 July toincreasethestatisticsweproceededtocombinethesevenXMM- 2014data,beingthelongestandhigheststatisticsChandrapointing Newton 2014 spectra together (we used the SAS task EPICSPEC- (about 75ks effective exposure for 8200 photons) and the XMM- COMBINE).ByusingthelatterspectrumweobtainaF-testproba- Newton pn spectra (effective exposure time of about 105ks and bilityof7.8σthattheBBcomponentinclusionissignificant.Inthe 22000events).AsummaryofthespectralfitsisgiveninTable3.To upper panel ofFigure3theXMM-Newtoncombined sourcespec- accountfortheabovereporteddiffusecomponent(seeSection3.2) trum(inblack)isreportedtogetherwiththeChandraspectrumof weused,asbackgroundspectraofthepoint-likecentralsource,the thelongestpointing(inred;thetwofurtherChandraspectraarenot regions we described in Section2.1 and 2.2 and from which we showninFigureforclaritypurposes). Wenote that,withinabout extractedlaterthediffusecomponentspectra. 1σuncertainties,theChandraandXMM-Newtonspectralparame- Westartedbyfittingallthe10datasetscarriedoutduring2014 terareconsistentwitheachotherwiththeexceptionoftheflux. separatelyleaving freetovary alltheparameters. Theabsorption was forced to be free but the same among observations. Photons ThelatestXMM-Newtonpointing,carriedoutinMarch2015, having energies below about 0.8keV and above 10keV were ig- wasnotcombinedwiththepreviousonesinordertolookforspec- nored, owing to the very few counts from SGRJ1935+2154 (en- tralvariabilityonlongtimescales.WhilethePLplusBBspectral ergychannelswererebinnedinawayofhavingatleast30events). decompositionholdsalsoforthisdataset,thefluxsignificantlyin- Furthermore,alltheenergychannelsconsistentwithzeroafterthe creasedbyabout25%reachingalevelsimilartothatofthelongest background subtractionwereignored. Theabundances usedwere ChandrapointinginJuly2014.ItisevidentfromTable3thatthe those of Wilmsetal. (2000). The spectra were not fitted well by onlysignificantlychangedparameteristhefluxofthePLcompo- any single component model such asa power-law (PL)or black- nent. body (BB) which gave a reduced χ2 in the 1.2 – 1.8 range de- Due to the poor statistics of the Swift XRT spectra we only pending on the used single component (282 and 407 degrees of inferred the 1-10keV fluxes by assuming the PL plus BB model 6 G.L. Israelet al. 1 thatthereisnosuggestionofvariabilityforthediffuseemission.A SGR XMM PN combined (from the seven XMM-Newton pointings) spectrum for SGR Chandra thediffuseemissionwasobtained,inawaysimilartothatalready Diffuse XMM described for the source spectrum. The XMM-Newton combined V−1 0.1 spectrumofthediffuseemissionandtheresultsofthespectralfit- e k ting for the PL model are shown in Figure3 and in Table3. Two −1 factscanbeimmediatelyevinced:asimplemodelisnotagoodap- s s 0.01 proximationforthediffuseemissionandtheabsorbingcolumnis nt u significantlydifferentfromtheoneweinferredforthemagnetar.At o C presentstagewecannotexcludethatthetwothingsarerelatedto 10−3 eachother.Inparticular,wenotethatthelargestvaluesoftheresid- uals originated from few “random” datapoints rather than by an up-and-down trend(oftensuggestingawrongadoptedcontinuum 4 σ) component; see blue points in the lower panel of Figure3). Also ∆als ( 02 foobrsethrveadtiioffnusineeomrdiesrsitoonlowoekkfeoprtsspeepcatrraatlevdatrhiaeti2o0n1s5.UXnMfoMrt-uNneawtetolyn, du thelowstatisticspreventedusincheckingifchangesinthespec- esi −2 tral parameters are present. The inferred 1-10keV observed flux R −4 is(1.67±00..0035)×10−13ergcm−2s−1,in agreement withthe2014 1 2 5 10 value. Energy (keV) 16 3.5 Pre-outburstobservations ) 14 −13 m−2 Swift XRT observed SGRJ1935+2154 twice before its activation 0 1c 12 duringtheSwiftGalacticplanesurvey(seeCampanaetal.2014). ux x g s −1 10 T00h0e4fi5r2s7t8o0b0s1e)r.vSatGioRnJt1o9o3k5p+l2a1c5e4oinsDfaercof3f0-a,x2i0s1(0∼f1o0r′)5a1n4dsw(oebdsied- Fl(er riveda3σupperlimitof3.2×10−2ctss−1. 8 The second observation took place on Aug 28, 2011 for 1 10 100 617s(obsid00045271001). SGRJ1935+2154isdetectedatarate Time (d since TJD 16843.0) (1.55±0.63)×10−2ctss−1.Assumingthesamespectralmodel oftheXMM-Newtonobservations(seeSection3.4andTable3,we Figure3.SpectraofSGRJ1935+2154andofthediffuseemissionaround thepulsar.Fromtoptobottom:SGRJ1935+2154cumulativeXMM-Newton derive a1-10keV luminosity of (9.3±3.6)×1033 erg s−1 (in- PN spectrum, the SGRJ1935+2154 Chandra ACIS spectrum of obser- cludinguncertaintiesinthecountrateandassumingadistanceof vation 15875 and the cumulative XMM-Newton PN spectrum of the dif- 9kpc). fuseemission(upper plot).Residuals (isσ units)areshownandreferto Thefieldwasalsoimaged duringtheROSATall-skysurvey theabsorbed PL+BBmodelforSGRJ1935+2154andtoaPLmodelfor twice,butthehighcolumndensitypreventsanyfirmupperlimiton thediffusecomponent.Timeevolutionfortheabsorbed1-10keVfluxof theobservedflux. SGRJ1935+2154obtainedbyusingdatasetsfromSwift(blacktriangles), Chandra(redsquares)andXMM-Newton(blackcircles).Thezeroonthe x-axismarkstheSwiftBATtrigger. 4 RADIOOBSERVATIONS The first radio follow-up observations of SGRJ1935+2154 were obtainedbythecombinedXMM-Newtonspectrumandincludinga carriedouton9and14July2014fromtheOotyRadioTelescope scalefactorwhichwasfreetovaryinordertotrackthefluxvaria- (ORT) and the Giant Meterwave Radio Telescope (GMRT), at tionthroughtheoutburst.ThelowerpanelofFigure3includesall 326.5and610.0MHz,respectively(Surnisetal.2014).Nopulsed the1-10keVobservedfluxesinferredfromtheSwift,Chandraand radioemissionwasfounddowntoafluxof0.4mJyand0.2mJyat XMM-Newtonspectra.Itisevidentthatthesourceisstillvariable 326.5and610.0MHz(assuminga10%dutycycle),respectively. aboveageneraldecaytrend. The source was observed with the Parkes radio telescope at The same background regions used to correct the EPIC pn 10-cmand20-cminfourepochsbetween1and3August,shortly sourcespectrawerethenassumedasareliableestimateofthedif- afterthedetectionofX-raypulsations(Israeletal.2014),andagain fuseemission.Forthebackgroundofthediffuseemissionwecon- at10-cmon28September,almostsimultaneouslywithoneofour sidered two regions laying far away (at a distance >4′) from the XMM-Newtonobservations.Observationsat10-cmwereobtained pulsarandintwodifferentCCDsobtainingsimilarresultsinboth usingtheATNFDigitalFilterbanksDFB3(usedinsearchmodewith cases. We first fit all the seven spectra together. The use of one a sampling time of 1 ms) and DFB4 (in folding mode) at a cen- spectral component gave a relatively good fit with a reduced χ2 tralfrequencyof3100MHz,over1024MHzofbandwidth.20-cm of 1.22 and 1.33 (107 d.o.f.) for an absorbed PL and BB model, observations wereacquired usingthereconfigurable digitalback- respectively.Thenweleftfreetovaryalltheparametersresulting endHIPSR(HI-Pulsarsignalprocessor)withacentralfrequencyof in a reduced χ2 of 1.15 and 1.18 (95 d.o.f.) for the PL and BB 1357MHz,a350MHzbandwidthandasamplingtimeof64µs. model, respectively. Whileno improvement was achieved for the FurtherdetailsoftheobservationsaresummarizedinTable4. BBmodelthePLmodelappearstovaryamongXMM-Newtonob- Data were folded in 120-s long sub-integrations using the servationsatabout2.0σconfidencelevel.Therefore,weconclude ephemeris in Table2 and then searched over a range of periods, The monitoringof SGRJ1935+2154 7 Table3.ChandraandXMM-Newtonspectralresults.Errorsareata1σconfidencelevelforasingleparameterofinterest. Mission(Model) NHb Γ kT RBBc Fluxd Luminosityd χ2ν(dof) (1022cm−2) (keV) (km) (10−12ergcm−2s−1) (1034ergs−1) SOURCEEMISSION CHANDRA(BB+PL) 2.0±0.4 2.8±0.8 0.45±0.03 1.9±0.2 1.24±0.06 3.1±0.5 0.97(165) XMM(BB+PL) 1.6±0.2 1.8±0.5 0.47±0.02 1.6±0.1 0.89±0.05 1.7±0.4 1.02(74) XMMe ” 1.6±0.2 2.1±0.4 0.48±0.02 1.6±0.2 1.19±0.06 2.4±0.5 0.93(109) DIFFUSEEMISSION XMM(PL) 3.8±0.4 3.8±0.3 −− −− 0.14±0.02 0.6±0.1 1.94(23) a XSPECmodels;BB=BBODYRAD,PL=POWERLAW. b WeusedtheabundancesofWilms,Allen&McCray(2000) c Theblackbodyradiusiscalculatedatinfinityandforanarbitrarydistanceof9kpc. d Inthe1–10keVenergyband;fluxesareobservedvalues,luminositiesarede-absorbedquantities. e March2015XMM-Newtonobservation. 2014ChandraandXMM-Newtondatasetsandweinferredbotha Table4.Thetablelistsforeachradioobservation:thedateandtime(UT) ofthestartoftheacquisition(intheformyy-mm-dd-hh:mm);thereceiver first and second period derivative. These findings further confirm used,eitherthe10-cmfeedofthecoaxial10-50cm(Granetetal.2005)or thatSGRJ1935+2154isindeedamagnetarwhichisslowing-down the central beam of the 20-cm multibeam receiver (Staveley-Smithetal. atarateofabout halfamillisecondperyear.However,thistrend 1996);theintegrationtime;thefluxdensityupperlimitforapulsedsignal is slowing-down due to a negative P¨ (see Table2). The accurate witha3.2speriod;thefluxdensityupperlimitforasinglepulseof32ms timingsolutionallowedusalsotoinferthedipolarmagneticfield duration.FluxareexpressedinmJyunits. strength,anupperlimitonthetruepulsarageandthecorrespond- ingspin-downluminosity(underusualassumptions). UTStart Rec Tobs(h) Smin Ssmpin SGRJ1935+2154isaseeminglyyoungobject,6 3kyr,with 14-08-01-11:34 10-50cm 3.0 0.04 68 a Bp value (∼2.2×1014Gauss) well within the typical range of 14-08-02-11:22 10-50cm 3.0 0.04 68 magnetars. The X-ray emission ispulsed. The pulse shape is en- 14-08-03-12:29 20cm-MB 1.5 0.05 61 ergyindependent(withinuncertainties)anditisalmostsinusoidal 14-08-03-13:32 10-50cm 1.0 0.07 68 witha∼20%pulsedfraction(measuredasthesemi-amplitudeof 14-09-28-08:34 10-50cm 2.0 0.05 68 thesinusoiddividedbytheaveragecountrate)during2014.Itbe- comeslesssinusoidalwithapulsedfractionofonly5%duringthe latestXMM-Newtonobservation.Wedetectedanenergy-dependent spanning ±1.5ms with respect to the X-ray value of any given phaseshift(∼0.16cyclesatmaxiumum),withthehardphotonsan- observing epoch, and over dispersion measures (DM) up to1000 ticipatingthesoftones.Thisbehaviourisnotverycommonamong pccm−3. known magnetars, 1RXSJ1708−4009 being a notable exception Thedataacquiredinsearchmodewerealsoblindlysearched (though with a different trend in energy; see Israeletal. 2001; over DMs up to 1000 both for periodic signals and single dedis- Reaetal.2005).In1RXSJ1708−4009theshiftislikelyassociated persed pulses. The 20-cm data were searched in real time using tothepresenceofa(spinphase)variablehardX-raycomponentex- HEIMDALL2,whilethe10-cmdatawereanalysedwiththepackage tendinguptoatleast100keV(Kuiperetal.2006;Go¨tzetal.2007). SIGPROC(http://sigproc.sourceforge.net/).Nopulsedsignalwitha Similarly,thepulseprofilephaseshiftofSGRJ1935+2154 might periodsimilartothatdetectedinX-rays,norsingledispersedpulses beduetothepresenceofatleasttwodistinctcomponents(peaks) werefounddowntoasignal-to-noiseratioof8.Table4liststheup- with different weight at different energies. The non detection of perlimitsobtainedateachepochandfrequency. emissionfromSGRJ1935+2154atenergiesabove10keVdoesnot allowustofirmlyassessthecauseoftheshift. The source spectrum can be well described by the canoni- 5 DISCUSSION cal two-component model often applied to magnetars, i.e. an ab- sorbed black body plus a power-law (kT∼0.5keV and Γ ∼2). Thanks to an intensive Chandra and XMM-Newton observational The SGRJ1935+2154 1-10keV observed flux of 1.5×10−12 erg campaign of SGRJ1935+2154 covering the first 8 months since cm−2 s−1 is among the lowest observed so far from magne- the first bursts detected by SwiftBAT, we were able to infer the tars at the beginning of their outbursts. Although it is possible maintimingandspectralpropertiesofthisnewlyidentifiedmem- thatwemissedtheoutburstonset(whichperhapsoccurredbefore ber of themagnetar class.Inparticular, wediscovered strongco- the first burst epoch), a backward search of burst activity in the herent pulsations at a period of about 3.24s in a Chandra long BATdataatthepositionofSGRJ1935+2154gavenegativeresults pointingcarriedoutinJuly2014.Subsequently,byusingtheXMM- (Cummings&Campana 2014). Emission from SGRJ1935+2154 Newtonobservations(spacedsotokeepthepulsephasecoherence isdetectedinanarchivalSwiftXRTpointingin2011atafluxonlya amongpointings) westartedbuildingatimingsolutionbymeans factoroffewlowerthantheonedetectedsoonaftertheburstemis- ofaphasefittingtechnique.Wewereabletophase-connectallthe sion. At current stage we cannot exclude that the source has not reachedthequiescentlevelorthatithasarelativelybrightquies- 2 seehttp://sourceforge.net/projects/heimdall-astro/forfurtherdetails centluminosity.Thislatterpossibilityispartiallysupportedbythe 8 G.L. Israelet al. unusualpropertiesofSGRJ1935+2154whichdisplaysbothinter- ityofabout 2×1034 ergs−1.Atthepresentstageitisalsorather valsoffluxweakeningabrighteningsuperimposedtoaslowdecay. difficulttoobtainareliablevalueofthequiescentluminositydue WenotethatthelatestXMM-Newtonpointingoccurredlessthan20 to the uncertainties on the distance and the flux of the Swift pre- daysfromtheKonus-Winddetectionofthefirstintermediateflare burstdetection.Ifadistanceof9kpcisassumed,theSwiftfaintest fromthissource(Golenetskiietal.2015). fluxconverttoaluminosityofabout5×1033ergs−1whichresults A significant diffuseemission, extending fromspatial scales inLX/Lsd∼0.25,closeto0.3limitingvalue.However,ifthedis- of >1′′ up to more than 1′ around the magnetar, was clearly de- tanceislargerand/orthequiescentfluxisafactoroffewlargerthan tectedbothbyChandraandXMM-Newton.Duetotheuseofdif- estimatedfromSwift,thesourcewouldmovetowardhighervalues ferent instruments/modes at different epochs we werenot ableto ofLX,qui/Lsdinthe“radio-quiet”regionofthefundamentalplane testifthediffusecomponentvariedintime(asexpectedinthecase (seeleftpanelofFigure2inReaetal.2012).Correspondingly,the ofscatteringbydustcloudsontheline-of-sight)betweentheChan- nondetectionofradiopulsationsmightbenotthatsurprising. draandXMM-Newtonpointings.AmongtheXMM-Newtonpoint- The uncertainty in the quiescent level of this new magnetar ings the component does not change significantly. The Chandra makesanyattempttoinferitsevolutionaryhistoryratheruncertain. data allowed us to sample the spatial distribution of the compo- Giventheshortcharacteristicage(afewkyrs,whichismostprob- nentonlyuptoabout20′′ (atlargerradiiwearehamperedbythe ably representative of the true age given that no substantial field statistics),whilethelower spatialresolution oftheXMM-Newton decayisexpected over suchatimespan), thepresent valueof the pnallowedustodetectthediffuseemissiononlybeyondabout20′′. magneticfieldislikelynotthatdifferentfromthatatthemoment Wedonotdetectanyfluxvariationforthediffuseemissionamong ofbirth.Theabovereviewedtimingcharacteristicswouldthenbe theeight XMM-Newtonpointings despitethepulsar enhancement consistent witha quiescent bolometric luminosity of the order of of about 20% between October 2014 and March 2015, a result ∼5×1033−34ergs−1(seeFig.11and12inVigano`etal.2013), which would favour a magnetar wind nebula (MWN) interpreta- depending on theassumed magneticfieldgeometryand envelope tion. ThePLmodel used tofitthe pnspectra impliesarelatively composition. steepphotonindexofabout3.8whichissimilartowhatobserved Constraints on its outburst luminosity evolution can be put for the candidate MWN around SwiftJ1834−0846 (Younesetal. from general considerations (see Pons&Rea 2012; Vigano` etal. 2012),butatthesametimeissteeperthanthePLphotonindexof 2013).Ifweassumethatthefluxderivedbythepre-outburstSwift SGRJ1935+2154suggestingthatthedustscatteringscenariomight observations provides a correct estimate of the magnetar quies- bemorelikely. cence,andwerelyonadistanceof9kpc,thenthesourceluminos- InSwiftJ1834−0846twodiffusecomponentshavebeeniden- ityincreasesfromaquiescentlevelofLX,qui ∼7×1033ergs−1 tified:asymmetriccomponent around themagnetar extending up toa’detected’outburstpeakofLX,out ∼ 4×1034ergs−1.Such to about 50′′ interpreted as a dust scattering halo (Younesetal. luminosity variation within the outburst (about a factor of 5) is 2012;Espositoetal.2013),andanasymmetriccomponentextend- rathersmallforamagnetarwithamedium-lowquiescentlevel(see ing up to 150′′ proposed as a wind nebula (Younesetal. 2012). Fig.2ofPons&Rea2012).Inparticular,theoutburstpeaklumi- The spectrum of the former component has a PL photon index nosityusually reaches about LX,out ∼ 5×1035ergs−1,due to steeperthanthatofthemagnetar(whichhowever,atvariancewith thetypicalenergiesreleasedinmagnetars’crustalfractures(about SGRJ1935+2154, isfittedwellbyasinglePLalonelikelydueto 1044−45erg;Pons&Rea2012;Perna&Pons2011),coupledwith a very high absorption which hampers the detection of any soft estimatesof theneutrino cooling efficiencies(Pons&Rea2012). BB), while the latter has a flatter spectrum. In order to compare Iftherearenointrinsicphysicaldifferencesbetweenthisoutburst the properties of the diffuse emission around SwiftJ1834−0846 andothermagnetaroutbursts(seeRea&Esposito2011),thenwe and SGRJ1935+2154, we fitted the Chandra and XMM-Newton canforeseetwopossibilitiestoexplaintherelativelylowmaximum spectra of SGRJ1935+2154 with a PL alone obtaining a pho- luminositydetected. ton index of 4.4±0.1 and 4.3±0.1 (we used only photons in the The first possibility is that we have missed the real outburst 1.5-8.0keV band similar to the case of SwiftJ1834−0846) im- peak of SGRJ1935+2154, which was then caught already during plying that the diffuse component might have a spectrum flat- itsoutburstdecay.Inthiscasethequiescentluminosityclaimedby ter than that of the magnetar and favouring the wind nebula sce- thearchival Swift observation mightbecorrect,and themagnetar nario.Inthelattercasetheefficiencyatwhichtherotationalenergy hadafluxincreaseduringtheoutburst,butwecouldcatchitonly loss of a pulsar, E˙rot, is radiated by the PWN is given by ηX = thanks to an SGR-like burst detected when the magnetar had al- LX,pwn/E˙rot=(0.6×1034/1.7×1034)≃0.35,notthatdifferentfrom readycooleddownsubstantially.Giventhetypicaloutburstcooling whatinferredfromsimilarcomponentsaroundSwiftJ1834−0846 curves,wecanroughlyestimatethatinthisscenarioweobserved andRRATJ1819−1458(Younesetal.2012;Reaetal.2009).Fur- thesourceabout10-40daysafteritsrealoutburstonset. therXMM-Newtonand/orChandraobservationstakenatfluxlevels The second possibility is that the source distance is farther significantlydifferentfromthosewerecordedsofarshouldhelpin thantheassumedSNRdistanceof9kpc(notethatthemethodused settlingthenatureofthediffuseemission. by Pavlovic´etal. 2013 to infer this distance implies a relatively A search for radio pulsed emission from SGRJ1935+2154 largedegreeofuncertainty,evenafactoroftwoinbothdirections). gavenegativeresultdowntoafluxdensityofabout0.5mJy(and Tohaveanoutburstpeakluminosityinlinewithothermagnetars, 70mJy for asinglepulse). Ithas beensuggested that whether or SGRJ1935+2154 should have a distance of ∼20-30kpc. At this not a magnetar can also shine as a transient radio pulsar might distancetheassumedSwift quiescence levelwouldalsobelarger depend on the ratio between its quiescent X-ray luminosity and (∼7×1034ergs−1),henceafactorof∼5inincreaseinluminos- spin-downluminosity,giventhatallmagnetarswithdetectedradio ityintheoutburstwouldthenbeinlinewithwhatobserved(and pulsedemissionhavethisratiosmallerthan∼0.3(Reaetal.2012), predicted) in other cases (see again Fig.2 of Pons&Rea 2012). atvariancewithtypicalradio-quietmagnetarsthathavequiescent However,inthedirectionofSGRJ1935+2154 theGalaxyextends X-rayluminositynormallyexceedingtheirrotationalpower.Based until∼14kpc(Houetal.2009)makingsuchalargedistancerather onthecoherenttimingsolutionweinferredaspin-downluminos- unlikely. The monitoringof SGRJ1935+2154 9 We then suggest that the very low peak flux of the detected Camero-Arranz A.,Rea N., Bucciantini N., McLaughlin M. A., outburst of SGRJ1935+2154 has no different physics involved SlaneP.,GaenslerB.M.,TorresD.F.,StellaL.,deOn˜aE.,Israel with respect to other magnetar outbursts, but we have simply G.L.,CamiloF.,PossentiA.,2013,MNRAS,429,2493 missedtheonsetoftheoutburst.IfthefluxdetectedbySwiftbefore Camilo F., Ransom S. M., Halpern J. P., Reynolds J., Helfand theoutburstwasitsquiescent level,weenvisagethattheoutburst D.J.,ZimmermanN.,SarkissianJ.,2006,Nature,442,892 onsetoccurredaboutamonthbeforethefirstX-rayburstdetection. Campana S.,de UgartePostigoA., Thoene C.C., Gorosabel J., Iffutureobservationswillsetthesourceatalowerquiescentlevel, ReaN.,CotiZelatiF.,2014,GRBCoordinatesNetwork,16535, theoutburstpeakshouldhaveoccurredevenlongerbeforewefirst 1 detecteditsactivity. Cummings J. R., Barthelmy S. D., Chester M. M., Page K. L., 2014,TheAstronomer’sTelegram,6294,1 CummingsJ.R.,CampanaS.,2014,TheAstronomer’sTelegram, 6299,1 DeLucaA.,MolendiS.,2004,A&A,419,837 ACKNOWLEDGEMENTS DuncanR.C.,ThompsonC.,1992,ApJ,392,L9 The scientific results reported in this article are based on obser- EspositoP.,TiengoA.,ReaN.,TurollaR.,FenziA.,GiulianiA., vationsobtainedwiththeChandraX-rayObservatoryandXMM- Israel G. L., Zane S., Mereghetti S., Possenti A., Burgay M., Newton, an ESA science mission with instruments and contribu- StellaL.,Go¨tz D., Perna R., Mignani R. P., Romano P.,2013, tions directly funded by ESA Member States and NASA. This MNRAS,429,3123 research has made use of software provided by the Chandra X- GolenetskiiS.,AptekarR.,Pal’ShinV.,FrederiksD.,SvinkinD., ray Center (CXC) in the application package CIAO, and of soft- ClineT.,HurleyK.,MitrofanovI.G.,GolovinD.,LitvakM.L., wares and tools provided by the High Energy Astrophysics Sci- SaninA.B.,vonKienlinA.,ZhangX.,RauA.,Savchenko V., ence Archive Research Center (HEASARC), which is a service BozzoE.,FerrignoC.,Boynton W.,FellowsC.,Harshman K., of the Astrophysics Science Division at NASA/GSFC and the EnosH.,StarrR.,2015,GRBCoordinatesNetwork,17699 HighEnergyAstrophysicsDivisionoftheSmithsonianAstrophys- Go¨tzD.,ReaN.,IsraelG.L.,ZaneS.,EspositoP.,GotthelfE.V., ical Observatory. Thisresearch isbased on observations withthe MereghettiS.,TiengoA.,TurollaR.,2007,A&A,475,317 NASA/UK/ASISwiftmission.WethankN.Schartelforapproving GranetC.,ZhangH.Z.,ForsythA.R.,GravesG.R.,DohertyP., theXMM-NewtonNovember2014observationthroughtheDirec- GreeneK.J.,JamesG.L.,SykesP.,BirdT.S.,SinclairM.W., tor’sDiscretionaryTimeprogramandthestaffoftheXMM-Newton MooreyG.,ManchesterR.N.,2005,IEEEAntennasandPropa- Science Operation Center for performing the Target of Opportu- gationMagazine,47,13 nityobservations.Similarly,wethankB.Wilkesforapprovingthe HouL.G.,HanJ.L.,ShiW.B.,2009,A&A,499,473 Chandra August 2014 observation through theDirector’sDiscre- Israel G.,Oosterbroek T., StellaL., Campana S.,Mereghetti S., tionary Time program and the Chandra staff for performing the ParmarA.N.,2001,ApJ,560,L65 TargetofOpportunityobservations.WethanktheSwiftdutyscien- Israel G. L., Rea N., Zelati F. C., Esposito P., Burgay M., tistsandscienceplannersformakingtheseobservationspossible. MereghettiS.,PossentiA.,TiengoA.,2014,TheAstronomer’s TheParkesradiotelescopeispartoftheAustraliaTelescopewhich Telegram,6370,1 isfundedbytheCommonwealthofAustraliaforoperationasaNa- KuiperL.,HermsenW.,denHartogP.R.,CollmarW.,2006,ApJ, tionalFacilitymanagedbyCSIRO.TheauthorswarmlythankPhil 645,556 Edwards for the prompt scheduling of the observations and John PaczynskiB.,1992,ActaAstronomica,42,145 Reynoldsforreleasingpartofthetelescopetimeofhisproject.We Pavlovic´ M. Z., Urosˇevic´ D., Vukotic´ B., Arbutina B., Go¨ker thanksJulesHalpernforusefulcomments.NRissupportedbyan U¨.D.,2013,ApJS,204,4 NWOVidi Grant,and by grantsAYA2012-39303 and SGR2014- PernaR.,GotthelfE.V.,2008,ApJ,681,522 1073.ThisworkispartiallysupportedbytheEuropeanCOSTAc- PernaR.,PonsJ.A.,2011,ApJ,727,L51 tionMP1304(NewCOMPSTAR). PonsJ.A.,ReaN.,2012,ApJ,750,L6 Rea N., Esposito P., 2011, in Torres D. F., Rea N., eds, Astro- physicsandSpaceScienceProceedings,High-EnergyEmission fromPulsarsand theirSystems.Springer, Heidelberg, pp247– 273 REFERENCES Rea N., Esposito P., TurollaR., Israel G. L., Zane S., StellaL., AlbanoA.,TurollaR.,IsraelG.L.,ZaneS.,NobiliL.,StellaL., Mereghetti S., Tiengo A., Go¨tz D., Go¨g˘u¨s¸ E., Kouveliotou C., 2010,ApJ,722,788 2010,Science,330,944 ArnaudK.A.,1996,inJacobyG.H.,BarnesJ.,eds,Astronomical ReaN.,IsraelG.L.,PonsJ.A.,TurollaR.,Vigano` D.,ZaneS., DataAnalysisSoftwareandSystemsVVol.101ofAstronomical EspositoP.,PernaR.,PapittoA.,TerreranG.,TiengoA.,Salvetti SocietyofthePacificConferenceSeries,XSPEC:TheFirstTen D.,2013,ApJ,770,65 Years.ASP,SanFrancisco,pp17–20 ReaN.,IsraelG.L.,TurollaR.,EspositoP.,MereghettiS.,Go¨tz BurgayM.,IsraelG.L.,ReaN.,PossentiA.,ZelatiF.C.,Esposito D.,ZaneS.,TiengoA.,HurleyK.,FerociM.,StillM.,Yershov P.,MereghettiS.,TiengoA.,2014,TheAstronomer’sTelegram, V.,2009,MNRAS,396,2419 6371,1 ReaN.,McLaughlinM.A.,GaenslerB.M.,SlaneP.O.,StellaL., BurrowsD.N.,HillJ.E.,NousekJ.A.,KenneaJ.A.,WellsA., ReynoldsS.P.,BurgayM.,IsraelG.L.,PossentiA.,Chatterjee OsborneJ.P.,AbbeyA.F.,BeardmoreA.,MukerjeeK.,Short S.,2009,ApJ,703,L41 A. D. T., Chincarini G., Campana S., Citterio O., Moretti A., Rea N., Oosterbroek T., Zane S., TurollaR., Me´ndez M., Israel PaganiC.,TagliaferriG.,GiommiP.,CapalbiM.,TamburelliF., G.L.,StellaL.,HaberlF.,2005,MNRAS,361,710 AngeliniL.,2005,SpaceSci.Rev.,120,165 ReaN.,PonsJ.A.,TorresD.F.,TurollaR.,2012,ApJ,748,L12 10 G.L. Israelet al. ReadA.M.,RosenS.R.,SaxtonR.D.,RamirezJ.,2011,A&A, 534,A34 StamatikosM.,MalesaniD.,PageK.L.,SakamotoT.,2014,GRB CoordinatesNetwork,16520,1 Staveley-Smith L., Wilson W. E., Bird T. S., Disney M. J., Ek- ers R. D., Freeman K. C., Haynes R. F., Sinclair M. W., Vaile R. A., Webster R. L., Wright A. E., 1996, Publications of the AstronomicalSocietyofAustralia,13,243 Stil J. M., Taylor A. R., Dickey J. M., Kavars D. W., Martin P.G.,RothwellT.A.,BoothroydA.I.,LockmanF.J.,McClure- GriffithsN.M.,2006,AJ,132,1158 Stru¨der L., Briel U., Dennerl K., Hartmann R., Kendziorra E., MeidingerN.,PfeffermannE.,ReppinC.,AschenbachB.,2001, A&A,365,L18 Sun X. H., Reich P., Reich W., Xiao L., Gao X. Y., Han J. L., 2011,A&A,536,A83 SurnisM.P.,KrishnakumarM.A.,MaanY.,JoshiB.C.,Manoha- ranP.K.,2014,TheAstronomer’sTelegram,6376,1 TurnerM.J.L.,AbbeyA.,ArnaudM.,BalasiniM.,BarberaM., BelsoleE.,BennieP.J.,BernardJ.P.,BignamiG.F.,BoerM., 2001,A&A,365,L27 TurollaR.,ZaneS.,PonsJ.A.,EspositoP.,ReaN.,2011, ApJ, 740,105 Vigano` D.,ReaN.,PonsJ.A.,PernaR.,AguileraD.N.,Miralles J.A.,2013,MNRAS,434,123 WeisskopfM.C.,TananbaumH.D.,VanSpeybroeckL.P.,O’Dell S. L., 2000, in X-Ray Optics, Instruments, and Missions III. Edited by Truemper, J. E. and Aschenbach, B. Proceedings of theSPIE.SPIE,BellinghamWAVol.4012ofSocietyofPhoto- Optical Instrumentation Engineers (SPIE) Conference Series, ChandraX-rayObservatory(CXO):overview.pp2–16 WilmsJ.,AllenA.,McCrayR.,2000,ApJ,542,914 YounesG.,KouveliotouC.,KargaltsevO.,PavlovG.G.,Go¨g˘u¨s¸ E.,WachterS.,2012,ApJ,757,39 ThispaperhasbeentypesetfromaTEX/LaTEXfilepreparedbythe author.