ebook img

The Cumulant Method PDF

117 Pages·2003·2.1 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Cumulant Method

The Cumulant Method von der Fakult¨at fu¨r Naturwissenschaften genehmigte Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt von Dipl.-Phys. Steffen Seeger, geboren am 20. April 1974 in Karl-Marx-Stadt, eingereicht am 20. Mai 2003. Gutachter: Prof. Dr. Karl Heinz Hoffmann Prof. Dr. Michael Schreiber Prof. Dr. Dr.h.c. Ingo Mu¨ller Tag der Verteidigung: 9. September 2003 http://archiv.tu-chemnitz.de/pub/2003/0120 2 3 Bibliographische Beschreibung Seeger,Steffen The Cumulant Method Technische Universit¨at Chemnitz, Fakult¨at fu¨r Naturwissenschaften Dissertation, 2003 (in englischer Sprache) 117 Seiten, 20 Abbildungen, 9 Abbildungen im Text, 76 Literaturzitate Referat IndieserArbeitwirdeineneueMethodezurReduktionderBoltzmann-Gleichung auf ein System partieller Differentialgleichungen diskutiert. Nach einer kurzen Einfu¨hrungindiekinetischeTheorieeinerMischunginerterGasewirdeinU¨berblick in die aus der Literatur bekannten Momentenmethoden gegeben. Der anschließend vorgestellten Kumulantenmethode liegt die Annahme zugrunde, daß durch Stoßprozesse in einem Gas Korrelationen h¨oherer Ordnung schneller abgebaut werden als solche niedrigerer Ordnung. Basierend auf dieser Annahme werden die Bewegungsgleichungen fu¨r die Kumulanten und die Produktionsterme der resultierenden Bilanzgleichungen fu¨r eine Mischung inerter Maxwell-Gase berechnet.DieUntersuchungderRelaxationzumGleichgewichterlaubtdenBezug zu bekannten Modellen der Kontinuumsmechanik und untermauert die Gu¨ltigkeit der Annahme fu¨r die Begru¨ndung des o.g. Ansatzes in diesem Fall. ImzweitenTeilderArbeitwerdendieErgebnissenumerischerUntersuchungenvor- gestellt, wobei Simulationen mit verschiedenen Randbedingungen fu¨r Couette- und Poiseulle-Str¨omungen durchgefu¨hrt wurden. Es werden verschiedene Eigen- schaften von Modellen fu¨r verdu¨nnte Gase als auch des Navier-Stokes-Modells beobachtet. Dabei ist jedoch eine sehr starke Abh¨angigkeit von den angewende- ten Randbedingungen festzustellen. Abschließend werden Momentenmethoden als eine besondere Form von Diskretisierungen der Boltzmann-Gleichung nach der Methode der gewichteten Residuen diskutiert, was einen Ausblick auf zuku¨nftige Arbeiten erlaubt. Schlagworte Statistische Physik, Kinetische Theorie, Boltzmanngleichung, Momentenmethode, Kumulantenmethode, Gasdynamik, Fluiddynamik, Bilanzgleichungen, Hyperboli- sche Differentialgleichungen 4 Contents List of Figures 7 1 Introduction 9 1.1 Ideal Gas in Equilibrium . . . . . . . . . . . . . . . . . . . . . 11 1.2 Standard Conditions and Dimensions . . . . . . . . . . . . . . 12 2 Kinetic Theory 15 2.1 The Boltzmann Equation . . . . . . . . . . . . . . . . . . . 17 2.2 The Collision Operator . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Entropy and Equilibrium . . . . . . . . . . . . . . . . . . . . . 25 2.4 The Moment Method(s) . . . . . . . . . . . . . . . . . . . . . 27 2.4.1 General Properties . . . . . . . . . . . . . . . . . . . . 28 2.4.2 Maxwell’s Moment System . . . . . . . . . . . . . . 30 2.4.3 Grad’s Method of Moments . . . . . . . . . . . . . . . 31 2.4.4 Extended Irreversible Thermodynamics . . . . . . . . . 33 2.4.5 Eu’s Modified Moment Method . . . . . . . . . . . . . 35 2.4.6 Levermore’s Moment System . . . . . . . . . . . . . 36 2.4.7 Lattice-Boltzmann Methods . . . . . . . . . . . . . . 37 2.4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 39 3 The Cumulant Method 41 3.1 Interpretation of the Moments . . . . . . . . . . . . . . . . . . 43 3.2 The Cumulants . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 6 CONTENTS 3.3 The Ansatz Function ϕCM . . . . . . . . . . . . . . . . . . . . 45 s 3.4 The Equations of Motion for C . . . . . . . . . . . . . . . . . 49 s 3.5 Production Terms for ϕCM . . . . . . . . . . . . . . . . . . . . 53 s 3.5.1 2D Maxwell Mixture . . . . . . . . . . . . . . . . . . 53 3.5.2 2D Maxwell Gas . . . . . . . . . . . . . . . . . . . . 56 3.5.3 2D Maxwell Mixture, Close to Equilibrium . . . . . 57 3.5.4 Classic Linearization . . . . . . . . . . . . . . . . . . . 60 3.5.5 2D BGK Mixture . . . . . . . . . . . . . . . . . . . . . 60 3.5.6 2D BGK Gas . . . . . . . . . . . . . . . . . . . . . . . 62 3.6 Approach To Equilibrium . . . . . . . . . . . . . . . . . . . . 62 3.7 Relation to the Navier-Stokes Model . . . . . . . . . . . . . 67 3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4 Numerical Simulation 71 4.1 A Finite Difference Scheme . . . . . . . . . . . . . . . . . . . . 76 4.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . 77 4.2.1 Adiabatic Slip . . . . . . . . . . . . . . . . . . . . . . . 78 4.2.2 Adiabatic No-Slip . . . . . . . . . . . . . . . . . . . . . 79 4.2.3 Thermal No-Slip . . . . . . . . . . . . . . . . . . . . . 79 4.2.4 Navier-Stokes . . . . . . . . . . . . . . . . . . . . . 80 4.3 Simulation of a Gas in a Slab . . . . . . . . . . . . . . . . . . 80 4.3.1 Couette Flow . . . . . . . . . . . . . . . . . . . . . . 81 4.3.2 Poiseulle Flow . . . . . . . . . . . . . . . . . . . . . 88 4.4 A Weighted Residual Formulation . . . . . . . . . . . . . . . . 92 5 Conclusions 97 A Adiabatic Boundaries 101 Bibliography 105 Zusammenfassung 112 List of Figures 1.1 Ideal Gas contained in a domain Ω . . . . . . . . . . . . . . . 11 2.1 Notation and geometry for a collision of two particles . . . . . 21 2.2 Scattering angle vs. impact parameter . . . . . . . . . . . . . 25 2.3 Phase space density approximated by Grad-ansatz . . . . . . 32 3.1 Relation of the Mathematica notebooks . . . . . . . . . . . 42 3.2 Collision operator eigenvalues vs. approximation order. . . . . 66 4.1 Convection tensor eigenvalues vs. approximation order . . . . 72 4.2 Convection tensor eigenvalues vs. velocity . . . . . . . . . . . . 73 4.3 Convection tensor eigenvalues vs. specific energy . . . . . . . . 73 4.4 Convection tensor eigenvalues vs. normal stress . . . . . . . . 74 4.5 Convection tensor eigenvalues vs. energy flux . . . . . . . . . . 75 4.6 Couette flow: results for adiabatic no-slip boundary . . . . . 82 4.7 Couette flow: heat flux predicted by molecular dynamics . . 83 4.8 Couette flow: results for isodense algorithm . . . . . . . . . 84 4.9 Couette flow: results for isobar algorithm . . . . . . . . . . 85 4.10 Couette flow: convection tensor eigenvalues . . . . . . . . . 87 4.11 Poiseulle flow: temperature predicted by molecular dynamics 88 4.12 Poiseulle flow: convection tensor eigenvalues . . . . . . . . . 89 4.13 Poiseulle flow: results for isodense algorithm . . . . . . . . 90 4.14 Poiseulle flow: results for isobar algorithm . . . . . . . . . . 91 7 8 LIST OF FIGURES Chapter 1 Introduction In the past decades computational gas dynamics has become an indispens- able tool in science and engineering. Understanding the underlying effects and mechanisms of momentum, heat and mass transfer is a requirement for succeeding in use, control and optimization of these processes. Mathemat- ical and computational techniques have made fast progress over the years, so that numerical solutions for complex problems can be obtained today. It is interesting that despite the breathtaking development of computing ma- chinery, the major gains in complexity of solvable problems are achieved by sophisticated methods of solution, and not so much due to faster computers. Most methods start from partial differential equations that pose a particular physical model of the gas and try to successively reduce the complexity of the problem from a set of partial differential equations to a set of ordinary differential equations to a linear system of algebraic equations. These models assume that a continuum description can be applied, even though we know that gases are composed of ‘particles’ interacting with each another. These particles are mainly atoms and molecules, a ‘few’ ions but also significant numbers of larger particles such as pollen, bacteria, dust and others arising from a number of natural sources. So it is not surprising that the models used as starting points (such as the Euler or Navier-Stokes equations) are valid only for particular flow con- ditions: the average distance between two subsequent particle collisions (the mean free path) must be small compared to a typical length of the flow (e.g. radius of an object in the flow). If this is not the case (e.g. the flow of rarefied gases), the use of statistical descriptions as in the kinetic theory is required. Leading to an integro-differential equation proposed by Boltz- mann, kinetic theory became a practical tool for aerospace engineers first. 9 10 CHAPTER 1. INTRODUCTION Today there is a wide field of application: environmental problems, aerosol and micro-pore reactors, physical and chemical vapor deposition and many more. Last but not least the recent development of micro-machines with typical sizes of a few µm to a few mm can make phenomena of rarefied gas flow a basis of important systems of such scale. For these problems, the flow conditions are often between the extremes of small mean free paths and col- lisionless (so-called free-molecular) flow. This poses the question if – similar to adaptive discretization in modern methods of solution for partial differ- ential equations – one can adapt the underlying physical model of the flow. This leads to many non-trivial questions [01] which are the topic of inten- sive, current research: How to derive a consistent series of approximations between the Euler equations on one hand and the Boltzmann equation on the other? How to determine the validity of the various models? How to know when we have to improve the physical model or when it is safe to avoid computations by using a simpler one? The present work discusses some of these questions by presenting a new method to reduce the Boltzmann equation to a series of partial differential equations, applying this method to the model of particles with Maxwell in- teraction and a single relaxation time ansatz, where analytical and numerical results can be obtained. This chapter recalls some results of the statistical description of an ideal gas in equilibrium and defines the conventions used for the presentation of numeric results. Chapter 2 introduces a set of Boltzmann equations for a non-reacting mixture of gases and briefly reviews so-called moment methods, used to reduce the Boltzmann equation to a set of partial differential equa- tions. Chapter 3 discusses the mathematical significance of moments and presents the cumulant method. This new ansatz, made in velocity Fourier space, was developed by the author and allows derivation of a set of moment equations in their full non-linear form. To validate the basic assumption for the ansatz – that high-order parameters characterize faster decaying correla- tions – the method is applied to derive equations for Maxwell and BGK gases and the resulting equations are discussed for states close to thermody- namic equilibrium where we find the principal assumption confirmed. Then their relation to the Navier-Stokes model of fluids is shown. Chapter 4 presents some numerical results regarding the domain of validity, as well as results from numerical solution of some flow problems. It shows that a de- scription of the interaction of the gas particles provided by the Boltzmann equation is only one part. A description of the interaction of gas particles with the solid and the liquid surfaces surrounding it appears to be equally important. Chapter 5 closes with conclusions from and review of the results.

Description:
Dissertation, 2003 (in englischer Sprache). 117 Seiten, 20 Abbildungen, decreased from 'infinity' toward zero we find that these entries result in addi- tional equations – though Lehrbuch der Theoretischen. Physik, Band 6:
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.