Mon.Not.R.Astron.Soc.000,000–000(0000) Printed2April2015 (MNLATEXstylefilev2.2) The complete catalogue of light curves in equal-mass binary microlensing Christine Liebig,1(cid:63) Giuseppe D’Ago,2,3† Valerio Bozza,2,3‡ Martin Dominik,1,4§ 5 1SUPA,SchoolofPhysics&Astronomy,NorthHaugh,UniversityofStAndrews,KY169SS,Scotland,UK 1 2DipartimentodiFisica“E.R.Caianiello”,Universita`diSalerno,ViaGiovanniPaoloII132,84084Fisciano(SA),Italy 0 3IstitutoNazionalediFisicaNucleare,SezionediNapoli,Italy 2 4RoyalSocietyUniversityResearchFellow r a M Accepted,30March2015.Received,12March2015;inoriginalform,23December2014. 1 3 ABSTRACT ] The light curves observed in microlensing events due to binary lenses span an extremely P widevarietyofforms,characterisedbyU-shapedcausticcrossingsand/oradditionalsmoother E peaks. However, all peaks of the binary-lens light curve can be traced back to features of . causticsofthelenssystem.Moreover,allpeakscanbecategorisedasoneofonlyfourtypes h p (cusp-grazing, cusp-crossing, fold-crossing or fold-grazing). This enables us to present the - first complete map of the parameter space of the equal-mass case by identifying regions in o whichlightcurvesfeaturethesamenumberandnatureofpeaks.Wefindthatthetotalnumber tr ofmorphologiesthatcanbeobtainedis73outof232differentregions.Thepartitionofthe s parameter space so-obtained provides a new key to optimise modelling of observed events a [ throughacleverchoiceofinitialconditionsforfittingalgorithms. 2 Keywords: Gravitationallensing:micro–methods:numerical v 9 1 2 2 1 INTRODUCTION Historically,itisnotuncommonformodellerstoexplorespe- 0 cific morphological traits of light curves to narrow down the pa- Einstein(1936)showedthatthelightcurveofasourcemicrolensed . rameter space to be searched, as has been done by authors such 1 by a single foreground compact object is given by an extremely asMao&DiStefano(1995);Dominik&Hirshfeld(1996);DiSte- 0 simplesymmetricbell-shape,describedanalyticallybyaverycom- fano&Perna(1997);Albrowetal.(1999a);Dominik(1999a);Han 5 pactformula,nowknownasPaczyn´skicurve(Paczynski1986).It &Gaudi(2008),butliteraturethatsystematicallycoversthewhole 1 issomewhatfrustratingthatbyaddingjustanotherlensthecom- : rangeofpossiblemorphologiesismorescarce.Themodellingof v plexityofmicrolensingexplodessodramaticallythatafteralmost observedmultiple-lensmicrolensinglightcurvesrequiresextensive Xi 30yearsofactivetheoreticalandobservationalresearchacomplete computationofthemagnificationcurves.Muchefforthasbeenin- classificationofallpossiblelightcurvemorphologiesisstillmiss- vested into speeding up the modelling process, by improving the r ingeveninthesimpleststaticcase!Thelackofacompleteknowl- a parametrisation(Anetal.2002;Cassan2008;Bennett2010;Ben- edge of the light curve zoology represents a considerable handi- nett et al. 2012; Penny 2014), by employing neural networks to capinthemodellingofrealmicrolensingevents.Infact,inorder map light curve features to model light curves (Vermaak 2007). tosetinitialconditionsforfitting,onemayfollowtworoutes:ei- Ofcoursethisdevelopmenthappenedalongsideofsubstantialad- therblindlyset-upadensegridintheparameterspaceoridentify vancesinthecodeimplementationofexistingalgorithms. good initial seeds with light curve morphologies close to the one wewishtomodel.Thefirstapproachismoresystematicbutcanbe Mao&DiStefano(1995)discussedanewmethodformod- timeconsumingandredundant;furthermore,itdoesnotguarantee elling binary microlensing events: the positions and amplitudes thecompletenessoftheexplorationofallpossiblecorners,which of binary light curve extrema are compared to those stored in a mayremainhiddeninthespacebetweenconsecutivepointsinthe pre-compiled(unblended,point-source)lightcurvelibrarytofind grid.Thesecondapproachpromisestobemoreefficientintermsof promisingcandidateevents,whichinturnprovideinitialparameter computingtimebutneedstobesupportedbyarobustandrigorous setsforamoreconventionalfittingprocedure.Thisapproachworks theoreticalframeworkinordertobesafelypursued. wellformulti-peakevents,wherethesourcetrajectorypassesover orclosetothebinarycaustics. DiStefano&Perna(1997)developedthelibraryapproachfur- therbydescribinganybinary-lenslightcurvebythesetofcoeffi- (cid:63) [email protected] cientsofChebyshevbasispolynomials.TheynotethattheCheby- † [email protected] ‡ [email protected] shev expansion will never exactly match the microlensing light § [email protected] curve,becausetherewillbeextraextremaandinflectionpoints,but (cid:13)c 0000RAS 2 C.Liebigetal. anarbitrarilypreciseagreementcanbeachieved(limitedbycom- Consequently, the fundamental idea of this work is to iden- putationalpower)byfurtherexpansion.Inthisway,amodelsearch tify the building blocks of microlensing light curves and develop can be refined until the photometric precision of the data points a classification scheme that can be directly applied to observed is matched. They find model parameter solutions to smooth and lightcurvesandthatallowsforasignificantnarrowingofthemod- caustic-crossinglightcurvesbycomparingtheroughcharacteris- ellingparameterspace,while,unlikeanyotherapproach,guaran- tics of the light curve (positions of extrema and inflection points teeingcompleteness.Wewanttogainagoodunderstandingofthe andthemagnificationvaluesatthesepoints)withapre-computed range of possible light curves and how the identified morpholog- lightcurvelibraryandthensearchingthenearbyenvironmentinthe icalclassesrelatetosubspacesofthemodellingparameterspace. physicalparameterspacewithanincreasedsamplingdensityuntil As a first step, we focus on an in-depth study of the equal-mass they find a match (or multiple matches) that satisfies the desired binarylens,whiletheframeworkdevelopedappliestothegeneral precision.Inprinciple,thismethodisquitegoodatfindingdegen- case.OnreviewingthepropertiesofthisspecialcaseinSec.2,we eratesolutionsandhigher-orderorevennon-microlensingparam- usetheopportunitytointroduceaconvenientnotationforcaustic eterscaneasilybeintegrated,butagainitremainsunclearwhether elements.Sec.3introducesourmorphologyclassificationscheme, allrelevantparameter-spaceregionshavecorrespondingentriesin whichisbasedonthefourfundamentalpeaktypesthatoccurinmi- the library. The optimistic assertion that the “morphological fea- crolensing;wealsodiscussthepracticalities,suchasthelightcurve tureschangeinawaythatisgradualandconsistentasthephysical simulation,thepeakcountingandtheidentificationofiso-maxima parametersarechanged”(DiStefano&Perna1997)ismostlikely regionswithlightcurvemorphologies.InSec.4,wesummariseand trueforsmoothlightcurves,butforcaustic-crossinglightcurves, discussthecurrentresultsofthisstudy,weleavesomefurthercon- weknowthatverysmallchangesinthesourcetrajectorycanhave siderationstoSec.5,andstressitsfuturepotentialinSec.6,while dramaticimplicationsforthenumberofextremaandtheirrelative thebulk ofthe contentisshown intabularand graphicalform in positions. Table3andinFigures11to 18. Night,DiStefano&Schwamb(2008)makeabroaddistinc- tionbetweensmoothlightcurvesandcaustic-crossinglightcurves, buttheclassificationisnotbasedonthelightcurveitself,buton 2 MICROLENSINGOFEQUAL-MASSBINARY thesourcetrajectoryanditsclosenesstothecaustics,i.e.theknown SYSTEMS simulationparameters,nottheobservabledata.Theycometothe 2.1 Parametrisation conclusionthattheratioofsmoothly-perturbedtocaustic-crossing binary-lens light curves is rather low in survey detections, which GravitationalmicrolensingischaracterisedbytheangularEinstein canpartlybeexplainedbythefactthatcaustic-crossingpeaksstand radius outunambiguously,whereassmoothperturbationsoftencanhavea (cid:114) 4GM D –D rangeofcompetingexplanations(suchasbinarysources,parallax θ = S L , (1) effects,orbitalmotion). E c2 DLDS InBozzaetal.(2012),adetailedmorphologicalassessmentis where M is the total mass of the (foreground) lens object, usedforthemodellingofOGLE-2008-BLG-510andfurthermore while D and D denote the lens and source distances from the L S thegroundworkislaidforareal-timebinaryeventmodellingcode observer.Inthecourseofamicrolensingevent,theseparationbe- (further based on Bozza (2001) and Bozza (2010)). The code re- tweeneachpairofimagesisoftheorderofθ ,whichislessthan E liesonawidechoiceofstartingconditions(“seeds”)fromwhere amilliarcsecondfortypicalobservedeventswiththesourceinthe asearchforlocalχ2 minimaiscarriedout.Thechoiceofseedsis bulge(D ∼ 8kpc),andthelensbeingamainsequencestarhalf- S basedonthemorphologyofthebinarycaustics,withtheassump- waytothesource(D ∼4kpc,M∼0.3M ) L (cid:12) tion that binary-lens light curves sampled from a given region of If one assumes uniform, rectilinear relative proper motion µ theparameterspacelieonasmoothslopeoftheχ2 landscapeas betweenthelensandsource,themagnificationduetoasinglepoint long as the morphology of the light curves does not change. The lensisdescribedbyonlythreeparameters:u ,theclosestangular 0 morphologyisunderstood,inthiscase,asagivenpeaksequenceof impact of the source to the centre of mass expressed in units of causticcrossingsandgrazings,withanynewlycreatedordestroyed θ , the Einstein radius crossing time t ≡ θ /µ, and the time of E E E peakleadingtoachangeinmorphology. closestapproacht ofthesourcetothecentreofmassofthelens 0 Our intention, with the present work, is to take the move system, which is typically used to fix the epoch of observations, from the path traced by Mao & Di Stefano (1995) and Di Ste- but is irrelevant for the light curve shape. Beyond the single lens fano & Perna (1997) and achieve the first complete classification parameters,weneedthebinarymassratioq=m /m ,wherem is 2 1 1 of light curves in the binary microlensing problem. By studying theprimarymassofthebinarylenssystemandm thesecondary 2 peak-number plots, we can separate groupings of light curves in massinunitsofthetotalmassofthesystemM,theangularsepa- the binary-lens parameter space. We are not concerned with di- rationofthebinarycomponentssinunitsofθ ,theangularsource E rectlyestablishinglightcurvemodels,butwewanttoensurethat star radius ρ still in units of θ , and the angle α, between the di- E weclassifyallpossiblelightcurves.Wethenwanttoimproveour rectionvectorfromtheprimarytothesecondaryandthedirection understandingoftherelationsbetweentheparameterspaceandthe ofthesourcerelativetothelens,seealsoFig.1.Weassumeuni- lightcurves. form,rectilinearrelativepropermotionbetweensourceandlensfor Thevarietyofmicrolensinglightcurvescanseemoverwhelm- thesimulationsandignorehigher-ordereffects.Theobservedlight ing,butthetrainedeyerecognisesfamiliarpatternsandtranslates curveisthesumofthesourcefluxF ,amplifiedbythemicrolens- S thembacktotheparameterspace.Infact,theshapeofamicrolens- ingeffectA(t;u ,t ,t ,q,s,ρ,α),andtheblendfluxF contributed 0 E 0 B inglightcurvedoesfollowcertainrules:notanyarbitrarycurvecan byunresolvedsources beinterpretedasamicrolensinglightcurve.Specifically,thelim- F(t)=F A(t)+F . (2) ited topologies of the binary lens magnification maps allow only S B foralimitedrangeoflightcurvemorphologies. For the purposes of this morphological study, F and F have no S B (cid:13)c 0000RAS,MNRAS000,000–000 Thecatalogueofbinarymicrolensinglightcurves 3 top u >0 0 B b B α t1 t t2 Lens Lens a a 1 binaryaxis 2 ts1 ts2 secondary caustic C centreofmass ts Source C tp primary caustic a a Figure1.Ourdefinitionofu0andα.Theimpactparameteru0ispositive, 1 tp1 tp2 2 whensourceandlens(centreofmass)passeachotherontheright-hand A A 1 2 sideasprojectedontheplaneofsky.αistheanglebetweenthebinaryaxis a a (pointingfromprimarytosecondarymass)andthesourcetrajectory. bp1 bp2 C bp impactastheyjustrepresentamultiplicativeandanadditivefactor respectively. C bs Our parametrisation is equivalent to the convention detailed a a secondary caustic in Skowron et al. (2011, Appendix A), except that we regard the bs1 bs2 sourceratherthanthelenssystemasmoving,resultinginadiffer- B b B enceofαhere = αSkowron–π.Achangebyπjustmeansthesource b1 b b2 istravellinginthe0oppositedirectiononthesametrajectorywhich bottom doesnotaffectthemorphologyofthelightcurve,inotherwordsit isatimereversalofthelightcurve.Moreontheparameterspace symmetriesinSec.3.3. Figure2.Causticfeaturenotationoftheclose-separationbinarylens. 2.2 Caustics Moving from point to extended sources, the singularities of thelensmapareregularisedbyanintegrationoverthefiniteangu- In the theoretical treatment of multiple lens systems, caustics are lar disk of the source. As Schneider & Weiß (1986, Fig. 9) have singularlineswherethefluxofapointsourceisinfinitelymagni- shown,anincreaseinangularsourcesizeleadstodecreasedpeak fied. Schneider & Weiß (1986) have shown that there are exactly magnification,abroadeningofthepeakwidthandadisplacement threedistinctcaustictopologiesforthecaseofanequal-massbi- ofthepeak,whichmeansthatthemaximumwilloccurlaterwhena nary lens. Erdl & Schneider (1993) confirmed this to be true for largersourceentersacaustic(andearlierattheexit).Magnification arbitrary mass ratios. They also noted the transition points in the mapsofextendedsourcesfeatureclosedhigh-magnificationlines binarylensseparationwherethecaustictopologychangesdepend- that can be easily recognised as originating from the smoothing- ingonthelensmassratioq(alsocf.Dominik(1999b)).Acaustic outofcaustics.Thesehighmagnificationlinesasymptoticallyap- enterstheclose-separationtopologydomainwhens<s , c proachthemathematicalcausticsasthesourcesizeshrinkstozero. 1 (cid:32)1–s4 (cid:33)3 Asanaside,introducingathirdlenscanleadtoexceedingly m m = c, (3) more complicated caustic structures (Rhie 2002). Daneˇk & Hey- 1 2 s8 3 c rovsky´ (2015b,a) have set out to explore the full range of triple- andwillshowthewide-separationtopologywhens <s, lens caustic topologies. To quote just one very specific example, w s2w=(cid:16)3√m1+ 3√m2.(cid:17)3, (4) tahneglceawseitohfttwhoreeeqmuaalsmseasspseossiattio(n1e–dµ)a/t2tahnedtiaptshoirfdamnaesqsuailtaµte,rbaolatsrtis- 10differentcaustictopologies.Manyofthosecanbefoundinother Thethreetopologies(close,intermediate,wide)areshownin triple-lensscenarios,butthelistoftenisnowhereclosetocovering Figs. 2-4 for representative choices of the separation parameter. thewholerangepossible. These figures also contain the labels of the notation to be intro- ducedanddiscussedinSe√ction2.3.Anisolatedpairoflensesclose to each other (i.e. s < 2/2 for q = 1) result in three caustics 2.3 Notationforcausticelements (Fig.2):onediamondshapedatthecentreofmass,andtwosmall, triangular, secondary caustics set off from the binary axis. If the Allextremaofabinary-lenslightcurvecanbetracedbacktofea- angularseparationofthetwolensesisoftheorderofoneEinstein turesofthecausticofthelenssystem.Wehavedevelopeda“short- radius, there will be only one central, relatively large, six-cusped hand” notation for these features, sketched in Figures 2, 3 and 4 caustic,seeFig.3.Fort√heequal-massbinarylens“oftheorderof” andlistedinTable1.Inthisstudy,weuseanddepictthisshorthand meanstheexactrange 2/2<s<2.Ifthetwolensesarefarfrom onlyfortheequal-massbinarylens,butwepointoutitsuniversal eachother(s > 2),twodiamondshapedcausticsclosetothetrue applicabilitytobinary-lenscausticsofanymassratio. positionofthelensesresult.Werecollectthatcausticlinesareal- We denote folds of a caustic with a lower-case letter and waysconcaveinthecoplanarbinarylenscaserelevantforGalactic cusps with an upper-case letter. Local maxima arise either when microlensingapplications.Petters,Levine&Wambsganss(2001) the source trajectory approaches or crosses a fold or a cusp. We go into more mathematical detail in describing caustics through discussthepeaktypesindetailinSec.3.1. singularitytheoryofdifferentiablemaps. Werecallthatthemagnificationofapointsourcedivergesas (cid:13)c 0000RAS,MNRAS000,000–000 4 C.Liebigetal. top Notation Meaning a,b fold A,B,C,D cusp 1 nearerbinarymass1 Bt1 bt Bt2 2 nearerbinarymass2 t “above”binaryaxis(i.e.leftofbinaryvector) b “below”binaryaxis(i.e.rightofbinaryvector) a a p primarycaustic(inclose-separationcase) t1 t2 s secondarycaustic(inclose-separationcase) [a...;[A... causticentry(viafold;viacusp) ...a];...A] causticexit(viafold;viacusp) 1 A A 2 [...a...] foldgrazing(alwaysinside(oron)causticforbinarycase) 1 2 ...A... cuspgrazing(alwaysoutside(oron)causticforbinarycase) Table 1. Caustic feature notation, also illustrated in the sketches in Fig- a a ures2,3and4. b1 b2 takesplace,whenthetwolensesaresetfurtherapart,exceptthatin b thiscasethe“b”-foldswillmergetoformthenew“D”-cusps. Bb1 b Bb2 In the close topology, the closer the two lenses are posi- tioned,thefurtherthetwotriangular,secondarycausticswillmove out from the axis and they will continually decrease in size and bottom strength, whereas the central caustic only decreases in size but gains in strength, until the binary lens becomes indistinguishable fromasinglelensfors→ 0. Figure 3. Caustic feature notation of the intermediate-separation binary Conversely,inthewidetopology,thetwoarrow-shapedcaus- lens. tics become more and more symmetric towards a diamond shape and decrease in size, until for s → ∞ the B-cusps point perpen- top diculartotheaxisandtheD-cuspsbecomemoreequalinstrength totheA-cusps.Ultimatelythetwocausticsshrinktotwopoints,at whichstagetwoindependentsinglelenseswillbeobservedrather thanonebinarysystem. B B t1 t2 Allpeaksarisingfromfeaturesclosertoorfacingthelenson 1 at1 bt1 bt2 at2 2 theleftsidearefurnishedwithanindex“1”,whereasthosenearer A D D A therightsidelensareindexed“ ”.Wealsowanttodistinguishthe 1 a b 1 2 b a 2 symmetric caustic features, whi2ch are mirrored across the binary b1 b1 b2 b2 axis.Quitearbitrarily,wedenotethemwith“”ortop,iftheyare B B t b1 b2 on the left-hand side of the binary axis (looking from primary to bottom secondary) and “ ” or bottom, if they lie on the right-hand side. b Figures2,3and4betterillustratethe“logic”behindthischoice. Inthespecialcaseofanequal-massbinaryunderexamination, Figure4.Causticfeaturenotationofthewide-separationbinarylens. we have a second symmetry axis through the centre of mass, i.e. throughthemidpointbetweenthetwolensesandperpendicularto the binary axis. This does not affect the choice of notation. The chosen caustic feature notation scheme covers all scenarios with fc,on/δyifonehitsthecuspalongitsaxisandasfc,off/δy2/3 ifone two point lenses, including mass ratios very different from unity. hitsitoff-axis(Schneider,Ehlers&Falco1992).Forfoldcrossing, ThenotationschemeissummarisedinTable1. themagnificationdivergesasf /δy1/2whenapproachingthesingu- f lar line from the inside. Following these basic analytic formulae, allcuspsarestronglymagnifyingcomparedtotheirimmediatesur- 3 CLASSIFICATIONSCHEMEANDMETHODOLOGY roundings. The strength of magnification varies considerably be- tweenonepointonafoldlineandanotherdependingonthefactor Having revisited the basic structure of equal-mass binary lenses f ,whichbecomesweakeraswemoveoffthebinarylensaxis. and having established an alphanumeric notation to identify ev- f Itisthecuspsclosesttothebinaryaxisthatarethestrongestin ery fold and cusp in each of the three topologies, we now move comparison.Intheequal-massbinarycase,regardlessofthespe- to the classification of microlensing light curves. First, we define cific topology, the points of maximum magnification are the two a light curve morphology based solely on observable features of “A”-cusps on the binary axis, followed by those parts of the “a”- lightcurves(Section3.1).Byspanningthewholeparameterspace foldsclosesttotheaxis. ofbinarymicrolensing,wesimulatelightcurves(Section3.2)and The four off-axis cusps (“B”) in the intermediate case, cf. assign them to the corresponding morphology class. In this way, Fig. 3, can be traced across different separations. When the two wecanidentifyeveryregionintheparameterspaceinwhichthe lensesaremovedclosertogether,thea-foldswilleventuallymerge samemorphologyarisesastheresultoftheencounterofadetermi- and split the single caustic line into three separate caustics. The natesequenceofcausticfeaturesbythesourcealongitstrajectory newlycreatedcuspsaredenotedby“C”.Asimilarmetamorphosis (Section3.3). (cid:13)c 0000RAS,MNRAS000,000–000 Thecatalogueofbinarymicrolensinglightcurves 5 3.1 Thefourpeaktypesinmicrolensing • afoldgrazingcanonlytakeplaceinsideacaustic • acuspgrazingcanonlytakeplaceoutsideacaustic Given that the most obvious characteristic of microlensing light • due to the concave curvature, a straight caustic-crossing tra- curves is the sequence and shape of their local extrema, this se- jectorymustexitbyafold(orcusp)differentfromtheonethrough quenceprovidesanaturaltaxonomickeyforourlightcurveclas- whichitentered(Cassanetal.2010) sification scheme. We propose that a class of light curves can be identifiedbythecommonsequenceofpeaktypes.Wethenrecog- Allbinarymicrolensinglightcurves(intheparameterspace nisethatanymicrolensinglight-curvemaximumiscreatedbyone consideredinthisstudy)adheretotheserules,butjustconforming offourbasicmechanisms.Wediscussthefourpeaktypesindetail totheserulesdoesnotguaranteeamicrolensinglightcurvesince below,butinshortsummarytheyare: thepossiblecaustictopologiesarelimited(Erdl&Schneider1993). It is well known that similar light curve morphologies may (i) acuspgrazing(C), ariseincompletelydifferentsituations,withsourcetrajectoriesin- (ii) acausticfoldentry(F-)orexit(-F), teractingwithdifferentcuspsorfoldsindifferenttopologies.Such (iii) acuspentry(C-)orexit(-C), disconnectedregionscanbeidentifiedbyspecifyingthefoldsand (iv) afoldgrazing(-F-). cuspsinvolvedusingthenotationintroducedinSec.2.3.Thenthe symbolsidentifyingasequenceofpeaksconformingtoaspecific Now,indetail:(i)thecuspgrazing,C:Thepeakthatariseswhen morphologyclass(e.g.F-FC),canbereplacedbythecorrespond- thesourcepassesoutsidethecausticbutcloseenoughtooneofthe ingcausticelementsinvolved(e.g.[a b]B ).Sincethefoldsand cuspstopassoverthelobeofincreasedmagnification,isa“cusp t1 t t2 cusp symbols already carry subscripts, in order to generate more grazing”.Weunambiguouslycallalightcurve“cusp-grazing”,if reader-friendly sequences, we indicate the caustic entry and exits the source trajectory is outside the caustic pre and post-peak and bysquarebracketsandsuppressthebarforthegrazings.Soafold onlyasinglepeakresults.ThePaczyn´skicurvecanbeunderstood entry is “[a...”, a cusp entry “[A...”, with the exit being “...]”. A asagrazingofthepointcaustic(orinfinite-ordercuspoid)ofthe foldgrazingis“[...a...]”andacuspgrazingisgivenby“A”.These singlelens.ThenamePaczyn´skicurveshouldbereservedforsin- notationsdetailingthecausticfeaturesinvolvedinthelightcurve glelenslightcurvesonly,butinthelimitswhereabinarylensre- morphologysequencearealsosummarisedinTable1.Wewilluse semblesasinglelens,whenthesourcedoesnotpassclosetothe thesyntheticnotation(e.g.F-FC)foridentifyingalightcurvemor- caustics or when the caustics are very small relative to the solid phologyclassirrespectiveofitspossibleinterpretationsintermsof angleofthesource,asingle-peakedlightcurvewillresult.Wedo notregisteranymorphologicaldifferencetothecuspgrazinginthe sourcetrajectoriesandcausticsinvolved,andthedetailednotation ([a b]B inthisexample)toidentifytheiso-maximaregion(s)in narrowsense. t1 t t2 (ii)thefoldentry/exit,F-/-F:Whenthesourceentersonacaus- theparameterspacegivingrisetothatspecificmorphology. To see an example of a light curve classification “at work”, ticfold,thiscreatesaverydistinctlyshapedcurve(cf.Schneider, considerthelightcurveinFig.11(h)whereweseea(symmetric) Ehlers&Falco(1992);Gaudi&Petters(2002)),withasteep,al- cusp entry (C-) paired with an (asymmetric) fold exit (-F) and a mostverticalrisefollowedbyamoreparabolicfall,whichdoesnot post-causticgrazingofthecusplobe(C), descendaslowasthecaustic-exteriormagnification.Themorphol- ogyismirroredinthefoldexit.Apairoffoldentryandexitpeaks C-F C . (cid:124)(cid:123)(cid:122)(cid:125)(cid:124)(cid:123)(cid:122)(cid:125) giverisetothefamiliardoublecausticcrossingsignature. caustic cusp (iii)thecuspentry/exit,C-/-C:Ifthecausticisenteredorexited traversal lobe alongacusp,thepeakwillhaveamoresymmetricshape,because The detailed sequence specifying the folds and cusps involved in thelobeoutsidethecausticandthecloseproximityofthefoldlines thislightcurveis[A1at2]A2. ontheinsideofthecausticattenuatethegradientofthepassageon Fig.12(d)givesaniceexamplewithaclear-cutfoldentry(F-), bothsides.Thefactthatthemagnificationinthecausticinterioris followedbyasecondpeakstillinsidethecaustic,whichcanonly increasedcanhelptodistinguishitfromacusp-grazing1. beaninnerfoldapproach(-F-),afoldexit(-F)andfollowedbya (iv)the“interiorfoldapproach”orfoldgrazing,-F-:Thistype finalcusplobegrazing(C),soweclassifyitas ofpeakoccursinsidethecaustic,whilethesourcetrajectorypasses F-F-F C . closetoacausticfold.Duetotheconcavityofthecausticlines,the (cid:124)(cid:123)(cid:122)(cid:125)(cid:124)(cid:123)(cid:122)(cid:125) fold-grazingpeakwillonlybeobservedifitisaninteriorapproach. trcaavuesrtsical cloubspe A special case is the peak that occurs when two or more caustic The detailed sequence specifying the folds and cusps involved in linesarecloseenoughorstrongenoughtoraisethemagnification thislightcurveis[a a a ]B . b1 t1 t2 t2 ofanextendedareabetweenthem,givingrisetoapeakthatcannot Keepingthecausticgeometryfixedanddisplacingthesource bedirectlyattributedtoonesinglefold. trajectory, we can appreciate the changes in the light curve mor- These“buildingblocks”ofmicrolensinglightcurvescanbe phology,withpeaksmergingordisappearingwhileotherpeaksap- sequenced,subjecttoafewrules: pearorseparateintwo.Thesetransitionmorphologiesneedsome furtherattentioninordertobeassignedtospecificclasseswithout • acausticentrymustbefollowedbyacausticexit2 ambiguities. • acausticexitcannotoccur,ifthecaustichasnotbeenentered In this respect, consider the case of Fig. 5, representing the before morphingfromtwofoldcrossingsF-FtoacuspgrazingC.When the extended source trajectory cuts a cusp nearly perpendicularly to its axis, the light curve features a transition morphology with 1 Mao,Witt&An(2013)haverecentlyshownthatthisisnotnecessarily asinglepeakprecededandfollowedbyderivativediscontinuities, thecaseforamulti-planarlensdistribution. 2 Forn>3lensesthenumberofentriesandexitsmaybeunequalascaustic typicaloffoldcrossings(trajectoriesST2andST3inFig.5).Intro- linescanbeintersectingandnesting.Forn=2,onecausticentrymustbe ducinganewintermediate“cuspcutting”classwouldnotbevery followedbyonecausticexit,beforeanothercausticentrycanoccur. useful,sincethedetectionofthetwodiscontinuitiesatthebaseof (cid:13)c 0000RAS,MNRAS000,000–000 6 C.Liebigetal. ρ=0.01 ρ=0.03 ST1 ST2 ρ=0.05 ρ=0.07 ST3 ST4 Figure6.Classificationinthecaseofabeak-to-beakmetamorphosis.The magnificationcurvesresultfromthesamesourcetrajectory,butwithdif- ferentsourcesizes(asindicatedbythewhitecircles).Thesmallestsource producesanunambiguousfold-grazing,asthecentralpeakoccursinside thecaustic(C-F¯-C).Interestingly,thelargersourcescreateacentralpairof Figure5.Comparisonoffold-crossingandcusp-grazingsourcetrajectories peaksinstead,thusleadingustoclassifythelightcurvesasC-CC-C.This (ST1to4)andresultinglightcurves.Theangularsourcesizeisindicated mightseemcounterintuitive,beforeoneconsiderstheconvolutedmagnifi- bythewhitecircles.Fromlefttoright,thelightcurvemorphologyevolves cationpattern,whereitbecomesclearthatalargersourceshiftstheposi- from a double fold crossing F-F for ST 1 to a cusp grazing C (ST 2, 3 tionofthebeak-to-beakfoldmerger–therebycausingthecaustictopology and4).Whereexactlythistransitionoccursdependsontheangularsource changetooccuratasmallerseparationcomparedtothesmallersource. size;withasmallersource,ST2wouldalsoleadtoadouble-peakedfold crossing. secanttothefold.Adoptingthesameconventionasbefore,weex- tendthe“foldgrazing”classtoincludethetransitionpeakoccur- thepeakcouldneverbeunambiguouslyassessedinrealobserva- ringwhenthesourcemovestangentiallytothefold,aslongasthe tions. Only a very detailed analysis of the light curve would dis- peakremainssingle. tinguishacusp-cuttingfromacusp-grazingtrajectory.Keepingin Transitionmorphologiescanbemorecomplicatedthanthese mindthatthepurposeofourstudyistoidentifyregionsinthepa- two cases illustrated above and may also involve changes in the rameter space that may give rise to independent seeds for model caustic topologies. In Fig. 6, we have a fold-grazing source tra- searches, we assign these cusp-cutting peaks to the broader cusp jectory C-F¯-C, across a caustic that is close to the limits of grazingclass,extendingitsdefinitionbyincludingalltrajectories the intermediate-to-wide transition, which morphs into a cusp forwhichthecuspcuttingdoesnotgiverisetotwofold-crossing exit/entrypair,C-CC-C,withanincreasedsourcesize. peaks with a dip in between. In some sense, this statement is al- In summary, all sorts of transitions can be safely treated by readycontainedintheabovedefinition,inwhichwerequiredthat adoptingtheextendeddefinitionsofcuspgrazingandfoldgrazing thesourceisoutsidethecausticpre-andpost-peakandonlyone classes just described, including the transition peaks before they peakoccurs.Thisspecificexampleshouldhelpavoidinganycon- splitintotwo.Nowwearereadytoapplyourclassificationscheme fusion. toarbitrarilycomplicatedlightcurveswithoutfacinganymoream- Itfollowsthatthepeakclassificationdoesnotjustdependon biguities. thesourcetrajectoryrelativetothelenspositions,butequallyonthe angularsourcesizerelativetothecausticsize.I.e.agivensource trajectory(e.g.ST2inFig.5)canyieldanF-Fmorphologyfora 3.2 Lightcurvesimulationandprocessing smallersourceandaCmorphologyforalargersource,whereasfor agivensourcesizeST1canresultinanF-Fpair,butST2willonly In order to achieve a complete classification of binary lens light showasinglepeakandbeclassifiedascusp-grazingC. curve morphologies, we process simulated light curves. We then Anothersituationalmostcomplementarytothepreviousone considerlightcurvesgroupedintheparameterspacebytheirnum- occurswhenafoldgrazingmorphsintotwofoldcrossingsasthe berofmaxima.Theparameterspacewewanttocoveristheequal- source trajectory changes from fully internal to tangent and then mass lens (q = 1), the separation s across all topologies and the (cid:13)c 0000RAS,MNRAS000,000–000 Thecatalogueofbinarymicrolensinglightcurves 7 sourcetrajectoryparameters0≤α<2πandu asfarasnewmor- givesthesymmetryofatimereversal(wherethesignofu hasto 0 0 phologiescanbeexpectedtooccur.Weuseanextendedsourcewith changeaccordingtotheconvention,becausethesourcenowpasses angular radius 0.002θ . For each light curve we record the num- thelensontheotherside).Wecanalsocombinethetwo, E berofpeaksandvisualisetheresultsinpeak-numberplots(overα (u ,α)⇔(u ,π–α). (7) and u ). The resulting iso-maxima regions are examined with re- 0 0 0 gardtothecontainedlightcurvemorphologies.Broadlyspeaking, Forthespecialcaseoftheequal-massbinary,wealsohaveaperfect aniso-maximaregion,coveringa“bundle”ofneighbouringsource degeneracy trajectories,correspondstoaspecificsequenceofcausticfeatures. Onestepupintheclassificationhierarchy,differentiso-maximare- u0⇔–u0, (8) gionsarecollectedinmorphologyclasses(asintroducedinSec.3). i.e.theplotisaxis-symmetricinu . 0 Thefixedsourcesizeusedinourinvestigationissmallenoughto We note that whenever one moves from one iso-maxima re- probethecausticsofanequal-massbinarylensindetailbutlarge giontoaneighbouringone,themorphologyofthelightcurvepeaks enoughtoletcuspcrossingsoccurinfiniteregionsoftheparameter changes–naturally,becausetheborderwillbeoversteppedwhen- space.Differentchoiceswillcauseaslightshiftoftheboundaries everapeakiscreatedordestroyed.Werecordthecausticfeature oftheiso-maximaregions(cf.Figs.5and6).Thispointisfurther sequenceforthelightcurvesofeachregion,seeTable2,andre- discussedinSec.5. alisethatinagivenquadrant,therearenotwoiso-maximaregions In our examination of the equal-mass binary lens case, we withthesamenumberofpeaksthatcontainthesamesequenceof simulatemicrolensinglightcurvesforall(relevant)volumesofthe causticfeatures. (s,α,u )parameterspace.Wesimulatethelightcurveswithinverse 0 Wethenmapthecausticfeaturestothebroaderpeaktypology, rayshooting,usingasoftwarelibrarywrittenin2010byMarnach3. therebyreducingthecomplexityofthelightcurvedescriptionand Assumingstaticlenses,thismeanswecancomputemagnification enablingustocollatedifferentregionsinmoregeneralmorphology mapsforevery(q,s)set,foldthemwiththesourcestarprofilewith classes. a radius ρ and then extract a large number of light curves differ- inginαandu atvirtuallynocomputationalcost.Duringthepeak 0 counting, numerical noise can create artificial peaks and troughs, 4 RESULTS especially for source trajectories that run at a small angle to fold lines.Toavoidthese,werequireaminimaldifferencebetweenthe Focussingontheequal-massbinarylens,weanalysedpeak-number maximumandtheminimaoneithersideof5%ofthenearestlocal plotsspanningallthreecaustictopologiesandthetwotransitioning minimumvalue,beforeatrough-peak-troughoccurrenceiscounted cases:close(s = 0.5,0.65),close-to-intermediate(s = 0.7),inter- asapeak.Becauseofthisthreshold,sometimestruepeakswillbe mediate(s = 0.85,1.0,1.5),intermediate-to-wide(s = 2.05)and disregardedinthemaximacountingalgorithm.Butthisisunlikely wide(s=2.5).AsdiscussedinSec.3.2,weweremotivatedtouse to make us miss a whole iso-maxima region, as generally the re- anextendedsourcewithanangularradius,ρ = 0.002(inunitsof gionboundary(wheretheformerlydisregardedpeakbecomessig- θ )andworkwithapeakthresholdof5%abovethenearestmin- E nificant)willonlybeslightlyshiftedinthe(u0,α)plane. ima. Withinthepeak-numberplots,weknowthelightcurvecom- position in each (substantial) iso-maxima region, i.e. we know 3.3 Iso-maximaregions whichsequenceofcausticfeaturesproducestheobservablepeaks Perexaminedseparation,weplotthenumberoflocalmaximaper ofalllightcurvesinthatregion.Wenotethatitismostlyabijec- light curve over α, u of its source trajectory, see Fig. 7. In the tivemapping,withonlyveryfewregionscontainingmorethanone 0 resultingplot,wecanidentifyandisolateregionsofauniformpeak kindofcausticfeaturesequences.Innocase,dotwounconnected number,whichwecalliso-maximaregions. regionssharethesamecausticfeaturesequence. Duetotheinherentsymmetries,wecanrestrictourselvesto The light curves (and iso-maxima regions) are collected in the first quadrant, 0 < u , 0 < α < π/2. Beyond the trivial pe- morphologyclasses,whereeachpeakismorphologicallyclassified 0 riodicityofαwithperiod2π,thereareseveralsymmetriesinthe asoneofthefollowing:cusp-grazing,cusp-crossing,fold-crossing two-dimensional(u ,α)space.Generally,forabinarylens, orfold-grazing.Asubstantialsubsetofmorphologyclassescanbe 0 foundinallexaminedseparationsettings.Otherclassesonlyappear (u0,α)⇔(–u0,–α) (5) whenahigherorlowerseparationleadstomulti-caustictopologies, whereasthespecificexampleofadoublefoldgrazingisnecessarily isanexactdegeneracy,whichiscausedbytheintrinsicsymmetry limitedtotheintermediatecausticcases. ofthebinarylensacrossthebinaryaxis.Skowronetal.(2009,Ap- The extreme variety of binary microlensing phenomenology pendixA)argues(andthishasbeencommonpracticeforawhile, can be appreciated by summarising the results of our search in a seee.g.Albrowetal.(1999b))thatmodelsforstaticbinariesshould few numbers. We have found 73 different light curve morpholo- beexpressedintherangeu≥0and0≤α<2π,withtheexception ofcasesthatdisplayparallaxeffectwheretheapparentsourcepo- giesaccordingtoourclassificationbasedonthesequenceofpeaks. Thesemorphologiesarisein232independentregionsoftheparam- sitioncanappearonbothsidesofthelens.Wegenerallysubscribe eterspace.Thesimplestmorphologiescanbeobtainedinmanydif- tothisview,nonethelessitisinstructiveto,atleastonce,visualise ferentways.Forexample,thesimplestcausticcrossinglightcurve the“full”parameterspace,seeSec.4. class,F-F,canbefoundin7disconnectedvolumesoftheparam- Sinceweareinterestedinthemorphologyonly, eter space. If we add shoulders to this caustic crossing, with the (u ,α)⇔(–u ,α+π), (6) classicalsequenceCF-FC,wefind9differentvolumes.Weem- 0 0 phasise the fact that thanks to our thorough investigation we are abletoquantifytheexactnumberofindependentphysicalmodels 3 Publishedathttps://github.com/smarnach/luckylensing. that can qualitatively reproduce an observable light curve for the (cid:13)c 0000RAS,MNRAS000,000–000 8 C.Liebigetal. Figure7.Plotofthenumberofmaximaperlightcurveinthefirstquadrantofthe(u0,α)parameterspacefortheequal-massbinarylensatseparations=1.0 (intermediatecaustictopology):whitemeansthelightcurvehasasinglepeak,darkbluemeanssixpeaks,highervaluesarenumericalnoiseinthisinstance. Eachlabelledregionrepresentsagroupingofsourcetrajectoriesandcorrespondinglightcurvesthatfollowaspecificcausticfeaturesequence,seeTable2. Rarelyaretworegionswiththesamenumberofpeaksdirectlyconnected(cf.IIIbandIIIgabove). first time! More complicated morphologies with multiple caustic asdiscussedinSec.3.Apairoffoldcrossingscanbemergedinto crossings are rarer and appear in fewer regions of the parameter asinglepeak,awholecausticcanbecrossedandappearasasin- space. A microlensing light curve for an equal-mass binary lens glepeak,butaslongasthesolidangleofthesourceareaissmall canhaveupto10peaks,ifthesourcemovesneartheverticalaxis relativetothecausticextent,theabsolutesizewillnotchangethe ofacloseconfiguration. numberofdistinctmorphologiesthatcanbestudied.Forthestud- iedmassratioq=1,wecanaffordtouseamoderatelylargesource thatreducesthenumericalnoiseinoursamples.Meaningfulstud- iesofplanetarymassratiosq(cid:46)10–3,requireasmallersourcesize. 5 FURTHERCONSIDERATIONS WepointoutthatnotallofthepeaktypesofSec.3.1canbesim- Source size A hypothetical point source is often useful in theo- ulatedwithapointsource:thecuspcrossingcanonlyoccur,ifthe reticalstudiesofthebehaviourofgravitationallenses,butbecause pointsourceentersthecausticexactlyovertheinfinitesimalcusp wewanttoexaminetherangeofreal,observablelightcurvemor- point.Theprobabilityforthisoccurrenceisthereforezero. phologies,weuseanextendedsourcesizeof0.002θ foroursim- E ulations.Thesourcesizedoesinfluencetheshapeofalightcurve, Twopeakswillgenerallymergeintoone,iftheirangularsep- (cid:13)c 0000RAS,MNRAS000,000–000 Thecatalogueofbinarymicrolensinglightcurves 9 Regionlabel Causticfeaturesequence Morphologyclass Ia A1orBt1 C¯ IIa [A1A2] C-C IIb [at1at2] F-F IIc Bt1Bt2 C-C IId [ab1at2] F-F IIe [at1bt] F-F IIf [ab1bt] F-F IIg A1Bt1 C-C IIh [bbbt] F-F IIi [bbbt] F-F IIIa [A1at2]A2 C-FC¯ IIIb A1[at1at2] C¯ F-F IIIc [at1btat2] F-F¯-F IIId A1[ab1at2] C¯ F-F IIIe [at1bt]Bt2 F-FC¯ IIIf [ab1at1at2] F-F¯-F IIIg A1[at1Bt2] C¯ F-C IIIh A1[at1bt] C¯ F-F IIIi [ab1at2]Bt2 F-FC¯ IIIj [ab1at1Bt2] F-F¯-C IIIk [ab1bt]Bt2 F-FC¯ IIIl [ab1at1bt] F-F¯-F IIIm Bb1[ab1bt] C¯ F-F IIIn [bbab1bt] F-F¯-F IIIo [ab1at1]Bt1 F-FC¯ IIIp Bb1A1B1 C¯ C¯ C¯ IVa A1[at1at2]A2 C¯ F-FC¯ IVb [at1bt][btat2] F-FF-F IVc A1[ab1at2]A2 C¯ F-FC¯ IVd A1[at1bt]Bt2 C¯ F-FC¯ IVe [ab1at1][at1at2] F-FF-F IVf A1[at1at2]Bt2 C¯ F-FC¯ IVg [ab1at1at2]Bt2 F-F¯-FC¯ IVh [ab1at1][at1Bt2] F-FF-C IVi [ab1at1bt]Bt2 F-F¯-FC¯ IVj Bb1[ab1at2]Bt2 C¯ F-FC¯ IVk [ab1at1][at1bt] F-FF-F IVl [bbab1][ab1bt] F-FF-F IVm Bb1[ab1at1bt] C¯ F-F¯-F IVn [bbab1at1bt] F-F¯-F¯-F IVo Bb1[ab1at1]Bt1 C¯ F-F¯-F Va [ab1at1][at1at2]Bt2 F-FF-FC¯ Vb [ab1at1][at1bt]Bt2 F-FF-FC¯ Vc Bb1[ab1at1][at1bt] C¯ F-FF-F Vd [bbab1][ab1at1bt] F-FF-F¯-F Ve Bb1[ab1at2][at2bt] C¯ F-FF-F VIa [bbab1][ab1at1][at1bt] F-FF-FF-F Table2.Causticfeaturesequencesfortheiso-maximaregionsinFig.7(q= Figure8.Comparisonofpeak-numberplotsresultingfromdifferentsource 1.0,s=1.0).Eachsequenceisuniquetoitsregion,whilethemorphology sizes(fromtoptobottom:ρ = 0.005,0.01,0.02θE),scaleandrangesas classesgenerallyspanseveralindependentregions. inFig.7:x-axis:0 ≤ u0 ≤ 1.0,y-axis:0.0 ≤ α ≤ π/2.Thechangein iso-maximaregionsissubtle,butnoticeable.Thesmallestsourcenotonly leads to more iso-maxima regions, but also to more numerical artefacts. AlsocompareFig.7,whereρ=0.002θE. aration is smaller than the angular source diameter (disregarding limb-darkeningeffects).Inoursimulationsthesourcehasadiame- terof4×10–3θ ,i.e.peakswithin4×10–4t ofeachotherwouldbe Errormargin Whileweaimforcompleteness,duetothenumer- E E missed.Weworkwiththeassumptionthatalargersourcesizecan icalnatureofourstudywehavetoignoreverysmallsub-regions onlyleadtoasmallernumberofidentifiedmorphologies.Thishas of the studied parameter space and therefore might have missed beenvisuallydemonstratedforq = 1.0,s = 1.0inFig.8.Liebig out on a particular light curve morphology. Within this space we (2014)alsodocumentstheentiretyofmorphologicalclassesfora haveexaminedalliso-maximaregionslargerthan10by10pixel, source radius of 10–2θ and they are a subset of the morphology i.e.102×1/(u -sampling)× π/(α-sampling),meaningthatwithina E 0 2 presentedhere. givenEinsteinradiusandwithoursamplingof1600,theprobabil- (cid:13)c 0000RAS,MNRAS000,000–000 10 C.Liebigetal. or fold-grazing. In order to achieve this complete classification, we have developed a general notation scheme for the features of binary-lenscaustics.Ourtool,plotsofpeaknumberoveru andα, 0 servestoprovideinsightintothethemicrolensingparameterspace. Before this work, statements of the diversity of binary mi- crolensing light curves were only made on reasonable but vague arguments.Withourdetailedstudyweareabletoassignnumbers toallspecificcasesandopenthewaytomorequantitativestudies ofbinarymicrolensing. Apartfromthepuretaxonomicalaspects,whichareveryin- terestingfromthetheoreticalpointofview,Table3standsoutasa verypowerfultoolformodellerstorelateanobservedlightcurveto allpossibleregionsoftheparameterspaceinwhichthislightcurve canbefound.Thiscapabilitywouldhelptheconstructionofmore fail-safealgorithmsthatwillguaranteeafullexplorationofthemi- crolensingparameterspace.Inpractice,seedsforfittingalgorithms canbeplacedinthemiddleofeachiso-maximaregionsoastoen- sureafullexplorationofallpossiblecases.Amongthecurrently runningplatformsformodellingusingthisprincipleforsettingini- tial conditions, we mention RTModel (Bozza 2010; Bozza et al. 2012).Theinclusionofourcatalogueinthetemplatelibrarycon- Figure9.Extendedplotoftheiso-maximaregionsfors = 1.0toillus- sultedbyRTModelwouldfurtherdiminishthechancesofmissing trateexistingsymmetriesandtheseamlesscontinuationofiso-maximare- anyparticularregionintheparameterspace. gionsbeyondthefirstquadrant.Wehavemarkedacausticfeatureregion: Anotherinteresting aspectthat canbe furtherinvestigated is thegreenoutlineframestheareawheretheat1 foldgivesrisetoalight the probability of the occurrence of a given morphology. Having curvepeak,morespecificallythetopandbottomregionscontainthefold tracedtheiso-maximaregionsintheparameterspace,itshouldnot entry [at1...] whereas the middle region contains the fold exit [...at1]. be difficult to translate the volumes of the iso-maxima regions in Thegreenshademarksareaswheretheat1 foldiscrossedtwice(requir- ing [...at1][at1...] to be part of the light curve). Moving to a slightly probabilitiesnormalisedbyaphysicallymotivatedmeasure.Inthis smalleru0fromtheshadedarea,thelightcurveswilldisplaythefoldgraz- way,wewouldbeabletoquantifyhow“rare”orcommonamor- ing[...at1...]. phologyis.Thecurrentiso-maximaplotswouldalreadysufficefor probabilities at fixed lens separations. However, for a more com- pleteandusefulstudy,oneshouldmovethroughdifferentlenssep- itytoobservethatparticularlightcurvemorphologyissmallerthan arationswithamuchsmallersamplingstep,soastocharacterise (cid:46)1/16000. theshapesandthevolumesoftheregionsinamoreaccurateway. Furthermore, the final result would depend on the assumed prior Caustic feature regions It is highly instructive to consider the distribution function for the separations of binary systems. Sum- completeparameterspacevolumethatcorrespondstoapeakcre- mingup,thestudyoftherelativefrequenciesofthedifferentmor- atedbyaparticularcausticfeature.Thiscausticfeatureregionwill phologyclassesiscertainlyoneofthemostinterestingdirections coverseveraliso-maximaregions,wherethelightcurvesshowone openedupbyourwork,whichdeservesthegreatestattentionand ortwopeaksduetothisparticularcausticelement,seeanexample anadequatespaceindedicatedfutureworks. inFig.9.Ifthisinformationcontentcouldbeproperlyharnessed, Wehaveonlyverybrieflymentionedtheexistenceofcaustic- itwouldprovideanimmediatekeyforthemappingofthelenssys- feature regions as “meta regions” to the iso-maxima regions, i.e. temtothelightcurveandfromthelightcurvemorphologytothe thecombinationofalliso-maximaregionscontainingonespecific, caustic. caustic-relatedpeak.Unfortunately,wehavenotyetfoundagood Forcaustic-crossingpointsources,thisproblemoftenreduces way to extract and preserve the information about these meta re- to registering the intersection points of the straight source trajec- gions,butinfacttheycanprovideamorefundamentalunderstand- torywiththecaustic,whichisamathematicallywell-definedprob- ingoftheparameterspace,sinceiso-maximaregionsarebasically lem. However, for non-caustic crossing peaks (i.e. cusp and fold just“stacks”ofcaustic-featureregions.Incontrasttoiso-maxima approaches),causticlinesdonotprovidesufficientinformation.It regions,caustic-featureregionsaresmoothstructuresand,likethe wouldbenecessarytostudythemagnificationmaparoundcaustics causticstheyarederivedfrom,theychangecontinuouslyoverthe in order to pin down the position of the maximum magnification parameterspace.Iftheirboundariescouldbeanalyticallyderived alongthesourcetrajectoryandthenassignthispositiontoanearby fromthecausticlines,anelegantautomaticclassificationcouldbe caustic fold or cusp for classification. This approach appears too achieved. complextoimplementinpractice. Finally, we must remember that our work is limited to the equal-mass static lens case. Higher order effect such as parallax andorbitalmotionwoulddramaticallyincreasethecomplexityof the classification, adding very few new morphologies (at least in 6 CONCLUSIONANDFUTUREPROSPECTS reasonable physical cases) and would mainly distort existing iso- We have compiled an unprecedented catalogue of microlensing maximaregions.Theonlyreallyrelevantandhumanlyachievable light curve morphologies for the equal-mass binary lens. We re- upgradeofourcatalogueshouldincludeavariablemassratio. alisedthatallpeaksinmicrolensinglightcurvescanbeclassified While previous literature has shown only up to three pairs in just four categories: cusp-grazing, cusp-crossing, fold-crossing ofcausticcrossingsforasinglemicrolensingcaustic(e.g.Cassan (cid:13)c 0000RAS,MNRAS000,000–000