Mon.Not.R.Astron.Soc.000,1–13(2009) Printed15January2010 (MNLATEXstylefilev2.2) The clustering and evolution of Hα emitters at z ∼ 1 from HiZELS(cid:63) David Sobral1†, Philip N. Best1, James E. Geach2, Ian Smail2, Michele Cirasuolo3, Timothy Garn1, Gavin B. Dalton4,5 and Jaron Kurk6 1SUPA,InstituteforAstronomy,RoyalObservatoryofEdinburgh,BlackfordHill,Edinburgh,EH93HJ,UK 0 2InstituteforComputationalCosmology,DurhamUniversity,SouthRoad,Durham,DH13LE,UK 1 3AstronomyTechnologyCentre,RoyalObservatoryofEdinburgh,BlackfordHill,Edinburgh,EH93HJ,UK 0 4Astrophysics,DepartmentofPhysics,KebleRoad,Oxford,OX13RH,UK 2 5SpaceScienceandTechnology,RutherfordAppletonLaboratory,HSIC,Didcot,OX110QX,UK n 6Max-Planck-Institutfu¨rExtraterrestrischePhysik,Postfach1312,85741Garching,Germany a J 5 1 Accepted2010January18.Received2010January15;inoriginalform2009December21 ] O ABSTRACT C . The clustering properties of a well-defined sample of 734 Hα emitters at z = 0.845± h p 0.015, obtained as part of the Hi-z Emission Line Survey (HiZELS), are investigated. The - spatial correlation function of these Hα emitters is very well-described by the power law o ξ =(r/r )−1.8,withareal-spacecorrelation,r ,of2.7±0.3h−1Mpc.Thecorrelationlength 0 0 tr r0increasesstronglywithHαluminosity(LHα),fromr0 ∼2h−1Mpcforthemostquiescent s galaxies(star-formationratesof∼4M yr−1),uptor >5h−1Mpcforthebrightestgalax- a (cid:12) 0 [ ies in Hα. The correlation length also increases with increasing rest-frame K-band (MK) luminosity,butther -L correlationmaintainsitsfullstatisticalsignificanceatfixedM . 0 Hα K 2 Atz =0.84,star-forminggalaxiesclassifiedasirregularsormergersaremuchmoreclustered v thandiscsandnon-mergers,respectively;however,oncethesamplesarematchedinL and Hα 8 M ,thedifferencesvanish,implyingthattheclusteringisindependentofmorphologicaltype 8 K at z ∼ 1 just as in the local Universe. The typical Hα emitters found at z = 0.84 reside in 8 dark-matter haloes of ≈ 1012M , but those with the highest SFRs reside in more massive 3 (cid:12) . haloes of ≈ 1013M(cid:12). The results are compared with those of Hα surveys at different red- 2 shifts: although the break of the Hα luminosity function L∗ evolves by a factor of ∼ 30 1 fromz =0.24toz =2.23,iftheHαluminositiesateachredHsαhiftarescaledbyL∗ (z)then 9 Hα the correlation lengths indicate that, independently of cosmic time, galaxies with the same 0 (L )/L∗ (z)arefoundindarkmatterhaloesofsimilarmasses.Thisnotonlyconfirmsthat : Hα Hα v thestar-formationefficiencyinhighredshifthaloesishigherthanlocally,butalsosuggestsa i fundamentalconnectionbetweenthestrongnegativeevolutionofL∗ sincez =2.23andthe X Hα quenchingofstar-formationingalaxiesresidingwithindark-matterhaloessignificantlymore ar massivethan1012M(cid:12)atanygivenepoch. Keywords: galaxies:high-redshift,galaxies:cosmology:observations,galaxies:evolution. 1 INTRODUCTION masses(Mo&White1996;Shethetal.2001)andtosuggestlinks betweenpopulationsfoundatdifferentepochs. InaUniversedominatedbycolddarkmatter,galaxiesarefoundin Wide surveys of the nearby Universe (e.g. 2dF, SDSS; Col- darkmatterhaloeswithastructuredeterminedbyuniversalscaling lessetal.2001;Yorketal.2000)havenowassembledextremely relations(e.g.Navarroetal.1996).Sincebaryonstracetheunder- largesamplesofgalaxieswhichcanbeexploredtostudytheirclus- lying distribution of dark matter, measurements of the clustering tering properties in great detail. Using those data, several studies ofbaryonicmattercanbeusedtoextracttypicaldark-matterhalo have found that the amplitude of the two-point correlation func- tionrisescontinuouslywithgalaxyluminosity(e.g.Norbergetal. 2001;Zehavietal.2005;Lietal.2006).Theyalsorevealthatthe mostrapidincreaseoccursabovethecharacteristicluminosity,L∗. (cid:63) ThisworkisbasedonobservationsobtainedusingtheWideFieldCAm- Red galaxies are found to be more clustered than blue galaxies, era(WFCAM)onthe3.8mUnitedKingdomInfraredTelescope(UKIRT), aspartoftheHi-zEmissionLineSurvey(HiZELS). butthecorrelationamplitudeofthelatterpopulationalsoincreases † E-mail:[email protected] continuously with blue or near-infrared luminosities (e.g. Zehavi (cid:13)c 2009RAS 2 D.Sobraletal. et al. 2005). This seems to indicate that both star-formation rate fectedbysystematicuncertainties,butalsoallowsthestudyofvery (SFR,tracedbyultraviolet/bluelight)andstellarmass(tracedby well-definedcosmicepochs.Additionally,theselectionfunctionis near-infraredlight)areimportantfordeterminingtheclusteringof well-understood and easy to model in detail, a feature that con- differentpopulationsofgalaxies.Otherstudieshaveusedmorpho- trastsdeeplywiththatofcurrentlargehigh-redshiftspectroscopic logicalclassifications.Skibbaetal.(2009),forexample,tookad- surveys.Narrow-bandsurveysalsopopulatetheredshiftslicesthey vantageofthelargestsampleofvisuallyclassifiedmorphologiesto probewithhighcompletenessdowntoaknownfluxlimit,incon- date(fromSDSS)toclearlyrevealthatalthoughearly-typegalax- trasttospectroscopicsurveyswhichareusuallyveryincompleteat iesclustermorestronglythandiscs,oncetheanalysisisdoneata anysingleredshiftandpresentthetypicalpencil-beamdistribution fixedcolourandluminositynosignificantdifferenceisfound;this problems.Finally,narrow-bandsurveyscanselectequivalentpop- confirmspreviousresults(e.g.Beisbart&Kerscher2000;Balletal. ulations at different redshifts, making it possible to really under- 2008)forthenearbyUniverse. stand the evolution with cosmic time, avoiding the biases arising Understandingwhenthesetrendswerecreatedandhowthey fromcomparingpotentiallydifferentpopulations. evolvedwithcosmictimeisakeyinputtogalaxyformationmod- Thispaperpresentsadetailedclusteringstudyofthelargest elsandtoourgeneralunderstandingofhowgalaxiesformedand sampleofnarrow-bandselectedHαemittersatz ∼ 1(c.f.S09), evolved. The first clustering studies of different populations of obtainedafterconductingdeepnarrow-bandimagingintheJband galaxies beyond the local Universe (e.g. Efstathiou et al. 1991; over∼ 1.3deg2,aspartoftheHiZELSsurvey.Itisorganisedin Fisher et al. 1994; Brainerd et al. 1995; Le Fe´vre et al. 1996), thefollowingway.§2outlinesthedata,thesamplesandtheiron- althoughpioneering,weremostlylimitedbythelackofinforma- skydistribution.§3presentstheangulartwo-pointcorrelationfunc- tionontheredshiftsfortheirsamples.Fortunately,thoseproblems tion,carefullyestimatingtheerrorsandotherpotentialbias,along arenowstartingtobeeffectivelytackledbylargeranddeepersur- with the exact calculation of the real-space correlation. §4 quan- veys.Suchsurveyshaverecentlyledtorobustclusteringstudiesof tifies the clear clustering dependences on the host galaxy proper- specificpopulationsofsourcesatmoderateandhighredshiftsuch ties.§5presentsthefirstdetailedcomparisonbetweenthecluster- asAGN(e.g.daAˆngelaetal.2008),sub-mmgalaxies(e.g.Blain ingpropertiesofHαemittersfromz = 0.24uptoz = 2.23.Fi- etal.2004;Weißetal.2009),luminousredandmassivegalaxies nally,§6presentstheconclusions.AnH0 =100hkms−1Mpc−1, (e.g.Wakeetal.2008),orstar-forminggalaxiessuchasHαemit- ΩM = 0.3andΩΛ = 0.7cosmologyisusedand,exceptwhere ters,Lyman-breakgalaxiesorLyman-αemitters(e.g.Geachetal. otherwisenoted,magnitudesarepresentedintheVegasystemand 2008; McLure et al. 2009; Shioya et al. 2009). A dependence of h=0.7. theclusteringongalaxyluminosityhasalsobeenidentifiedbeyond thelocalUniverse(e.g.Giavalisco&Dickinson 2001). Inpartic- ular,Kongetal.(2006),Hayashietal.(2007)and,morerecently, 2 DATAANDSAMPLES Hartleyetal.(2008)foundacleardependenceoftheclusteringam- plitudeonnear-infraredluminosityforz ∼1−2“BzK”selected 2.1 ThesampleofHαemittersfromHiZELS galaxies, indicating that already in the young Universe the most This paper takes advantage of the HiZELS large sample of Hα massivegalaxiesweremuchmoreclusteredthantheleastmassive emittersatz=0.845presentedinS09(thereaderisreferredtothat ones.Theseresultsmeanthatalthoughdifferentstudieshavebeen paperforfulldetailsofhowthesamplewasconstructed).Briefly, combinedtosuggestlinksbetweenthesamepopulationatdifferent the sample was obtained from data taken through a narrow-band redshifts,orbetweendifferentpopulationsatdifferentepochs,in- J filter(λ = 1.211±0.015µm)usingtheWideFieldCAMera terpretingtheserequiresagreatdealofcare,sinceluminositylim- eff (WFCAM) on the United Kingdom Infrared Telescope (UKIRT), itstypicallyincreasesignificantlywithredshiftandaredifferentfor andreachesaneffectivefluxlimitof8×10−17ergs−1cm−2over differentpopulations. ∼ 0.7deg2 in the UKIDSS Ultra Deep Survey (UDS, Lawrence Narrow-bandHαsurveysarenowaveryeffectivewaytoob- etal.2007)field,and∼ 0.8deg2 intheCosmologicalEvolution tainrepresentativesamplesofstar-forminggalaxies.SincetheGal- Survey(COSMOS,Scovilleetal.2007)field.Thedataallowedthe lego et al. (1995) wide-area study in the local Universe, tremen- selectionofatotalof1517lineemitterswhichareclearlydetected dousprogresshasbeenachieved,withrecentnarrow-bandstudies inNB (signal-to-noiseratio>3)withaJ-NB colourexcesssig- (e.g. Ly et al. 2007; Shioya et al. 2008; Geach et al. 2008; Shim J J nificanceofΣ>2.5andobservedequivalentwidthEW>50A˚. etal.2009;Sobraletal.2009a)takingadvantageofstate-of-the-art Asthedetectedemissionmayoriginatefromseveralpossible wide-field cameras and obtaining large samples of typically hun- emission lines at different redshifts, photometric redshifts1 were dreds of Hα emitters from z = 0 to z = 2.23, down to limit- usedtodistinguishbetweenthemandselectthecompletesample ingstar-formationrates(SFRs)of≈1-10M yr−1.Inparticular, (cid:12) of743Hαemittersoveraco-movingvolumeof1.8×105Mpc3 HiZELS, the Hi-z Emission Line Survey (c.f. Geach et al. 2008, atz =0.84.Ofthese,477arefoundinCOSMOS(0.76deg2)and Sobraletal.2009a;hereafterG08andS09,respectively),isobtain- 266inUDS(0.54deg2;thereductioninareaisdrivenbytheover- ingandexploringuniquesamplesofstar-forminggalaxiespresent- lapwiththehigh-qualityphotometriccatalogueused–c.f.S09for ingHαemission(andothermajoremissionlines,e.g.Sobraletal. moredetails)).Thecompletenessandreliabilityofthissamplewere 2009b),redshiftedintotheJ,H andK bands.Byusingasetof studiedusingthe∼ 104 availableredshiftsfromzCOSMOSData existingandcustom-madenarrow-bandfilters,HiZELSissurvey- Release2(Lillyetal.2009),spectroscopicallyconfirming∼ 100 ingHαemittersatz =0.84,z =1.47andz =2.23overseveral Hαemitterswithinthephotometricredshiftselectedsample;this squaredegreeareasofextragalacticsky. Narrow-band surveys have a great potential for determining theclusteringpropertiesoflargesamplesofgalaxiesandtheirevo- 1 PhotometricredshiftsusedinS09forCOSMOSpresentσ(∆z)=0.03, lutionwithcosmictime.Suchsurveysproberemarkablythinred- where∆z=(zphot−zspec)/(1+zspec);thefractionofoutliers,defined shiftslices(∆z ≈ 0.02),whichnotonlyprovidesanundeniable assourceswith∆z>3σ(∆z),islowerthan3percent,whileforUDS,the advantage over photometric surveys that can be significantly af- photometricredshiftshaveσ(∆z)=0.04,with2percentofoutliers. (cid:13)c 2009RAS,MNRAS000,1–13 TheclusteringandevolutionofHα emittersatz ∼ 1fromHiZELS 3 Figure1.Theon-skydistributionoftheHαemittersfoundatz=0.84intheUDS(leftpanel)andCOSMOS(rightpanel)fields,togetherwithaphotometric redshiftselectedsampleatthesameredshift.Bothpanels/boxescoverthesameangular/physicalarea,correspondingto≈29×29Mpcatz=0.84.TheHα emittersareplottedin3differentsymbolscorrespondingtodifferentstar-formationrates(seekeyinleftpanel). allowedtoestimatea> 95percentreliabilityand> 96percent a distance modulus of 43.649. Rest-frame K luminosities (M ) K completeness for the sample in COSMOS. Hα fluxes, Hα lumi- are computed following Cirasuolo et al. (2009) by assuming the nosities and Hα-based star-formation rates were obtained for all sameluminositydistanceandinterpolatingusingdeep3.6µmand HαcandidatesusingHiZELSdata–thedetailsonhowthesewere 4.5µmSpitzerdata. computedarefullydetailedinS09. Furthermore, the COSMOS field has been imaged by SincetheworkpresentedinS09,improvedphotometricred- ACS/HST,andthesampleofHαemittershasbeenmorphologically shifts forCOSMOS and UDShave been produced, incorporating classifiedbothautomatically,withZEST(Scarlataetal.2007),and visually,asdetailedinS09.Thegalaxieswereclassifiedintoearly- ahighernumberofbands,deeperdataandaccountingforpossible types,discsandirregularsand,independently(visually-only),into emission-linefluxcontaminationofthebroad-bands(c.f.Cirasuolo non-mergers,potentialmergersandmergers(c.f.S09).Thesample etal.2009;Ilbertetal.2009,Cirasuoloetal.inprep.);thesefurther hasalsobeeninvestigatedforAGNcontaminationbothinS09,us- confirmtherobustnessandcompletenessoftheselectiondonein ingemission-linediagnostics,andinGarnetal.(2009)makinguse S09.Nevertheless,theHαsampleusedfortheanalysisinthispaper ofawidevarietyoftechniques. isslightlymodifiedfromthatinS09onthebasisofthenewpho- Figure1presentsthedistributionoftheHαemittersatz = tometricredshifts.Inparticular,thesampleinUDSnowcontains 257Hαemittersover0.52deg2.Theverysmallreductioninarea 0.84fortheUDSandCOSMOSfields.Thepanelsvisuallyindi- catehowtheseemittersclusteracrossthesetworegionsofthesky simplyresultsfromtheoverlapwithdeepmid-infrareddataused relativetoasimplephotometricredshiftselectedpopulationatthe forderivingthenewimprovedphotometricredshifts–thisreduc- sameredshift,selectedwith0.82<z <0.87. tionplaces3sourcesfromtheinitialsampleoutsidethecoverage. photo The remaining 6 sources excluded from the S09 sample were re- movedonthebasisthatthenewphotometricredshiftsclearlyplace thosesourcesatz ≈ 2.2(2)andz ≈ 1.45(4)(theyaretherefore identifiedascandidate[OII]3727and[OIII]5007/Hβemitters,re- 2.2 Therandomsample spectively).ForCOSMOS,thesampleofHαemittersisthesame Randomcataloguesareessentialforrobustclusteringanalysisand asinS09(477emittersover0.76deg2),sincethenewphotometric an over- or under-estimation of the clustering amplitude can eas- redshiftsdonotchangeanyoftheclassifications(notingthatspec- ilybeobtainedifonefailstoproduceaccuraterandomcatalogues. troscopicdatahadalreadybeenusedtoproduceacleanersample These are produced by generating samples with 100 times more inS09). sources than the real data and by distributing those galaxies ran- As the samples were obtained in two of the best studied domly over the geometry corresponding to the survey’s field-of- square degree areas, a wealth of multi-wavelength data are avail- view.Thistakesintoaccountboththegeometryofthefieldsand able.Theseincludedeepbroad-bandimagingfromtheultra-violet the removal of masked areas (due to bright stars/artefacts) – see (UV) to the infrared (IR) – including deep Spitzer data. These discussionofmaskedregionsinS09formoredetails. data make it possible to compute rest-frame luminosities for the While the survey is fairly homogeneous in depth, there are sampleofHαemittersatz = 0.84.Here,rest-frameB luminosi- somesmallvariationsfromchiptochipandfieldtofieldreaching ties(M )areestimatedbyusingi+-banddata(probing4152.6A˚ amaximumof∼0.2mag(NB of21.5to21.7mag).Thiscorre- B J atz=0.84)obtainedwiththeSUBARUtelescopeinbothUDSand spondstoamaximumvariationinluminosity[inlog(L)]of∼0.1. COSMOS.Thisisobtainedbyapplyinganaperturecorrectionof TheobservedluminosityfunctionpresentedinS09showsthatgo- -0.097mag(torecoverthetotalfluxformagnitudesmeasuredin3 ingdeeperby0.1inlog(L)increasesthenumbercountby∼20per arcsecapertures)andagalacticextinctioncorrectionof-0.037to cent.Thiscanhaveaneffectonestimatingtheclustering,although i+ magnitudes(Capaketal.2007).Itisassumedthatallsources simulationsindicatethatthisissmallerthanthemeasurederrors. areataluminositydistanceof5367Mpc(z = 0.845);thisyields Thefinalrandomcatalogueswerecreatedreproducingsourceden- (cid:13)c 2009RAS,MNRAS000,1–13 4 D.Sobraletal. sitiesvaryinginaccordancewiththemeasureddepthsandtheS09 numbercounts. 3 THECLUSTERINGPROPERTIESOFHαEMITTERS 3.1 Thetwo-pointω(θ)correlationfunctionatz=0.84 Inordertoevaluatethetwo-pointangularcorrelationfunction,the minimumvarianceestimatorsuggestedbyLandy&Szalay(1993) isused: (cid:16)N (cid:17)2 DD(θ) N DR(θ) ω(θ)=1+ R −2 R , (1) N RR(θ) N RR(θ) D D where DD(θ) is the number of pairs of real data galaxies within (θ,θ+δθ),DR(θ)isthenumberofdata-randompairsandRR(θ) isthenumberofrandom-randompairs.N andN arethenumber R D of random and data galaxies in the survey. Errors are computed Figure2.Thetwo-pointangularcorrelationfunctionfortheentiresample usingthePoissonestimate(Landy&Szalay1993): andfortheCOSMOSandUDSfieldsseparatelyforangularseparationsup to600arcsec,andthe1σ,2σand3σco-variancecontourswhenfittingboth 1+ω(θ) ∆ω(θ)= (cid:112) . (2) Aandβfortheentiresamplecomparedtotheresultsofeachfield.These DD(θ) resultsshowaverygoodagreementbetweenCOSMOSandUDS,reveal- ingthatHαemittersincompletelydifferentregionsoftheskyclusterwith The angular correlation function is computed for the entire comparableamplitudesandpower-lawslopes.Theresultsalsoshowthat sampleofHαemitters2,aswellasforCOSMOSandUDSsepa- thereisnocleardeparturefromthepower-lawforthissampleofHαemit- rately, and it is found to be very well-fitted by a power-law with tersdownto5(cid:48)(cid:48),implyingthatthe2-halocontributiontoω(θ)isdominant the form Aθβ with θ in arcsec. The power-law fit is obtained by forscaleslargerthan∼50kpc,butthereistentativeevidenceofasignificant determiningω(θ)2000timesusingdifferentrandomsamplesand 1-halocontributiontoω(θ)forsmallerscales. arangeofbinwidths(∆logθ = 0.1−0.3,randomlypickedfor each determination) and by performing a χ2 fit to each of these (over5 < θ < 600arcsec,correspondingto38.2kpcto4.5Mpc Table1.Thepower-lawfitparameterswhichbestdescribeω(θ)forHα at z = 0.845; these correspond to angular separations for which emittersatz = 0.84,resultingfromcomputingω(θ)2000times.These fittingω(θ)withonesinglepower-lawisappropriate;seedetailsin were obtained over 5 < θ < 600 arcsec, corresponding to 38kpc to Section3.2.2).TheresultsareshowninFigure2andpresentedin 4.5Mpcatz=0.84,avoidingboththepossibleone-haloclusteringcontri- bution(atthesmallestscales)andthebreakoftheLimber’sapproximation Table1;theyimplyA = 14.1±3.9andβ = −0.79±0.06for (atthelargestscales).NotethedegeneracybetweenAandβinFigure2. theentiresample(theerrorspresentthe1σdeviationfromtheav- erage).Thisrevealsaverygoodagreementwiththefiducialvalue, Aβ=−0.8isobtainedbyfixingβ =−0.8,thefiducialvalueandinexcel- lentagreementwithwhathasbeenfoundfortheentiresamplewithorwith- β =−0.8. outpossible/likelyAGNcontamination.Anerrorof20percentisaddedin Recentstudies(e.g.Ouchietal.2005)havefoundatransition quadraturetorandomerrorin∆Aβ=−0.8toaccountforcosmicvariance between small and large-scale clustering (corresponding to one- fortheentiresample(or25percentwhenconsideringjustonesub-field– andtwo-haloclustering,respectively)athighredshift,manifested COSMOSorUDS,c.f.Section3.1.1). as a clear deviation from the power-law at small scales (smaller than≈ 50kpcforLyman-breakgalaxiesatz ∼ 4,forexample). Sample Number A β Aβ=−0.8 Whilethereisnodefinitiveevidencefortheone-halotermforthe (z=0.84) # (θinarcsec) (θinarcsec) Hα sample presented here (especially for separations larger than AllEmitters 734 14.1±3.9 −0.79±0.06 14.2±3.1 ∼5(cid:48)(cid:48)–correspondingto38kpc),forsmallerseparationstheresults point towards a departure from the power-law, but only at ≈ 1σ NoAGN 660 13.6±4.4 −0.78±0.07 14.1±3.0 level.Therefore,alargersampleisrequiredtoreliablydetermine NolikelyAGN 700 15.4±4.0 −0.81±0.06 14.6±3.2 ω(θ)downtothesmallestscalesandconstrainthecontributionof COSMOS 477 11.1±3.0 −0.75±0.08 13.8±3.7 theone-haloterm. UDS 257 19.2±8.9 −0.84±0.15 18.4±5.5 The best power-law fit seen in Figure 2 also reveals a good agreement both at small and larger scales between the COSMOS andUDSfields(seealsoTable1);theUDSfieldpresentsaslightly These results are consistent with ∼ 0.6−0.8 deg2 fields being higherclusteringamplitude,butconsistentwithin1σ (fixingβ = sufficienttoovercomemostoftheeffectsofcosmicvariancewhen −0.8). Note that the Hα luminosity function derived in S09 for conductingclusteringanalysiswithnarrow-bandsurveysatz ∼ 1 eachfieldalsorevealedagoodagreementbetweenthetwofields. –althoughtheagreementcouldbecausedbychance. 2 Duetothefiniteareaprobed,themeasuredclusteringamplitudewillbe 3.1.1 Robusterrorestimationandtheeffectofcosmicvariance underestimatedbyanamountC(knownastheintegralconstrain;c.f.Roche Thesurveycovers1.3deg2 intwocompletelyindependentfields; etal.2002)whichdependsontheassumedtruepower-lawandtheprobed area.ThisisestimatedasC=0.0023fortheentiresurveyareaanditonly this is a fundamental advantage over smaller surveys which only represents≈ 0.01percentchangeinA,butitisstillincluded,sincethis probeonesinglefield,asitallows,inprinciple,areliableestimate becomessignificantforobtainingω(θ)atlargeseparations;c.f.Figure4. ofpossibleerrorsduetocosmicvariance.Inordertoachievethis, (cid:13)c 2009RAS,MNRAS000,1–13 TheclusteringandevolutionofHα emittersatz ∼ 1fromHiZELS 5 tering amplitude; this will be added in quadrature to the directly calculatederrorsinA. 3.1.2 AGNcontamination Some of the Hα emitters are likely to contain an AGN. By us- ingemission-lineratiodiagnosticsforasmallsubsetofemittersin zCOSMOS,S09estimatedacontaminationof∼15percentAGN inthesample.Morerecently,Garnetal.(2009)performedanex- tendedsearchforAGNwithinthesampleusingseveralmethodsfor identifying those sources, such as radio, X-rays and mid-infrared colours. This resulted in the identification of a maximum of 74 AGN(40inCOSMOSand34inUDS).Fromthese,34areclas- sifiedaslikelyAGNandtheremaining40aspossibleAGN–this correspondstoanestimated∼ 5-11percentAGNcontamination withinthesample. TheAGNmaywellhavedifferentclusteringpropertiesfrom thestar-formingpopulation.However,thenatureofthesepotential Figure 3. The uncertainty in A (per cent; ∆A = σ/A × 100, with β = −0.8)derivedfrom100-1000ω(θ)measurementsonsub-samples AGN contaminants is very unclear, particularly the origin of the spanningdifferentareaswithinthecomplete1.3deg2 (upto0.5deg2)– detectedHαemission.Forexample,theyaremostlymorphologi- whichisconsideredtobemostlyduetocosmicvariance.Thisrevealsthat callyclassifiedasirregularsandmergersandtheyspantheentire ∆Adecreaseswithincreasingareaandthistrendisverywellfittedbya luminosityrange;itthusseemsthatalthoughsomeofthemmight simplepower-law(20×θ−0.35 percent,withθ indeg2,shownbythe have their Hα emission powered by the AGN, they may well be dashedline).ThesimplestandarddeviationbetweenresultsfromtheCOS- undergoing significant star-formation. Indeed, recently, Shi et al. MOSandUDSfieldsisalsoshownforcomparison.Theerrorestimated (2009)presentedastudyofunambiguousAGNatz ∼1,showing fromthebootstrapanalysisandthatgivenbyextrapolatingthefittedpower- that at least half of the sample shows clear signatures of intense lawarealsoshownforthefullarea. star-formation. In order to understand how AGN contaminants might affect theclusteringmeasurements,theangularcorrelationfunctionwas ω(θ) is estimated over randomly picked square areas of different calculatedafterremovingallthepotentialAGNcontaminants.This sizes (from 0.05 deg2, corresponding to the area probed by one resultsinnostatisticalchangeineitherAorβfortheentiresample WFCAMchip,upto0.5deg2)inCOSMOSandUDS.Themini- (seeTable1).RemovingonlythelikelyAGNleadstoanidentical mumnumberofemittersrangesfrom15to65withinthesmaller result.However,thetrueAGNcontaminants(andthepossiblebias areasused(0.05deg2).Either100and1000randomlychosenre- theymayintroduce)mightwellhavealargereffectontheresults gionsareconsideredforeacharea(100for0.3-0.5deg2 and1000 whenstudyingtheclusteringasafunctionofhostgalaxyproperties forsmallerareas)andapowerlawisfittedtoeachω(θ)determi- (presentedinSection4),sinceforcertainhostgalaxypropertiesthe nationbyfixingβ = −0.8.Foreacharea,thestandarddeviation AGNcontaminationmaybesignificantlyhigherthaninthesample ontheamplitudeAisusedtoquantifytheuncertainty.Theresults asawhole. areshowninFigure3anddemonstratethatthemeasuredstandard ToensurethattheanalysisisreallytacklingtheAGNcontam- deviationiseffectivelyreducedwitharea.TheerrorinA(percent) inationandtorobustlydeterminetheclusteringpropertiesofeach canbeapproximatedbyapowerlawoftheform20×θ−0.35with sample being studied (and test trends), all the clustering proper- θ indeg2;extrapolatingthissuggestsanerrorslightlylowerthan tiesinthispaper(forthez = 0.84sampleandsub-samples)are ∼20percentforthetotalareaofthesurvey,andalsoagreeswith derived from a combination of measurements from samples with thesmalldifferencefoundbetweenCOSMOSandUDS(seeFigure andwithoutpossibleAGNcontaminants.Inpractice,ω(θ)iscom- 3).Furthermore,thissuggeststhatonerequiresareasof∼ 7deg2 puted 500 times each using i) all the emitters in the sample, ii) (theHiZELSsurveytarget)ormoretoreducetheeffectsofcosmic removinglikelyAGN,andiii)removingall(likelypluspossible) variancetolessthan10percent. AGN.χ2 fitsareobtainedforeachrealizationofeachsampleand These estimates could still slightly underestimate the errors, the total resulting distribution is used for the analysis. This also mostlybecauseatlargerareasthenumberofapproximatelyinde- allows to carefully confirm that there is a good degree of consis- pendent areas is strongly reduced. An alternative estimate of the tency between the 3 different distributions and in no case is the clustering uncertainty can be derived using a bootstrap analysis. differencebetweensampleswithandwithoutAGNlargerthanthe Since this often leads to a slight over-estimation of the errors, it 1σerrors.Thismostlyresultsinestimatinglargererrorsthanthose canbecombinedwiththepreviousanalysistogiveanapproximate which would be obtained from either simply excluding all AGN rangefortheexpectederror.Theanalysisisdonebynaturallydi- ornotdealingwithAGNcontamination,andthereforerepresentsa viding the complete sample into 26 regions of ∼0.05 deg2 each conservativeapproach. (thesearetheminimumindividualprobedareasasthesearecov- eredbyoneWFCAMchip)andcomputingω(θ)with26randomly picked regions each time for 10000 times. Fitting all realizations 3.2 Real-spacecorrelation withapowerlaw(fixingβ = −0.8)resultsinadistributionwith 3.2.1 Firstorderapproximation:Limber’sequation astandarddeviationof23percentintheclusteringamplitude,A. Whencomparedandcombinedwiththepreviousestimation(≈18 The real-space correlation, r , is a very useful description of the 0 per cent error), it suggests an error of ∼ 20 per cent in the clus- physical clustering of galaxies when the spatial correlation func- (cid:13)c 2009RAS,MNRAS000,1–13 6 D.Sobraletal. tioniswell-describedbyξ = (r/r )γ.TheinverseLimbertrans- 0 formation(Peebles1980)canbeeasilyusedtoobtainanapprox- imation of the spatial correlation function3 from the angular cor- relationfunction,providedtheredshiftdistributionisknown.For narrow-band surveys, the expected redshift distribution depends solely on the shape of the narrow-band filter profile; this can be well approximated by a Gaussian4, which, for the Hα emission- line,correspondstoaredshiftdistributioncenteredatz = 0.845 withσ=0.0075.Thiscanbecomparedwiththeredshiftdistribu- tionfromHαemittersconfirmedbyzCOSMOS(93sources)which hasameanredshiftof0.844andσ =0.0076;theexcellentagree- mentrevealsthattherealredshiftdistributionshouldbeveryclose totheoneassumed. Inordertocalculatetherealspacecorrelationlength,r ,and 0 whenperformingthede-projectionanalysis,itisassumedthatthe redshifts are drawn from this Gaussian distribution and that the real-spacecorrelationfunctionisindependentofredshift(c.f.G08; Kovacˇetal.2007)overtheredshiftrangeprobed;thisisaverygood approximation,sincetheredshiftdistributionisextremelynarrow. Figure4.Thetwo-pointangularcorrelationfunctionfortheentiresam- ContaminationbysourceswhicharenotHαemittersatz = 0.84 ple,comparedwiththesimplepower-lawfitexpectedfromtheLimber’s couldhaveasignificanteffectonr0,sincetherealredshiftdistribu- approximation.Thesearecomparedwiththebest(fromaχ2 fit–shown tionwillbedifferentfromtheoneassumed.Nevertheless,inS09 inthefigure)exactangularcorrelationfunctionobtainedwiththenarrow- thesamplewasstudiedtofindthatonly2outof90sourceswith bandfilterprofileforaspatialcorrelationfunctiongivenbythepower-law spectroscopic redshifts that had been photometrically selected as ξ = (r/r0)γ,withγ = −1.8andr0 = 2.61±0.13h−1Mpc(notcor- Hα emitters were not real Hα emitters (one [SII]6717 emitter at rectedforcontamination;errorsdirectlyfromχ2),revealinganexcellent z = 0.79anda[OIII]5007emitteratz = 1.42,whichwerethen agreementwiththedata.ThisalsorevealstheregimeforwhichtheLimber’s removedfromthesample).Thisconclusionisdrawnfromtheanal- approximationbreaksforthisparticularcase(∼600arcsecfora∼15per ysisoflimited spectroscopic data(∼ 20percentof theHiZELS centdifference;c.f.Simon2007forageneralanalysisofthetypicalsepa- rationatwhichLimber’sapproximationbreaksdown). sampleinCOSMOS),butcontaminationatthatlevelwillonlylead to underestimating r by a maximum of 6 per cent5. Throughout 0 thispaper,a5percentcorrectionisappliedwhencomputingr to 0 accountfortheexpectedcontamination. slopesβ =γ+1forsmallscalesandβ =γforlargeangularsep- Computingr foreachrealizationofω(θ)fittedwithapower- 0 law with β = −0.8 results in r = 2.5±0.3h−1Mpc for the arationswhenusinganarrowfilter–seefulldiscussioninSimon 0 entiresample,orr = 2.6±0.3h−1Mpcwhenaccountingfor5 (2007). 0 Here,itisassumedthatthespatialcorrelationfunctionisgiven per cent contamination. Note that the 20 per cent error in A due by the power-law ξ = (r/r )γ (as this is able to reproduce the tocosmicvarianceresultsinanerrorof11percentinr ,andthis 0 0 observedω(θ)verywellwithγ =−1.8),andthatthenarrow-band is added in quadrature. However, as mentioned before, Limber’s filterprofileisdescribedbyaGaussianasdetailedinSection3.2.1. equationisonlyanapproximationwhichcanpotentiallyresultin Thefollowingisthennumericallyintegratedforthesameangular significanterrorsfornarrow-bandsurveysathighredshift.Section separationsasforthedataandaχ2fitisdoneforω(θ)aroundthe 3.2.2describeshowr isrobustlycalculatedbyfullyde-projecting 0 valueofr obtainedinthepreviousSection: ω(θ). 0 (cid:90) +∞(cid:90) 2s 2f (s−∆)f (s+∆) ∆ω(θ)=ψ−1 S S dRds, (3) 3.2.2 Accuratedeterminationofr fornarrow-bandsurveys √ R−γ−1rγ∆ 0 0 s 2φ 0 The errors introduced by the Limber’s approximation are tack- (cid:112) led by numerically integrating the exact equation connecting the whereψ=1+cosθ,φ=1−cosθ,∆= (R2−2s2φ)/(2ψ) spatialandangularcorrelationfunctions(followingSimon2007). andfS istheprofileofthefilterbeingusedinco-movingdistance Thisrelationimpliesthatspatialcorrelationfunctionsdescribedby (assumed to be a Gaussian distributed value with an average of ξ = (r/r )γ are projected as angular correlation functions with 2036.3h−1Mpc and σ = 14.0h−1Mpc). The χ2 fitting results 0 inamuchmorerobustestimateofr andallowstheuseofω(θ)up 0 tolargerangularseparationsthan600arcsec,aregimeforwhicha 3 Limber’sequationisanapproximationthatbreaksdownforlargeangular singlepower-lawstartstobecomeinadequate(asβ changesfrom separationswhenoneusesanarrowfilter,butcanstillbeusedtoobtainat γ + 1 to γ, c.f. Figure 4). For the entire sample, however, this leastafirstapproximationofr0 within≈ 15percentfortheNBJ filter leadstolittlechange:r0 = 2.7±0.3h−1Mpc(thisincludesa5 used;seeSection3.2.2fordetails. percentcorrectionforcontamination,whiletheerrorsalsoinclude 4 Asimplerwaytomodelthenarrow-bandfilteristoassumeitisatop- cosmicvariance–thiserrorestimationhasbeendiscussedinSec- hat;thisresultsinaHαredshiftdistributionof0.845±0.015.Thetwo tion3.1.1).Indeed,whilstLimber’sequationbreaksdownforlarge approachesproduceresultsfordifferentr0 determinationswhicharecon- galaxyseparations,itisshowntodowellaslongasonlysmaller sistentwithin5percent. 5 Assumingthatcontaminantswillnotclustersignificantly,thecontamina- angulardistancesareconsidered.Notethatreal-spacecorrelations tionfractionoff willresultinamaximumunderestimationofAgivenby fordifferentsamples(seeTable2)arecomputedinthefollowing (1-f)2,andanunderestimationofr0givenby∼(1-f)2/|γ|. sectionsusingthesameproceduredescribedhere. (cid:13)c 2009RAS,MNRAS000,1–13 TheclusteringandevolutionofHα emittersatz ∼ 1fromHiZELS 7 3.2.3 Thedependenceoftheredshiftdistributiononlimitingline luminosityfornarrow-bandsurveys Sincethenarrow-bandfilterprofileisnotaperfecttop-hat,emitters withdifferentHαluminositiesaredetectedoveraslightlydifferent range of redshifts. As the exact relation between ξ(r) and ω(θ) dependsontheredshiftdistribution(givenbythefilterprofile),as- sumingthesameredshiftdistributionfordifferentluminositylimits canleadtobiases,especiallywhenlookingatapossiblerelation- shipbetweentheclusteringamplitudeandHαluminosity. This potential bias is studied by performing the same sim- ulations described in S09. Briefly, the Hα luminosity function presented in S09 is used to generate a fake population of emit- tersequallydistributedoverawiderrangeofredshiftsthanthose probedbythenarrow-bandfilterandthisisusedtolookatthere- coveredredshiftdistributionofsourcesasafunctionofmeasured luminosity. The redshift distribution is found to become continu- ouslynarrowerwithincreasingHαluminositylimit6,althoughall Figure5.Thetwo-pointangularcorrelationfunctionforsub-samplesob- thedistributionscanbeequallywell-fittedbyaGaussian.Thevari- tainedbysplittingthesamplein2halvesbasedon Hαluminosity/SFR. ationcanbewrittenasafunctionofobservedHαfluxas: Theseclearlyshowthattheclusteringamplitudeishigherforgalaxieswith higherHαluminosities,implyingthatthemostactivestar-forminggalaxies σ=−η×(logFHα(limit)−logF0)+σ0, (4) aremoreclusteredthantheleastactive.Linesshowthebestχ2totheexact relationbetweenξ(r)andω(θ)byfixingγ=−1.8;which(afterapplying whereF isa fluxlimit atwhich theredshift distributionis rela- tivelywe0llunderstoodandσ isthewidthoftheredshiftdistribu- allcorrectionsalreadydetailed)resultinr0 = 4.84±0.58h−1Mpcfor 0 thebrightestemittersand2.52±0.41h−1Mpcforthefaintesthalf(inHα tionatthatfluxlimit;fortheNB filter,η = 0.00117,asderived J luminosity)ofthesample. fromsimulations. Overtheluminosityrangeofthesample(andfortheassumed luminosityfunctionandtherealfilterprofile),neglectingthiseffect ordertoinvestigatetheclusteringasafunctionoffundamentalob- results in over-estimating r0 by a maximum of 8 per cent; this is servable host galaxy properties. These include i) Hα luminosity onlyfoundwhencomputingr0forasamplecontainingthebrightest correctedforextinctionasinS09(1mag),ii)rest-frameK lumi- 5 per cent emitters (the ≈ 40 brightest emitters, for which σ ≈ nosity(M ),iii)rest-frameB luminosity(M )andiv)morpho- K B 0.0065). Nevertheless, narrow-band surveys which span a much logical class (discs, irregulars; non-mergers, mergers). The ω(θ) wider luminosity range will be much more sensitive to this and correlationfunctioniscomputedforeachsub-sample(asingleex- line-luminositytrendscouldnaturallyarisefromthisbias. ampleisshowninFigure5,presentingω(θ)forthebrightestand Thisluminositydependenceisfullytakenintoaccountwhen faintesthalvesofthesamplewithrespecttoHαluminosity).The computing r0 for sub-samples defined by different Hα luminos- approach detailed in the previous sections is then used by firstly ity/SFR limits. For the analysis of other sub-samples, if the Hα computingr usingLimber’sapproximationpower-lawfittoω(θ) 0 luminositydistributiondoesnotpresentanyclearoff-setfromthat (fixing β = −0.8 and restricting the analysis to 5 < θ < 600 oftheentiresurvey,itisassumedthattheredshiftdistributionof arcsec),andthenusingtheexactrelationbetweenthespatialand thosesub-samplesisverywellapproximatedbythecompletered- angular correlation functions to improve the r estimation. This 0 shiftdistribution. analysisalsoaccountsforthepotentialAGNcontaminationinthe sample, following the procedures described at the end of Section 3.1.2(computingω(θ)withandwithoutthepossibleAGNcontam- inants and using the combined distribution). The results obtained 4 THECLUSTERINGDEPENDENCESONHOST whensplittingthesampleintodifferentsub-samplesarepresented GALAXYPROPERTIES inTable2,Figure6andFigure7.Forsub-samplesobtainedfrom the complete survey area, an error of 11 per cent in r is added AsdiscussedintheIntroduction,inthelocalUniversethecluster- 0 inquadraturetothe1σ errors(seeSection3.1.1),whileforsub- inghasbeenshowntodependonseveralhostgalaxyproperties.At samplesderivedbasedonmorphologya14percenterrorisadded z = 0.24,Shioyaetal.(2008)haveshownthattheclusteringof inquadratureto∆r (fortheCOSMOSfieldonly). Hαemittersseemstobestrongerforthemostluminoussourcesin 0 Hα,butsofartestingandquantifyingthatclusteringdependence at higher redshifts for Hα emitters has not been possible, as sur- 4.1 Hαluminosity/star-formationrate veyshavelackedareaandsamplesize.TheHiZELSsampleislarge enoughtoachievethis. Followingpreviousstudies,suchasShioyaetal.(2008),onecan The complete sample is divided into several sub-samples in do a simple splitting of the sample in two halves with the same numberofemitters(367with41.95 <logL < 43.18ergs−1 Hα and equal number with 41.61 < log L < 41.95 ergs−1), and Hα studytheclusteringpropertiesofeachofthosesamples.Figure5 6 Althoughintrinsicallymoreluminoussourcesaredetectableoverawider presents the angular correlation function obtained for the bright- redshiftrange,theirdetectioninthewingsofthefilterleadstoanunder- estimationoftheirluminosity;galaxiesareonlymeasuredtobeluminous est and faintest halves of the sample, revealing that the bright- inHαwhentheemissionlineisbeingdetectednearthepeakofthefilter est Hα emitters are much more clustered than the faintest ones. profile. This is also very clear when one compares the spatial correla- (cid:13)c 2009RAS,MNRAS000,1–13 8 D.Sobraletal. Table2.Thecorrelationlength(fixingγ = −1.8andcorrectedby5per centforcontamination)forHαemittersatz = 0.84.Sampleswithfixed MK have−24.44<MK <−22.68(AB)andthosewithfixedlogLHα have41.76 < logLHα < 42.22(ergs−1).Hαluminositiesaregivenin ergs−1,MKandMBareABrest-frameluminosities.Unclassifiedsources orwithnodataavailablewerenotconsidered.Errorsincludecosmicvari- ance(11percentofr0fortheentiresampleand14percentofr0forsamples ofeachindividualfield). Sub-sample Number r0 (Hαz=0.84) # (h−1Mpc) AllEmitters 734 2.74±0.29 PureStar-forming 660 2.61±0.28 COSMOS 477 2.67±0.37 UDS 257 3.13±0.52 41.95<logLHα<43.18 367 4.84±0.58 41.61<logLHα<41.95 367 2.52±0.41 42.40<logLHα<42.80 46 5.24±1.01 Figure6.Thedependenceoftheclusteringlength,r0,withHαluminosity 42.25<logLHα<42.40 55 5.03±0.96 atz =0.84.ThisclearlyrevealsthatgalaxiespresentinghigherHαlumi- 42.10<logLHα<42.25 92 4.55±0.72 nosities/SFRsaremoreclustered,andthatgalaxiesabovethebreakinthe 41.88<logLHα<42.10 243 2.50±0.45 Hαluminosityfunction(L∗ )aremuchmoreclusteredthanthosebelow. 41.75<logLHα<41.88 173 2.26±0.42 ThisdependenceisnotareHsuαltofthecorrelationbetweenSFR(Hαlumi- 41.62<logLHα<41.75 125 2.13±0.55 nHoαsiltuym)ainnodssittyelflaorrmsuabs-ssa(mMpKle,ssweeithFitghuerseam8)e,aMsKr0.correlatesaswellwith 444211...298083<<<lllooogggLLLHHHααα<<<444221...429408(((fififixxxeeedddMMMKKK))) 11512675 432...288074±±±000...855685 41.71<logLHα<41.83(fixedMK) 117 1.70±0.51 tionsobtainedforeachsample:whilethebrightestemittersinHα −26.1<MK <−24.5 82 3.74±0.69 presentr0 =4.8±0.6h−1Mpc,forthefaintestemittersonefinds −24.5<MK <−24.0 116 4.24±0.63 2.5±0.4h−1Mpc.Itshouldalsobenotedthatbecauseγisfixed, −24.0<MK <−23.5 145 3.08±0.51 thesignificantdifferenceinr0forthetwosamplesisnotaresultof −23.5<MK <−23.0 145 2.72±0.43 thedegeneracybetweenγandr0(seeFigure2forasimilardegen- −23.0<MK <−22.5 117 2.65±0.54 eracybetweenβandA),contrarilytostudiessuchasShioyaetal. −22.5<MK <−20.5 116 2.31±0.49 (2008),whichallowforbothγ andr tovary;suchnoteisvalid −24.96<MK <−24.00(fixedlogLHα) 116 3.99±0.56 throughoutthispaper. 0 −24.00<MK <−23.40(fixedlogLHα) 108 2.52±0.62 WiththelargesampleofHαemittersobtainedbyHiZELSat −23.40<MK <−22.84(fixedlogLHα) 112 2.81±0.54 −22.84<MK <−21.81(fixedlogLHα) 111 2.48±0.50 z=0.84,itispossibletoperformamuchmoredetailedinvestiga- tionintotherelationbetweenr0 andHαluminositybyseparating −23.23<MB <−21.61 96 4.47±0.77 theemittersintoalargernumberofsub-samples.Figure6andTa- −21.61<MB <−21.11 186 2.97±0.44 ble2showthatr increasesbyafactorofalmost3fromthefaintest −21.11<MB <−20.61 246 2.25±0.30 0 Hαgalaxiestothemostactivestar-forminggalaxiesfoundabove −20.61<MB <−20.11 145 3.92±0.63 thebreakintheHαluminosityfunction,L∗ (1042.2ergs−1,S09). −20.11<MB <−18.71 59 2.54±0.92 Hα Whilst the increase of r0 with LHα can be reasonably well- Discs(COSMOS) 363 2.52±0.32 describedbyastraight-linefit(χ2=1.4),therearehintsthatthere Irregulars(COSMOS) 68 5.12±0.88 mightbeastrongerincreaseinr0aroundL∗Hα.Thisprovidesade- Discs(SFR&MKmatch) 109 2.59±0.45 scription which is in line with previous studies, but gives an un- Irregulars(SFR&MKmatch) 46 2.96±0.80 precedented degree of detail of the relation between r0 and Hα Non-mergers(COSMOS) 298 2.30±0.31 luminosity/star-formation rate. Moreover, the robustness of these Mergers(COSMOS) 111 3.75±0.50 results is also increased by including the small correction for the Non-mergers(SFR&MKmatch) 128 2.35±0.42 factthatsampleswithdifferentluminositylimitswillpresentadif- Mergers(SFR&MKmatch) 100 2.87±0.56 ferentredshiftdistributionjustfromconsideringthefilterprofile. Bulge-dominateddiscs(COSMOS) 97 2.72±0.54 Recently,Orsietal.(2009)madepredictionsforthecluster- Disc-dominateddiscs(COSMOS) 204 2.51±0.39 ing properties of Hα emitters using two different versions of the GALFORMgalaxyformationmodel.Atz = 0.84andfortheflux limitofS09,Orsietal.(2009)predictsr ≈ 4−5h−1Mpc.This 0 4.2 Rest-framecontinuumluminosity showsthatthedisagreementbetweenthedataandthemodelsfound at z = 0.24 and z = 0.4 in Orsi et al. (2009) is also found at Hα emitters presenting the highest rest-frame K band luminosi- z = 0.84. The models predictions would be consistent with the ties (M < −24) are strongly clustered, and a general trend of K dataforfluxlimits2timeshigherduetothestrongclusteringde- anincreasingr withKbandluminosityisfound(seeleftpanelof 0 pendencewithHαluminosityatz = 0.84;however,noneofthe Figure7),similarlytowhathasbeenfoundforotherpopulations models is able to fully reproduce this r -L relation at the mo- ofgalaxiesatdifferentredshifts.Thissuggeststhatthiscorrelation 0 Hα ment. mustbevalidregardlessofthepopulationbeingobserved–atleast (cid:13)c 2009RAS,MNRAS000,1–13 TheclusteringandevolutionofHα emittersatz ∼ 1fromHiZELS 9 Figure7.Thereal-spacecorrelationlengthasafunctionofrest-frameKluminosity(leftpanel),rest-frameBluminosity(middlepanel)andvisualmorphology (rightpanel).Theseresultsshowthatstar-forminggalaxiesclustermorewithincreasingrest-frameKluminosity(whichtracesstellarmass),withthistrend beingmaintained(butslightlyweakened)evenwhenoneusessub-samplesthathavethesameHαluminositydistribution.Nostatisticallysignificantcorrelation betweenr0withrest-frameBluminosityisfound.Morphologicallyclassifiedirregularsandmergersclustermorestronglythandiscsandnon-mergers,but thisisduetoadifferentHαluminosityandMKdistributionwithineachpopulation;matchingthesedistributionsresultsinasimilarr0. fortherangeofluminositiesprobed–andseemstosimplyimply rectlycomparethesepopulationsonthebasisofthemorphological thatgalaxieswiththehigheststellarmasses(astheseareexpected classonly. tocorrelateverycloselywithKluminosity,althoughthecontribu- Thereisnosignificantdifferenceinr forthematchedsam- 0 tionfromthethermallypulsingasymptoticgiantbranch(TP-AGB) plesofirregularsanddiscs(seeFigure7–filledcircles)within1σ. phaseofstellarevolutioncanleadtosomescatterintheM versus Ther differencebetweenmergersandnon-mergersisalsogreatly K 0 stellarmassrelation;c.f.Marastonetal.2006)resideinthemost reduced,althoughmergersarestillfoundtobeslightlymoreclus- massivehaloes.However,itisalsoclearthattheincreaseofr with teredthannon-mergersat∼1σlevel. 0 rest-frameK luminosity,whilstcontinuous,isnotaspronounced Thesample ofHα emitterswith discmorphologieshas also astheincreasewithstar-formationrate. beenclassifiedaccordingtohowmuchdisc/bulgedominatedeach InthelocalUniverse,galaxieswithhigherB bandluminosi- galaxyis(withZEST;c.f.Scarlataetal.2007).Bycomputingthe ties(M )aremoreclusteredthangalaxieswithlowerM .How- correlation length for disc dominated discs and bulge dominated B B ever,studyingtheclusteringpropertiesofHαemittersatz=0.845 discs, one finds that they present reasonably the same r (2.7± 0 asafunctionofrest-frameBluminosityrevealsnostatisticallysig- 0.5h−1Mpcfordiscdominatedand2.5±0.4h−1Mpcforbulge nificanttrend(<1σ)(seemiddlepanelofFigure7).Theseresults dominatedgalaxies).Therefore,thebulge-diskratioofthestudied areinreasonableagreementwithrecentstudies(e.g.Meneuxetal. star-formingdiscgalaxiesdoesnothaveanysignificanteffecton 2009), which did not find any significant dependence of galaxy howthesegalaxiesclusteratz∼1. clusteringonBluminosityforasimilarredshiftrange. TheseresultsshowthatHαluminosityandM (probingstel- K larmass)arethekeyhostgalaxypropertiesdrivingtheclustering ofstar-forminggalaxiesatz ∼ 1andmorphologyisunimportant 4.3 Morphologicalclass fortheclusteringofgalaxiesathighredshift,justashasbeenfound inthelocalUniverse(e.g.Skibbaetal.2009). By splitting the sample into morphological classes (only for the COSMOSfield[c.f.S09]),onefindsthatgalaxiesclassifiedasir- regularsaremoreclusteredthanthoseclassifiedasdiscs;mergers 4.4 Hαluminosityversusrest-frameKluminosity haveameasuredr whichliesbetweenthesepopulations,butsig- 0 nificantly above the non-mergers (see Table 2 and right panel of Ithasbeenshownthatr isverywellcorrelatedwithbothHαlumi- 0 Figure 7 – open circles). However, S09 found that irregulars and nosity(orstar-formationrate)andrest-frameK luminosity(trac- mergers are typically brighter in Hα and M than discs (which ingstellarmass).Ontheotherhand,star-forminggalaxiesbothin K completelydominatethefaint-endoftheHαluminosityfunction thelocalUniverseandathighredshiftrevealacorrelationbetween at z ∼ 1). Therefore, in order to understand if the clustering re- both, with star-formation rate typically being higher for galaxies ally does depend on the morphological class or if this is simply with higher stellar masses (see Figure 8). Thus, how much is the a secondary effect driven by star-formation rate and stellar mass correlationbetweenr andHαluminositydrivenbydifferentrest- 0 dependencies, one needs to compare samples which are matched frameKluminositydistributions,andvice-versa? inlogL andM .ThisisdonebyusingthedistributionofHα In order to clearly test if both relations hold – or whether Hα K emitters in the log L -M plane and matching irregulars with theyarearesultofasinglestrongrelationbetweenr andeither Hα K 0 discs and mergers with non-mergers. A ∆log L < 0.02 & Hαluminosityofrest-frameK luminosity–newsub-samplesare Hα ∆M <0.02criteriaisused:thesevalueswerechosentoensure derived.Todothis,twosub-regionsaredefinedinthe2-DL – K Hα thatthesamplesareverywell-matchedinbothHαluminosityand M space(seeFigure8).Totestther -L correlationatafixed K 0 Hα M whilestillretainingthesamplesizesrequiredfortheanalysis. M , the region −24.44 < M < −22.68(AB) and 41.71 < K K K Thepopulationmatchusedstillresultsinaseverereductionofthe logL < 42.44ergs−1 (correspondingto4.1 < SFR < 21.8 Hα largerdiscandnon-mergersamples(alongwithasmallerreduction M yr−1) is considered (see Figure 8). This region contains 409 (cid:12) ofthenumberofirregularsandmergers),butbymatchingtheseon Hαemitters,whichcanbedividedinto4sub-samplesonthebasis thebasisofM andlog L distribution,itisthenpossibletodi- of Hα luminosities with the same distribution of M (means of K Hα K (cid:13)c 2009RAS,MNRAS000,1–13 10 D.Sobraletal. Shioyaetal.(2008)usedgalaxycolourstoidentify∼ 1000 candidate z = 0.24 Hα emitters within their narrow-band ex- cess sample. For this analysis, the sample is restricted to 492 sourcesbylimitingittoaveryrobustcompletenesslimit(L > Hα 1039.8ergs−1, corresponding to SFR > 0.05M yr−1). The ro- (cid:12) bustnessofthissamplecanbetestedandimprovedtakingadvan- tage of a large set of spectroscopic data recently made available intheCOSMOSfieldbythezCOSMOSproject.Thereare75Hα candidateswithaspectroscopicredshiftavailablefromzCOSMOS and 69 are identified as Hα emitters at 0.236 < z < 0.252. The remaining 6 sources are identified as [SII]6717 emitters at 0.229 < z < 0.231(contaminationbySII emittersisevenmore significantatlowerlinefluxes,aspointedoutrecentlybyWestra etal.2009).Withtherobustluminositycutusedhere,thiscorre- sponds to a contamination of 8 per cent, and by removing the 6 confirmedcontaminantsfromthesampleofHαemitters,thecon- taminationisestimatedtobe7percentfortheremainingsample Figure8.Thecomplete2-DMK-logLHαspace,showingthecorrelation of486emitters.Thisresultsinunderestimatingr0 byamaximum betweenrest-frameKluminosityandHαluminosity,comparedtothere- of 8.4 per cent and r0 will be corrected by 7 per cent to account gionsusedtoselectsub-sampleswiththesameMK orLHαdistributions. for contamination in the sample at z = 0.24; this is 80 per cent Thisclearlyshowsthatwithoutusingsub-regionsofthis2-Dspace,sam- ofthemaximumcorrection,consistentwiththeapproachusedfor plesdefinedonlyoneitherLHα orMK willpresentdifferentMK and z=0.84. LHαdistributions,respectively,sincethesequantitiesarecorrelated. Finally,inordertoobtainr (followingthesameprocedures 0 asforthez =0.84sample,exceptAGNcontamination),twored- −23.6,−23.7,−23.6and−23.7withstandarddeviationsof0.5 shiftdistributionsareconsidered:theoneassumedinShioyaetal. in all instances; ordered from highest to lowest in respect to Hα (2008;atop-hatcharacterizedbyz = 0.242±0.009),andared- luminosity).Similarly,inordertotestther -M correlation,the shift distribution derived from the distribution of the 69 spectro- 0 K sample is restricted to Hα emitters within the region defined by scopicallyconfirmedHαemitters,whichcanbewell-describedby −24.96 < M < −21.81(AB)and41.76 < logL < 42.22 aGaussianwithanaverageofz =0.245andastandarddeviation K Hα ergs−1 (see Figure 8) in which sub-samples split on the basis of ofσ = 0.006.Inpractice,thevaluesderivedfrombothdistribu- theirMKhavethesameLHαdistributions(meansof41.97,41.95, tionsagreewell,butforconsistencyindeterminingr0,theGaussian 41.95 and 41.97 and standard deviations of 0.12 in all instances; distributionwillbeassumed. orderedfromhighesttolowestinMK)–c.f.Table2.Theangular Thecorrelationlengthresultsinr0 =1.8±0.2h−1Mpc,with correlationfunctionsofthesematchedsub-samplesarethencom- theerrorincludingrandomerrors(fromthestandarddeviationob- putedandvaluesofr derivedasfullydescribedbefore. tainedafter1000measurementsofω(θ))andcosmicvariance(as- 0 The results are presented in Table 2 and in Figures 6 and 7. sumedtoaffectr0by11percentforthisarea).Onlyseparationsof TheserevealthatbothHαluminosityandrest-frameK luminos- 5 < θ < 800arcsecareusedwhenobtainingapower-lawfit:an- ity are relevant for the clustering of star-forming galaxies, since gularseparationslowerthan5arcsecarenotusedasω(θ)becomes forafixeddistributionofoneofthese,avariationintheotherone steeper,deviatingfromthepowerlaw;thisissimplyinterpretedas leadstoachangeinr .However,itshouldbenotedthatthecorre- thetransitionbetweenthetwo-haloandone-haloclustering,hap- 0 lationbetweenr andHαluminosity(forafixedM distribution) peningat≈ 20kpc.ItshouldalsobenotedthattheLimberequa- 0 K ismaintainedashighlystatisticallysignificant,whilethestatistical tion works well for this case, with the differences between using significanceofthecorrelationbetweenr andM atafixedL suchapproximationandintegratingthefullrelationbetweenω(θ) 0 K Hα distributionisslightlyreduced. andξ(r)beinglowerthan5percentforθ<800arcsec. 5.2 TheclusteringofHαemittersatz=2.23 5 THECLUSTERINGOFHαEMITTERSACROSS COSMICTIME IthasbeenmentionedthatLimber’sequationbreaksdownforlarge angularseparationsandforverynarrowfilters.Indeed,atz=2.23 The clustering properties of the Hα emitters at z = 0.84 can be the co-moving space width of the filter is extremely narrow, pre- compared with those of the HiZELS sample at z = 2.23 (G08) senting σ = 7.3h−1Mpc, and representing only ≈ 0.2 per cent andwithresultsderivedfromlowerredshiftsurveysofHαemitters of the total co-moving distance to z = 2.23; this means that if at z = 0.24 and z = 0.4 (Shioya et al. 2008; Nakajima et al. thespatialcorrelationfunctionoftheHαemittersisapower-law 2008). This can then be interpreted in the context of the ΛCDM ξ =(r/r )−1.8,thenω(θ),measuredat5<θ <1000arcseccan 0 cosmologicalmodel. notbewell-fittedbyapower-lawwithβ =−0.8,sincethisregime isprobingtheexactchangebetweenβ =γ+1andβ =γ. The correlation length r is therefore re-computed. This is 5.1 TheclusteringofHαemittersatz=0.24 0 done by using the ω(θ) data points presented in G08 and by do- Withthemotivationofreliablycomparingtheclusteringmeasure- ing a χ2 fit to the obtained ω(θ) from Equation 3. This assumes mentsatdifferentredshifts,andsincetheShioyaetal.(2008)sam- thatthespatialcorrelationfunctionisapower-lawwithγ =−1.8 ple is publicly available, ω(θ) is carefully re-computed for this (whichisshowntoreproducethedataverywell)andonlyr isal- 0 sample. lowedtovary.Thisprocedureresultsinr = 2.6±0.5h−1Mpc, 0 (cid:13)c 2009RAS,MNRAS000,1–13