Graduate Texts in Physics G T I P RADUATE EXTS N HYSICS Graduate Texts in Physics publishes core learning/teaching material for graduate- and advanced-level undergraduate courses on topics of current and emerging fields within physics,bothpureandapplied.ThesetextbooksservestudentsattheMS-orPhD-leveland their instructors as comprehensive sources of principles, definitions, derivations, exper- imentsandapplications(asrelevant)fortheirmasteryandteaching,respectively.Inter- nationalinscopeandrelevance,thetextbookscorrespondtocoursesyllabisufficientlyto serveasrequiredreading.Theirdidacticstyle,comprehensivenessandcoverageoffun- damental material also make them suitable as introductions or references for scientists entering,orrequiringtimelyknowledgeof,aresearchfield. SeriesEditors ProfessorRichardNeeds CavendishLaboratory JJThomsonAvenue CambridgeCB30HE,UK E-mail:[email protected] ProfessorWilliamT.Rhodes FloridaAtlanticUniversity ImagingTechnologyCenter DepartmentofElectricalEngineering 777GladesRoadSE,Room456 BocaRaton,FL33431,USA E-mail:[email protected] ProfessorH.EugeneStanley BostonUniversity CenterforPolymerStudies DepartmentofPhysics 590CommonwealthAvenue,Room204B Boston,MA02215,USA E-mail:[email protected] Forfurthervolumes: http://www.springer.com/series/8431 Carl S. Helrich The Classical Theory of Fields Electromagnetism With 132 Figures 123 Prof.Dr.Carl S. Helrich Goshen College S. Main St. 1700 46526 Goshen Indiana USA [email protected] • Complete solutions to the exercises are accessible to qualified instructors at springer.com on this book’ s product page. Instructors may click on the link additional information and register to obtain their restricted access. ISSN1868-4513 e-ISSN1868-4521 ISBN978-3-642-23204-6 e-ISBN978-3-642-23205-3 DOI10.1007/978-3-642-23205-3 Springer HeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber: 2011943618 (cid:2)c Springer-VerlagBerlinHeidelberg 2012 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerial isconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broad- casting,reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationof thispublicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLaw ofSeptember9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfrom Springer.ViolationsareliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply, even in the absence of a specific statement, that such names are exempt from the relevant protectivelawsandregulationsandthereforefreeforgeneraluse. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Thestudyofclassicalelectromagneticfieldsisanadventure.Thetheoryiscomplete mathematicallyandweareabletopresentitasanexampleofclassicalNewtonian experimental and mathematical philosophy. There is a set of foundational exper- iments on which most of the theory is constructed. And then there is the bold theoretical proposal of a field–field interaction from James Clerk Maxwell, the validityofwhichwasestablishedinHeinrichHertz’laboratory. Itismyintentionheretopresentthetheoryofclassicalfieldsasamathematical structurebasedsolidlyonlaboratoryexperiments.Itrytointroducethereader–the student–tothebeautyofclassicalfieldtheoryasagemoftheoreticalphysics. TokeepthediscussionfluidIplacedthehistoryinabeginningchapterandsome of the mathematical proofs in the Appendices. Helmholtz’ Theorem determines the form that will be taken by the field equations and the way in which we must understandeachexperiment.ToobtainMaxwell’sfieldequationsisthegoal.Ifthe readeralso learns to work throughexercisesthatis good.But that is notthe goal. The problems the reader will encounter as a practioner will require thinking that mustbebasedonadeepunderstandingofclassicalfieldtheory. AndsoIhavetriedtoobtainMaxwell’sEquationsassoonaspossible.Ihavenot beencompletelysuccessfulbecauseofmyconcernsaboutthereader’smathematical development.Ifeltcompelledtoincludearatherextensivechapteronmathematical backgroundforreadersunfamiliarwithsomeofthelanguage.Ihavealsoincluded chapterson Green’s Functionsand Laplace’s Equation between the static form of Maxwell’s Equations and a discussion of Faraday’s Experiment. These may be avoidedbythereaderalreadyfluentinthemathematics. The chapter on Einstein’s relativity is an integral necessity to the text. This chapter is historically accurate and fairly complete for the level of the text. My treatmentisbasedonoriginalpapersbyEinstein,HendrikA.Lorentz,andHermann Minkowski, on the excellent historical analysis of Abraham Pais, and on some more modern treatments such as Wolfgang Pauli’s and Wolfgang Rindler’s. My goal is to demonstrate the covariance of Maxwell’s Equations and to present the transformationtheory,whilenotlosingsightofthe“step”thathadbeenintroduced. I do not suggest ignoring this chapter. It is good for the physicist’s or engineer’s v vi Preface soultoknowaboutthisstep.Butitisnotabsolutelyrequiredformuchoftheuseto whichapractitionerwillputfieldtheory. Ihavetriedtobehonestwiththereaderaboutourmicroscopicpictureofmatter. Iavoidquantummechanicaldescriptions,butnotthefactthattheseliebehindour treatmentofmatter. Ourmodelsofplasmasprovideagoodtestinggroundforelectrodynamictheory thatdoesnotrequirequantummechanics.Ihaveusedthisatpointsinthetext.This has been my guide in the chapter on particle motion and in my final chapter on wavesinadispersivemedium. My discussionsof particlemotionare basedonHamiltonianmechanics,which I outline. This results in a symmetry, as well as simplicity in the equations of motion.Mytreatmentofmagneticmirrorsreliesonnumericalsolutions,whichare simplifiedbythecanonicalequations.AndIhavebasedmydiscussionofcoherent particlemotionverballyonwhatisknownofthedynamicsofplasmas. I have not intended this treatment to be exhaustive. The topics I have chosen reflectmyinterestsaswellaswhatIfeltmyowneducationlacked.Iwill,probably, readilyagreewithanycriticismclaimingthatIhavemissedanindispensabletopic. I do, however, believe that after finishing this text the reader should be able to encounterthattopicwithconfidence. I am grateful to generations of students who have helped in the development of my course in classical field theory. Their patience and enthusiasm has been an inspiration. IamalsogratefultomyteachersandthedirectorsofprogramsinwhichIhave beeninvolved.AmongtheseIparticularlywanttoacknowledgeLeslieFoldy,David Mintzer,MarvinLewis,andGu¨nterEcker.FromeachofthesepeopleIhavelearned tobethorough,unrelenting,andevenconfident.Thefirstthreeofthesepeoplewere inspiring teachers, Lewis was my doctoral mentor, and Ecker was my director in Ju¨lich. I have discussed modern plasma theory, of which I am no longer a part, extensivelywithmyfriendWei-liLeeofthePrincetonPlasmaPhysicsLaboratory. Leecontributeddirectlytomydiscussionsofgyrokinetictheoryanditsapplication tomagneticallyconfinedfusionplasmas. I am grateful for the patience and understanding of my wife, Betty Jane, who hasenduredmorethanI couldhaveexpectedas Iwrote this, andwhoremaineda constantsourceofencouragement. IamthankfulfortheencouragementandpositivediscussionsfromDr.Thorsten Schneider and Ms. Birgit Mu¨nch of Springer-Verlagand the very careful work of Ms.DeepthiMohanofSPiTechnologiesIndia. Complete and detailed solutionsto all the exercisesin this text are available to qualifiedinstructorsatspringer.comonthisbook’sproductpage.Toobtainaccess instructorsmayclickonthelinkadditionalinformationtoregister. Goshen,Indiana CarlHelrich Contents 1 OriginsandConcepts ...................................................... 1 1.1 Introduction......................................................... 1 1.2 Magnetism .......................................................... 2 1.3 Gravitation .......................................................... 3 1.4 Faraday,Thomson,andMaxwell .................................. 3 1.5 GravitationaVectorField ......................................... 4 1.6 ChargesandElectricFields ........................................ 5 1.7 Priestly’sSpeculation .............................................. 6 1.8 VoltaicCell ......................................................... 7 1.9 CurrentsandMagneticFields ..................................... 8 1.9.1 Oersted ................................................... 8 1.9.2 Ampe`re .................................................. 10 1.9.3 Electricalcurrent ........................................ 11 1.10 InducedElectricField .............................................. 12 1.11 TheMathematicalTheory ......................................... 13 1.11.1 Thefieldequations ...................................... 13 1.11.2 Maxwell ................................................. 15 1.12 ExperimentalEvidence ............................................ 20 1.12.1 Wavesinthelaboratory ................................. 20 1.12.2 Waveenergyandmomentum ........................... 23 1.13 MichelsonandMorleyExperiment ............................... 24 1.14 Relativity ........................................................... 27 1.15 Summary ........................................................... 29 Questions .................................................................... 30 2 MathematicalBackground ................................................ 33 2.1 Introduction......................................................... 33 2.2 Vectors .............................................................. 34 2.2.1 TheVectorSpace ........................................ 34 2.2.2 Representation ........................................... 36 2.2.3 ScalarProduct ........................................... 39 2.2.4 VectorProduct ........................................... 40 vii viii Contents 2.3 MultivariateFunctions ............................................. 41 2.3.1 Differentials ............................................. 42 2.3.2 CylindricalCoordinates ................................. 43 2.3.3 SphericalCoordinates ................................... 44 2.4 AnalyticFunctions ................................................. 45 2.4.1 TaylorSeries ............................................. 45 2.4.2 Analyticity ............................................... 46 2.5 VectorCalculus ..................................................... 46 2.5.1 FieldQuantities ......................................... 46 2.5.2 TheGradient............................................. 47 2.5.3 TheDivergence .......................................... 48 2.5.4 TheCurl ................................................. 54 2.5.5 TheLaplacianOperator ................................. 61 2.6 DifferentialEquations .............................................. 62 2.6.1 Helmholtz’Theorem .................................... 64 2.6.2 TheDelOperator ........................................ 65 2.6.3 DiracDeltaFunction .................................... 66 2.7 Summary ........................................................... 71 Exercises ..................................................................... 72 3 Electrostatics................................................................ 79 3.1 Introduction......................................................... 79 3.2 Coulomb’sLaw ..................................................... 79 3.2.1 Coulomb’sExperiment ................................. 79 3.2.2 Units ..................................................... 81 3.3 Superposition ....................................................... 81 3.4 DistributionsofCharges ........................................... 82 3.4.1 DistributionofPointCharges ........................... 83 3.4.2 VolumeChargeDensity ................................. 84 3.4.3 SurfaceChargeDensity ................................. 85 3.5 TheFieldConcept .................................................. 87 3.6 DivergenceandCurlofE .......................................... 89 3.7 IntegralElectrostaticFieldEquations ............................. 91 3.7.1 Gauss’Theorem ......................................... 92 3.7.2 Stokes’Theorem ........................................ 93 3.8 Summary ........................................................... 93 Exercises ..................................................................... 94 4 TheScalarPotential........................................................ 99 4.1 Introduction......................................................... 99 4.2 PotentialEnergy .................................................... 99 4.3 PotentialSurfaces .................................................. 101 4.4 Poisson’sEquation ................................................. 101 4.5 MultipoleExpansion ............................................... 108 4.6 EnergyStorage ..................................................... 110 4.6.1 ElectrostaticEnergyDensity ........................... 110 4.6.2 EnergyofaSetofConductors .......................... 111 Contents ix 4.7 Summary ........................................................... 116 Exercises ..................................................................... 117 5 Magnetostatics.............................................................. 123 5.1 Introduction......................................................... 123 5.2 Current .............................................................. 124 5.2.1 CurrentDensity ......................................... 124 5.2.2 ChargeConservation .................................... 125 5.3 Oersted’sExperiment .............................................. 126 5.4 Ampe`re’sExperiment .............................................. 129 5.4.1 DirectionoftheForce ................................... 130 5.4.2 TheConstant ............................................ 131 5.5 ConsequencesofAmpe`re’sExperiment .......................... 132 5.5.1 ForceonaCharge ....................................... 132 5.5.2 FieldfromaStraightWire .............................. 133 5.5.3 Biot–SavartLaw ......................................... 134 5.6 Superposition ....................................................... 136 5.7 MultipoleExpansion ............................................... 138 5.8 DivergenceandCurlofB .......................................... 141 5.9 GaugeTransformation ............................................. 142 5.10 TheStaticFieldEquations ......................................... 143 5.11 Summary ........................................................... 145 Exercises ..................................................................... 145 6 ApplicationsofMagnetostatics............................................ 149 6.1 Introduction......................................................... 149 6.2 Biot–SavartLaw ................................................... 149 6.3 VectorPotential..................................................... 151 6.4 Summary ........................................................... 159 Exercises ..................................................................... 159 7 ParticleMotion ............................................................. 165 7.1 Introduction......................................................... 165 7.2 AnalyticalMechanics .............................................. 165 7.2.1 Euler–LagrangeFormulation ........................... 165 7.2.2 HamiltonianFormulation ............................... 166 7.3 Electrodynamics .................................................... 167 7.3.1 TheLangrangian ........................................ 167 7.3.2 TheHamiltonian ........................................ 169 7.4 ParticleMotion ..................................................... 169 7.4.1 MagneticFields ......................................... 169 7.4.2 ElectricandMagneticFields ........................... 176 7.5 Plasmas ............................................................. 180 7.6 Summary ........................................................... 182 Exercises ..................................................................... 182 x Contents 8 Green’sFunctions .......................................................... 187 8.1 Introduction......................................................... 187 8.2 GeneralFormulation ............................................... 188 8.3 Poisson’sEquation ................................................. 189 8.4 Green’sFunctioninOneDimension .............................. 190 8.5 VectorPotential..................................................... 200 8.6 Summary ........................................................... 200 Exercises ..................................................................... 201 9 Laplace’sEquation......................................................... 205 9.1 Introduction......................................................... 205 9.2 FormsofLaplace’sEquation ...................................... 206 9.3 RectangularCoordinates ........................................... 207 9.3.1 EigenvalueProblems .................................... 207 9.4 CylindricalCoordinates ............................................ 211 9.5 SphericalCoordinates .............................................. 214 9.6 Summary ........................................................... 219 10 TimeDependence........................................................... 221 10.1 Introduction......................................................... 221 10.2 Faraday’sLaw ...................................................... 221 10.3 DisplacementCurrent .............................................. 224 10.4 MagnetostaticEnergy .............................................. 226 10.5 Maxwell’sEquations ............................................... 228 10.6 Summary ........................................................... 230 Exercises ..................................................................... 230 11 ElectromagneticWaves .................................................... 239 11.1 Introduction......................................................... 239 11.2 WaveEquations .................................................... 240 11.3 PlaneWaves ........................................................ 241 11.4 PlaneWaveStructure .............................................. 244 11.4.1 Polarization .............................................. 246 11.5 GeneralWaveSolutions............................................ 249 11.5.1 SpreadofWaves ......................................... 249 11.5.2 RepresentationinPlaneWaves ......................... 250 11.5.3 FourierTransform ....................................... 250 11.6 FourierTransformedEquations ................................... 254 11.7 ScalarandVectorPotentials ....................................... 255 11.8 Summary ........................................................... 256 Exercises ..................................................................... 257 12 EnergyandMomentum.................................................... 261 12.1 Introduction......................................................... 261 12.2 TransportTheorem ................................................. 262 12.3 ElectromagneticFieldEnergy ..................................... 263 12.4 ElectromagneticFieldMomentum ................................ 266