ebook img

The Canonical Join Representation in Algebraic Combinatorics [PhD thesis] PDF

152 Pages·2017·0.98 MB·English
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Canonical Join Representation in Algebraic Combinatorics [PhD thesis]

ABSTRACT BARNARD, EMILY SARAH. The Canonical Join Representation in Algebraic Combinatorics. (Under the direction of Nathan Reading.) We study the combinatorics of a certain minimal factorization of the elements in a finite lattice L called the canonical join representation. The join ⋁A = w is the canonical join rep- resentation of w if A is the unique lowest subset of L satisfying ⋁A = w (where “lowest” is made precise by comparing order ideals under containment). When each element in L has a canonical join representation, we define the canonical join complex to be the abstract simplicial complex of subsets A such that ⋁A is a canonical join representation. In the first chapter, we characterize the class of finite lattices whose canonical join complex is flag, and show how the canonical join complex is related to the topology of L. Next,westudythecanonicaljoincomplexoftheTamarilatticeintypesAandB.Werealize the canonical join complex of the Tamari lattice as a complex of noncrossing arc diagrams, give a shelling order on its facets, and show that it is homotopy equivalent to a wedge of Catalan- many spheres. We extend these results to the c-Cambrian lattices of type A, which we show to be vertex decomposable. We close this document by considering a family of counting problems, analogous to the well-studied Coxeter-Catalan combinatorics. In our construction, each object to be counted is obtained by doubling a Coxeter-Catalan object. We show that, given a finite Coxeter group W, each of these new counting problems has the same solution, which we call the W-biCatalan number. © Copyright 2017 by Emily Sarah Barnard All Rights Reserved The Canonical Join Representation in Algebraic Combinatorics by Emily Sarah Barnard A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Mathematics Raleigh, North Carolina 2017 APPROVED BY: Patricia Hersh Ricky Liu Seth Sullivant Nathan Reading Chair of Advisory Committee DEDICATION For Brian. ii BIOGRAPHY Emily was born in Evergreen Park, IL. She spent her childhood split between the southwestern suburbs of Chicago and the northwestern woods of Michigan. In June 2010, she graduated from Northwestern University, and the following fall she began a year long post-baccalaureate program in mathematics at North Carolina State University. She chose to complete a Ph.D. in mathematics,innosmallpart,becauseofNathanReading’sencouragement.Atthetimeofthis writing, she looks forward to a postdoctoral appointment with the Department of Mathematics at Northeastern University. iii ACKNOWLEDGEMENTS The author thanks her advisor, Nathan Reading, for his editorial suggestions and helpful con- versations. She thanks her committee members: Patricia Hersh (who suggested the connection to the crosscut complex in Chapter 2), Ricky Liu, Blair D. Sullivan, and Seth Sullivant. The author thanks the many other mathematicians whose conversations have shaped this document for the better: Andrew Carroll, Al Garver, Emily Gunawan, Christophe Hohlweg, AlexanderMartsinkovsky,ThomasMcConville,VictorReiner,DavidSpeyer,GordanaTodorov, and Shijie Zhu. This includes the fellow and former members of the Reading research group: Erin Bancroft, Chetak Hossain, Shirley Law, Emily Meehan, Salvatore Stella, and Shira Viel. She thanks her delightful and encouraging officemates, and the insightful crew at the graduate algebra and combinatorics seminar. Finally, the author thanks Springer International Publishing: A version of the final chapter, Coxeter-biCatalan combinatorics will appear in the Journal of Algebraic Combinatorics. iv TABLE OF CONTENTS List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 The canonical join representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The combinatorics of the canonical join representation . . . . . . . . . . . . . . . 2 1.3 Finite Coxeter groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 The topology of the canonical join complex . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Coxeter-biCatalan combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Chapter 2 The Canonical Join Complex . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Motivation and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Finite semidistributive lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 The flag property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.3 Crosscut-simplicial lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Lattice-theoretic constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.1 Sublattices and quotient lattices . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.2 Products and sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.3 Day’s doubling construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5 Discussion and open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Chapter 3 The Canonical Join Complex of the Tamari Lattice . . . . . . . . . . 40 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.1 Lattice-theoretic background . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.2 The noncrossing arc complex . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.3 The c-Cambrian congruence and the Tamari lattice . . . . . . . . . . . . . 46 3.2.4 The type-B Tamari lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.5 Noncrossing perfect matchings . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3 Shellability of the Tamari lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.1 The Tamari lattice in type A . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.2 The Tamari lattice in type B . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4 Vertex Decomposability of the c-Cambrian lattices. . . . . . . . . . . . . . . . . . 63 3.4.1 The c-Cambrian lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.4.2 Vertex decomposability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Chapter 4 Coxeter BiCatalan Combinatorics . . . . . . . . . . . . . . . . . . . . . . 76 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.2 BiCatalan objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Antichains in the doubled root poset and twin nonnesting partitions . . 80 v 4.2.2 BiCambrian fans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.2.3 The biCambrian congruence, twin sortable elements, and bisortable ele- ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.2.4 Twin clusters and bicluster fans . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2.5 Twin noncrossing partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.3 Bipartite c-bisortable elements and alternating arc diagrams . . . . . . . . . . . . 95 4.3.1 Pattern avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.3.2 Noncrossing arc diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.3.3 Alternating arc diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.3.4 Counting alternating arc diagrams . . . . . . . . . . . . . . . . . . . . . . . 99 4.3.5 Enumerating bipartite c-bisortable elements in type B . . . . . . . . . . . 103 4.3.6 Simpliciality of the bipartite biCambrian fan in types A and B . . . . . . 106 4.4 Double-positive Catalan numbers and biCatalan numbers . . . . . . . . . . . . . 110 4.4.1 Double-positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.4.2 Counting twin nonnesting partitions . . . . . . . . . . . . . . . . . . . . . . 112 4.4.3 Canonical join representations and lattice congruences . . . . . . . . . . . 114 4.4.4 Canonical join representations of c-bisortable elements . . . . . . . . . . . 118 4.4.5 Counting bipartite c-bisortable elements . . . . . . . . . . . . . . . . . . . 121 4.4.6 BiCatalan and Catalan formulas . . . . . . . . . . . . . . . . . . . . . . . . 123 4.4.7 The double-positive Catalan numbers . . . . . . . . . . . . . . . . . . . . . 128 4.4.8 The Type D biCatalan number . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.4.9 Type-D biNarayana numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 vi LIST OF TABLES Table 4.1 The W-biCatalan numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Table 4.2 The biNarayana numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Table 4.4 The type-D biNarayana numbers . . . . . . . . . . . . . . . . . . . . . . . . 80 Table 4.6 Some double positive Catalan numbers . . . . . . . . . . . . . . . . . . . . . 128 Table 4.7 (2k)! ⋅biNar (D ) for small k . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 2k k n vii LIST OF FIGURES Figure 1.1 Any map φ of from the set X to a lattice L extends uniquely to a lattice homomorphism φ˜∶F →L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Figure 1.2 The weak order on the symmetric group S . . . . . . . . . . . . . . . . . . 5 3 Figure 2.1 The canonical join complex is an empty triangle. . . . . . . . . . . . . . . 10 Figure 2.2 Some examples of noncrossing arc diagrams. . . . . . . . . . . . . . . . . . 13 Figure 2.3 Twofinitelatticeswhosetopelementshavenocanonicaljoinrepresentation. 15 Figure 2.4 DashedlinesrepresentorderrelationsinLwhilesolidlinesrepresentcover relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 2.5 Some order relations in the join-refinement order for L. . . . . . . . . . . 21 Figure 2.6 Some relations in the join-refinement order for L. . . . . . . . . . . . . . . 22 Figure 2.7 A depiction of the argument for Lemma 2.3.13. Dashed lines represent order relations in L while solid lines represent cover relations.. . . . . . . 24 Figure 2.8 An illustration of the argument for the proof of Corollary 2.1.5. Dashed gray lines represent relations in L while solid black lines represent cover relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 2.9 A finite crosscut-simplicial lattice failing both SD and SD . . . . . . . . 26 ∨ ∧ Figure 2.10 DashedlinesrepresentrelationsinLandsolidlinesrepresentcoverrelations. 27 Figure 2.11 Dashed lines represent relations in L while solid lines represent cover relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 2.12 The Tamari lattice T and its canonical join complex. . . . . . . . . . . . 30 3 Figure 2.13 The canonical labeled join graph of three non-isomorphic congruence uni- form lattices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 2.14 The two leftmost graphs are isomorphic Hasse diagrams for the distribu- tive lattice L. Rightmost is the lattice obtained by doubling the interval [a,e] in L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 2.15 Doubling the interval [a,e] in the leftmost congruence uniform lattice yields the left-middle lattice, whose canonical join graph is isomorphic to C . Doubling the interval [a,e] in the right-middle lattice yields the 6 rightmost lattice, whose canonical join graph is isomorphic to C . . . . . 36 7 Figure 2.16 Left: The weak order for the symmetric group S . Right: The lattice of 3 2-multichains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 2.17 Left: The canonical join complex of weak order for the symmetric group S . Right: The canonical join complex of the lattice of 2-multichains. . . 38 3 Figure 3.1 The Tamari lattice T and its canonical join complex. . . . . . . . . . . . 40 3 Figure 3.2 The faces in the canonical join complex of the weak order on S . . . . . . 41 3 Figure 3.3 From left to right: δ(4123),δ(2413),δ(2341), and δ(3412). . . . . . . . . . 45 Figure 3.4 Left: δ(2431). Right: The arc corresponding to the canonical joinand 2314. 46 Figure 3.5 A demonstration of the map µ. . . . . . . . . . . . . . . . . . . . . . . . . . 53 Figure 3.6 Each diagram contains two symmetric arcs. . . . . . . . . . . . . . . . . . 54 Figure 3.7 An illustration for the proof of Lemma 3.3.9. . . . . . . . . . . . . . . . . . 56 viii

See more

The list of books you might like

book image

The Spanish Love Deception

Elena Armas
·2021
·6.45 MB

book image

The 48 Laws of Power

Robert Greene
·454 Pages
·2004
·1.92 MB

book image

What Happened to You?

Bruce D. Perry
·2021
·4.38 MB

book image

Travel and Adventure in South-East Africa:

Frederick Courteney Selous
·532 Pages
·1984
·51.073 MB

book image

Convert JPG to PDF online

53 Pages
·2016
·2.59 MB

book image

Greek Government Gazette: Part 7, 2006 no. 659

The Government of the Hellenic Republic
·2006
·0.33 MB

book image

MAGNT research report

Museums and Art Galleries of the Northern Territory
·2008
·2.2 MB

book image

Capítulo I. Introducción

604 Pages
·2009
·8.14 MB

book image

DTIC ADA449316: How Deployments Affect Service Members

Defense Technical Information Center
·0.49 MB

book image

Notiziario ERSA 2006-1

ERSA
·2006
·33.7 MB

book image

T. C. Resmi Gazete

64 Pages
·2010
·2.36 MB

book image

Tailor-made live kidney donation

196 Pages
·2014
·4.83 MB