ebook img

The Calculus of Complex Functions PDF

456 Pages·2022·22.525 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Calculus of Complex Functions

AMS / MAA TEXTBOOKS VOL 71 The Calculus of Complex Functions William Johnston I.Primitives–DerivativesoftheIntegralsaretheIntegrands 𝑧𝑛+1 1 1. ∫𝑧𝑛𝑑𝑧= 2. ∫ 𝑑𝑧=Log𝑧 𝑛+1 𝑧 3. ∫e𝑧𝑑𝑧=e𝑧 4. ∫sin𝑧𝑑𝑧=−cos𝑧 5. ∫cos𝑧𝑑𝑧=sin𝑧 6. ∫tan𝑧𝑑𝑧=Logsec𝑧 7. ∫cot𝑧𝑑𝑧=Logsin𝑧 8. ∫sec𝑧𝑑𝑧=Log(sec𝑧+tan𝑧) 9. ∫csc𝑧𝑑𝑧=Log(csc𝑧−cot𝑧) 10. ∫sec2𝑧𝑑𝑧=tan𝑧 11. ∫csc2𝑧𝑑𝑧=−cot𝑧 12. ∫sec𝑧tan𝑧𝑑𝑧=sec𝑧 13. ∫sinh𝑧𝑑𝑧=cosh𝑧 14. ∫cosh𝑧𝑑𝑧=sinh𝑧 𝑑𝑧 1 𝑧 15. ∫tanh𝑧𝑑𝑧=Logcosh𝑧 16. ∫ = arctan 𝑧2+𝑎2 𝑎 𝑎 𝑑𝑧 1 𝑧−𝑎 𝑑𝑧 17. ∫ = Log( ) 18. ∫ =Log(𝑧+√𝑧2±𝑎2) 𝑧2−𝑎2 2𝑎 𝑧+𝑎 √𝑧2±𝑎2 e𝑧(sin𝑧−cos𝑧) e𝑧(sin𝑧+cos𝑧) 19. ∫e𝑧sin𝑧𝑑𝑧= 20. ∫e𝑧cos𝑧𝑑𝑧= 2 2 𝑧 𝑎 𝑧 21.∫√𝑎2−𝑧2𝑑𝑧= √𝑎2−𝑧2+ sin−1( ) 2 2 𝑎 𝑧 22.∫√𝑧2±𝑎2𝑑𝑧= √𝑧2±𝑎2±Log(𝑧+√𝑧2±𝑎2) 2 Anarbitraryconstantmaybeaddedtoanyofthetablevalues. II.CommonIntegrationTechniques (A) 𝑢-Substitution: ∫𝑓(𝑔(𝑧))𝑔′(𝑧)𝑑𝑧=∫𝑓(𝑢)𝑑𝑢,where𝑢=𝑔(𝑧). (B) IntegrationbyParts: ∫𝑢𝑑𝑣=𝑢𝑣−∫𝑣𝑑𝑢. 𝑃(𝑥) (C) Partial Fraction Decomposition: To integrate a rational function , follow a three 𝑄(𝑥) stepprocess.First,uselongdivision(ifnecessary)tomakethenumeratorpolynomial’s degreelessthanthedenominator’s.Second, factorthedenominatorintolinearterms. Third,equatetherationalfunctiontothesumofaconstantovereachlineartermand solvefortheconstants.Theprimitiveoftherationalfunctionisthesumoftheprimitives oftheseresultingterms. (D) Half-angleSubstitution: Whensimplemethodswillnotintegratearatioofsumsand/or productsoftrigonometricfunctions,thistechniquecanalwayswork.Writethefunction asaratioofsumsand/orproductsofsinesandcosines,andthenusethesubstitution 𝑥 2𝑡 1−𝑡2 𝑡 = tan( ).Applydouble-angletrigonometricidentitiessin𝑥 = ,cos𝑥 = , 2 1+𝑡2 1+𝑡2 2𝑑𝑡 and𝑑𝑥= .Thetrigonometricintegralbecomestheintegralofarationalfunction, 1+𝑡2 whoseprimitivemaythenbefound,forexample,viapartialfractiondecomposition. III.FourierCoefficients ∞ 𝜋 1 ThecomplexFourierseries𝑓(𝑥)∼ ∑ 𝑐 e𝑖𝑛𝑥has𝑐 = ∫ 𝑓(𝑡)e−𝑖𝑛𝑡𝑑𝑡. 𝑛 𝑛 2𝜋 𝑛=−∞ −𝜋 ∞ TherealFourierseries𝑓(𝑥)∼𝑎 + ∑ (𝑎 cos𝑛𝑥+𝑏 sin𝑛𝑥)hascoefficients 0 𝑛 𝑛 𝑛=1 𝜋 𝜋 𝜋 1 1 1 𝑎 = ∫ 𝑓(𝑡)𝑑𝑡, 𝑎 = ∫ 𝑓(𝑡)cos(𝑛𝑡)𝑑𝑥, and 𝑏 = ∫ 𝑓(𝑥)sin(𝑛𝑡)𝑑𝑡. 0 2𝜋 𝑛 𝜋 𝑛 𝜋 −𝜋 −𝜋 −𝜋 𝑎 −𝑖𝑏 𝑎 +𝑖𝑏 Theyarerelatedvia𝑐 =𝑎 ,𝑐 = 𝑛 𝑛,and𝑐 = 𝑛 𝑛 for𝑛=1,2,3,... 0 0 𝑛 2 −𝑛 2 IV.Trigonometry 1 1 A.HalfAngleFormulas: cos2𝜃 = (1+cos2𝜃), sin2𝜃 = (1−cos2𝜃) 2 2 B.AdditionFormulas: sin(𝛼+𝛽)=sin𝛼cos𝛽+cos𝛼sin𝛽, cos(𝛼+𝛽)=cos𝛼cos𝛽−sin𝛼sin𝛽 C.UnitCircleValuesintheComplexPlane: √2 √2 𝑖𝜋 Eachpoint𝑥+𝑖𝑦onthecircleequalse𝑖𝜃withpolarangle𝜃.Forexample, + 𝑖 =e 4 2 2 The Calculus of Complex Functions AMS/MAA TEXTBOOKS VOL 71 The Calculus of Complex Functions William Johnston MAATextbooksEditorialBoard WilliamR.Green,Co-Editor SuzanneLynneLarson,Co-Editor PaulT.Allen MarkBollman DebraS.Carney HughN.Howards WilliamJohnston EmekKose MichaelJ.McAsey ThomasC.Ratliff PamelaRichardson JeffreyL.Stuart RonTaylor RuthVanderpool ElizabethWilcox 2020MathematicsSubjectClassification.Primary30-01; Secondary30-03,30B10,30C35,30D20,30E20,30E25,47-01,47A10,47B01. Frontcover4-Dgraphs,withcolorrepresentingthepolarangleoftheoutput,areof𝑓(𝑧)=𝑧2, 𝑓(𝑧)= (𝑧−1/2)(𝑧−𝑖/2) for𝑧∈𝔻,Γ(𝑧),𝑓(𝑧)=e𝑧,𝑓(𝑧)=cos𝑧,andtheRiemannzetafunction𝜁(𝑧). (1−𝑧/2)(1+𝑖𝑧/2) Foradditionalinformationandupdatesonthisbook,visit www.ams.org/bookpages/text-71 LibraryofCongressCataloging-in-PublicationData Names:Johnston,WilliamWilbur,1960–author. Title:Thecalculusofcomplexfunctions/WilliamJohnston. Description: Providence,RhodeIsland: AmericanMathematicalSociety,[2022]|Series: AMS/MAAtext- books,2577-1205;volume71|Includesbibliographicalreferencesandindex. Identifiers:LCCN2021044385|ISBN9781470465650(paperback)|ISBN9781470469016(ebook) Subjects: LCSH:Functionsofcomplexvariables. |Calculus. |AMS:Functionsofacomplexvariable–In- structionalexposition(textbooks,tutorialpapers,etc.) pertainingtofunctionsofacomplexvariable. | Functionsofacomplexvariable–Seriesexpansionsoffunctionsofonecomplexvariable–Powerse- ries(includinglacunaryseries)inonecomplexvariable.|Functionsofacomplexvariable–Geometric functiontheory–Generaltheoryofconformalmappings. |Functionsofacomplexvariable–Entire andmeromorphicfunctionsofonecomplexvariable,andrelatedtopics–Entirefunctionsofonecom- plexvariable,generaltheory.|Functionsofacomplexvariable–Miscellaneoustopicsofanalysisinthe complexplane–Integration,integralsofCauchytype,integralrepresentationsofanalyticfunctionsin thecomplexplane. |Functionsofacomplexvariable–Miscellaneoustopicsofanalysisinthecomplex plane–Boundaryvalueproblemsinthecomplexplane.|Operatortheory–Instructionalexposition(text- books,tutorialpapers,etc.) pertainingtooperatortheory. |Operatortheory–Generalreferenceworks (handbooks,dictionaries,bibliographies,etc.)pertainingtooperatortheory–Spectrum,resolvent. Classification:LCCQA331.7.J642022|DDC515/.9–dc23/eng/20211105 LCrecordavailableathttps://lccn.loc.gov/2021044385 Copyingandreprinting. Individualreadersofthispublication,andnonprofitlibrariesactingforthem, arepermittedtomakefairuseofthematerial,suchastocopyselectpagesforuseinteachingorresearch. Permissionisgrantedtoquotebriefpassagesfromthispublicationinreviews,providedthecustomaryac- knowledgmentofthesourceisgiven. Republication,systematiccopying,ormultiplereproductionofanymaterialinthispublicationispermit- tedonlyunderlicensefromtheAmericanMathematicalSociety.Requestsforpermissiontoreuseportions ofAMSpublicationcontentarehandledbytheCopyrightClearanceCenter. Formoreinformation,please visitwww.ams.org/publications/pubpermissions. Sendrequestsfortranslationrightsandlicensedreprintstoreprint-permission@ams.org. ©2022bytheAmericanMathematicalSociety.Allrightsreserved. TheAmericanMathematicalSocietyretainsallrights exceptthosegrantedtotheUnitedStatesGovernment. PrintedintheUnitedStatesofAmerica. ⃝1Thepaperusedinthisbookisacid-freeandfallswithintheguidelines establishedtoensurepermanenceanddurability. VisittheAMShomepageathttps://www.ams.org/ 10987654321 272625242322 InmemoriamPatriciaDunkelJohnston “Food, art, science, storytelling—theyallhelpustounderstandourselves, each other,andourenvironment,throughheadandheart. Thisisculture. Bycalling ontheimaginationandthepowersofobservationweallhave,culturehelpsustell ourstory,... astorythat’saboutus,aboutourneighbors,aboutourcountry,our planet,ouruniverse,astorythatbringsallofustogetherasaspecies.Ibelievethat cultureisessentialtooursurvival.Itishowweinvent,howwebringthenewand theoldtogether,howwecanallimagineabetterfuture.Iusedtosaythatculture needsaseatatthetable,anequalpartinoureconomicandpoliticalconversation. Inowbelievethatitisthegroundonwhicheverythingelseisbuilt. Itiswhere theglobalandlocal,ruralandurban,presentandfutureconfrontoneanother. Cultureturnstheotherintous,anditdoesthisthroughtrust,imagination,and empathy.Solet’stelleachotherourstoriesandmakeitourepic,onefortheages.” —Yo-YoMaontheimportanceoftellingeachotherourstories, PBSNewsHour,April15,2019,6:05PMEST Thestorytoldbymathematicsisafundamentalpartofourhumanculture.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.