THE ART OF SEEING: VISUAL PERCEPTION IN DESIGN AND EVALUATION OF NON-PHOTOREALISTIC RENDERING BYANTHONYSANTELLA ADissertation submittedtothe GraduateSchool—NewBrunswick Rutgers,TheStateUniversityofNewJersey inpartialfulfillmentoftherequirements forthedegreeof DoctorofPhilosophy GraduatePrograminComputerScience Writtenunderthedirectionof DougDeCarlo andapprovedby NewBrunswick,NewJersey May,2005 ABSTRACT OF THE DISSERTATION The Art of Seeing: Visual Perception in Design and Evaluation of Non-Photorealistic Rendering by Anthony Santella Dissertation Director: Doug DeCarlo Visual displays such as art and illustration benefit from concise presentation of in- formation. We present several approaches for simplifying photographs to create such concise, artistically abstracted images. The difficulty of abstraction lies in selecting what is important. These approaches apply models of human vision, models of image structure, and new methods of interaction to select important content. Important loca- tionsareidentifiedfromeyemovementrecordings. Usingaperceptualmodel,features are then preserved where the viewer looked, and removed elsewhere. Several visual stylesusingthismethodarepresented. Theperceptualmotivationforthesetechniques makes predictions about how they should effect viewers. In this context, we validate our approach using experiments that measure eye movements over these images. Re- sults also provide some interesting insights into artistic abstraction and human visual perception. ii Acknowledgements Thanks go to the many people whose help and support was essential in making this work possible. None of this would have happened without my advisor Doug DeCarlo. Thanks go also to my other committe members: Adam Finkelstein, Eileen Kowler, Casimir Kulikowski and Peter Meer for their advice and encouragement at various (in somecasesmany)stagesofthisprocess. Thanks go also to the many friends and family members who have supported and keptmesanethroughthislongprocess. Iwouldn’thavesurviveditwithoutmyparents and brothers Nick and Dennis. Special thanks go to Bethany Weber. Thanks also to JimHousell,alltheoldNYUcrowd,thegradgroupatSt. Petersandallthesupportive soulsintheCSDepartment,RuCCSandtheVILLAGE. Finally, thanks go to Phillip Greenspun for photos used in several renderings that appear in chapters 7 and 9, as well as models Marybeth Thomas, Adeline Yeo and FrancoFigliozzi. SpecialthankstoGeorgioDellachiesaforlookingequallythoughtful incountlessillustrativeexamples. iii Table of Contents Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Inspirations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1. ArtisticPractice . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2. Psychology . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.3. ComputerGraphics . . . . . . . . . . . . . . . . . . . . . . . 7 1.2. OurGoal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. AbstractioninComputerGraphics . . . . . . . . . . . . . . . . . . . . 11 2.1. ManualAnnotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2. AutomaticMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3. LevelOfDetail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3. HumanVision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1. EyeMovements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1. EyeMovementControl . . . . . . . . . . . . . . . . . . . . . 19 3.1.2. SalienceModels . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2. EyeTracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3. LimitsofVision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.1. ModelsofSensitivity . . . . . . . . . . . . . . . . . . . . . . 24 3.3.2. SensitivityAwayfromtheVisualCenter . . . . . . . . . . . . 26 3.3.3. ApplicabilitytoNaturalImagery . . . . . . . . . . . . . . . . 26 iv 4. VisionandImageProcessing . . . . . . . . . . . . . . . . . . . . . . . 30 4.1. ImageStructureFeaturesandRepresentation . . . . . . . . . . . . . 30 4.2. Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3. EdgeDetection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5. OurApproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1. EyetrackingasInteraction . . . . . . . . . . . . . . . . . . . . . . . 38 5.2. UsingVisibilityforAbstraction . . . . . . . . . . . . . . . . . . . . . 40 6. PainterlyRendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.1. ImageStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.2. ApplyingtheLimitsofVision . . . . . . . . . . . . . . . . . . . . . 43 6.3. Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7. ColoredDrawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.1. FeatureRepresentation . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.1.1. Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.1.2. Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7.2. PerceptualModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.3. Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8. PhotorealisticAbstraction . . . . . . . . . . . . . . . . . . . . . . . . . 64 8.1. ImageStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 8.2. MeasuringImportance . . . . . . . . . . . . . . . . . . . . . . . . . 65 8.3. ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . 67 9. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 v 9.1. EvaluationofNPR . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 9.1.1. AnalysisofEyeMovementData . . . . . . . . . . . . . . . . 75 9.2. Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 9.2.1. Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 9.2.2. Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 9.2.3. PhysicalSetup . . . . . . . . . . . . . . . . . . . . . . . . . 78 9.2.4. CalibrationandPresentation . . . . . . . . . . . . . . . . . . 79 9.3. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 9.3.1. DataAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 80 9.3.2. StatisticalAnalysis . . . . . . . . . . . . . . . . . . . . . . . 82 9.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 9.4.1. QuantitativeResults . . . . . . . . . . . . . . . . . . . . . . 86 9.4.2. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 9.5. EvaluationConclusion . . . . . . . . . . . . . . . . . . . . . . . . . 92 10. FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 10.1. ImageModeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 10.1.1. Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 95 10.1.2. Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 10.2. PerceptualModels . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 10.3. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 11.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 CurriculumVita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 vi List of Figures 1.1. (a) Henri de Toulouse-Lautrec’s “Moulin Rouge—La Goulue” (Litho- graphic print in four colors, 1891). (b) Odd Nerdrum’s “Self-portrait as Baby” (Oil, 2000). Artists control detail as well as other features such as color and texture to focus a viewer on important features and create a mood. La Goulue’s swirling under-dress is a highly detailed focal point of the image, and contributes to the picture’s air of reck- less excitement. Artists have a fair amount of latitude in how they allocate detail to create an effect. Nerdrum renders his eyes (usually one of the most prominent features in a portrait) in a sfumato style that makes them almost nonexistent. Detail is instead allocated to the child’s prophetic gesture. These choices change a common baby pic- tureintosomethingmysteriousandunsettling. . . . . . . . . . . . . 4 1.2. Judith Schaechter’s, “Corona Borealis” (Stained glass, 2001). Skill- ful artists use the formal properties and constraints of a medium for expressive purposes. The high dynamic range provided by transmit- ted light and the heavy black outlines of the lead caming that holds the glass together are used to set the figure off from the background creatingapowerfulimageofjoyinisolation. . . . . . . . . . . . . . 5 2.1. Direct placement of strokes. Complete control of abstraction is pos- sible when a user provides actual strokes that are rendered in a given style. Reproducedfrom[Durandetal,2001]. . . . . . . . . . . . . . 11 2.2. Manual annotation for textural indication. Important edges on a 3D model are marked and have texture rendered near them, while it is omitted in the interior. Reproduced from [Winkenbach and Salesin, 1994]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 vii 2.3. Manual local importance images. Hand painted images can indicate importantareastoberenderedingreaterdetailorfidelity. Reproduced from[Hertzmann,2001] . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4. (a)originalimage. (b)correspondingsaliencemap[Ittietal,1998]. (c) corresponding salience map [Itti and Koch, 2000]. Salience methods picks out potentially important areas on the basis of contrast in some space(notlimitedtointensity). Thetwomethodspicturedheredifferin the method of normalization used to enhance contrast between salient andnonsalientregions. . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1. Patterns of eye movements of a single subject over an image when given different instructions. Note (1) free observation which shows fixations that are relatively dispersed yet still focused on relevant ar- eas. Contrast it with (3) where the viewer is instructed to estimate the figures’ages. ReproducedfromYarbus1967. . . . . . . . . . . . . . 18 3.2. Similareffectsto[Yarbus,1967]areeasily(evenunintentionally)achieved when using eye tracking for interaction. Circles are fixations, their di- ameter is proportional to duration. The first viewer was instructed to findtheimportantsubjectmatterintheimage. Thesecondviewerwas told to ’just look at the image’. The viewer assumed, from prior expe- rience in perceptual experiments, that he was going to be later asked detailed questions about the contents of the scene. This resulted in a muchmorediffusepatternofviewing. . . . . . . . . . . . . . . . . . 19 3.3. Log-log plot of contrast sensitivity from equation (3.2) This function isusedtodefineathresholdbetweenvisibleandinvisiblefeatures. . 25 3.4. CorticalMagnificationdescribesthedrop-offofvisualsensitivitywith angulardistancefromthevisualcenter. . . . . . . . . . . . . . . . . 27 viii 4.1. (a) Scale space of one dimensional signal. Features disappear through scale space but no new features appear. (b) Plot of inflection points of anotheronedimensionalsignalthroughscalespace. Reproducedfrom [Witkin1983] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2. Interval tree for 1D signal illustrating decomposition of the signal into ahierarchy. Reproducedfrom[Witkin1983]. . . . . . . . . . . . . . 33 5.1. (a) Computing eccentricities with respect to a particular fixation at p. (b)Asimpleattentionmodeldefinedasapiecewise-linearfunctionfor determining the scaling factor a for fixation f based on its duration i i t. Very brief fixations (below t ) are ignored, with a ramping up (at i min t )toamaximumlevelofa . . . . . . . . . . . . . . . . . . . . 40 max max 6.1. Painterly rendering results. The first column shows the fixations made by a viewer. Circles are fixations, size is proportional to duration, the baratthelowerleftisthediameterthatcorrespondstoonesecond. The second column illustrates the painterly renderings built based on that fixationdata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.2. Detail in background adjacent to important features can be inappro- priately emphasized. The main subject has a halo of detailed shutter slats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.3. Sampling strokes from an anisotropic scale space avoids giving the imageanoverallblurredlook,butproducesasomewhatjaggedlookin backgroundareas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.4. Color and contrast manipulation. Side by side comparison or render- ing with and without color and contrast manipulation (precise stroke placementvariesbetweenthetwoimagesduetorandomness). . . . . 48 7.1. Slices through several successive levels of a hierarchical segmentation treegeneratedusingourmethod. . . . . . . . . . . . . . . . . . . . . 51 7.2. Linedrawingstyleresults. . . . . . . . . . . . . . . . . . . . . . . . 60 ix
Description: