ebook img

The Art of Error Correcting Coding PDF

232 Pages·2002·9.585 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Art of Error Correcting Coding

The Art of Error Correcting Coding Robert H. Morelos-Zaragoza Copyright © 2002 John Wiley & Sons Ltd ISBNs: 0-471-49581-6 (Hardback); 0-470-84782-4 (Electronic) The Art of Error Correcting Coding The Art of brror Correcting Coding Robert H. Morelos-Zaragoza SONY Computer Science Laboratories, Inc. JAPAN JOHN WILEY & SONS, LTD Copyright Q 2002 by John Wiley & Sons, Ltd Baffins Lane, Chichester, West Sussex, P019 lUD, England National 01243 779777 International (+44) 1243 779777 e-mail (for orders and customers ervice enquiries): [email protected] Visit our HomeP age on http://www.wileyeurope.com or http://www.wiley.com All Rights Reserved. No part of this publicationm ay be reproduced, stored in a retrieval system, or transmitted, in anyf orm or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the termo f the CopyrightD esigns and PatentsA ct 1988 or under the termso f a licence issued by the Copyright Licensing Agency, 90 Tottenham CourRt oad, London, W1P9 HE, UK, without the permission in writing of the Publisher, with the exception of any material supplied specifically for the purposeo f being entered and executed on a computer sys- tem, for exdusiveu se by the purchasero f the publication. Neither the author(s) nor JohnW iley & Sons, Ltd accept any responsibility or liability for loss or damage occa- sioned to any person or property through using the material, instructions, methodso r ideas contained herein, or acting or refraining from actinags a result of such use. The author(s) andP ublisher expressly disclaim all implied warranties, including merchantabilityo f fitness for any particular purpose. Therew ill be no duty on the author(s) or Publisher to correct any errorso r defects in thes oftware. Designations used by companies to distinguish their products areo ften claimed as trademarks. In all instances where John Wiley & Sons, Ltd is aware of a daim, the product names appeari niinti al capital or capital letters. Readers, however, should contact the appropriatceo mpanies for more complete informatiorne garding trade- marks and registration. Other WhyE ditorial Ofices John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA WILEY-VCH Verlag GmbH Pappelallee 3, D-69469 Weinheim, Germany John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia John Wiley & Sons (Canada) Ltd, 22 Worcester Road Rexdale, Ontario, M9W 1L1, Canada John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809 British Library Cataloguing inP ublication Data A catalogue record for this booki s available from theB ritish Library ISBN 0471 49581 6 Produced fromL aTeX files supplied by the author. Printed and bound inG reat Britain by Antony Rowe Ltd, Chippenham, Wiltshire. This book is printed on acid-free paper responsibly manufactured froms ustainable forestry, in which at least two trees are planted foer ach one used for paper production. Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi ... The ECC webs ite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x111 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 Error correcting coding: Basic concepts . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Block codesa ndc onvolutionalc odes . . . . . . . . . . . . . . . . . 3 1.1.2 Hamming distance, Hamming spheres and error correcting capability 4 l .2 Linear block codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Generatora ndp arity-checkm atrices . . . . . . . . . . . . . . . . . . 6 1.2.2 Thew eight is the distance . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Encoding and decoding of linear block codes . . . . . . . . . . . . . . . . . 7 1.3.1 Encoding with G and H . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.2 Standard array decoding . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.3 Hamming spheres, decoding regions and the standard array . . . . . . 11 1.4 Weight distribution and error performance . . . . . . . . . . . . . . . . . . . 12 1.4.1 Weight distribution and undetected error probability over a BSC . . . 12 . 1.4.2 Performance bounds over BSC AWGN and fading channels . . . . . 13 1.5 General structure of a hard-decision decodero f linear codes . . . . . . . . . . 19 2 Hamming.G olaya ndR eed-Mullerc odes . . . . . . . . . . . . . . . . . . . . . 23 2.1 Hammingcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.1 Encoding and decodingp rocedures . . . . . . . . . . . . . . . . . . 24 2.2 Theb inaryG olayc ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.3 Arithmetic decoding of the extended (24. 12. 8) Golay code . . . . . . 26 2.3 Binary Reed-Mullecr o des . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 Booleanp olynomialsa nd RM codes . . . . . . . . . . . . . . . . . . 27 2.3.2 Finite geometries and majority-logic decoding . . . . . . . . . . . . 28 3 Binaryc yclicc odesa nd BCH codes . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1 Binary cyclic codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 .l . 1 Generator and parity-check polynomials . . . . . . . . . . . . . . . . 33 vi CONTENTS 3.1.2T heg eneratorp olynomial . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.3 Encoding and decoding of binary cyclic codes . . . . . . . . . . . . . 35 3.1.4T hep arity-checkp olynomial . . . . . . . . . . . . . . . . . . . . . . 36 3.1.5 Shortened cyclic codesa nd CRC codes . . . . . . . . . . . . . . . . 37 3.2 General decoding of cyclic codes . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.1 GF(2 m) arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3 Binary BCH codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4P olynomiacl odes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5 Decoding of binary BCH codes . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.5.1 General decoding algorithm for BCH codes . . . . . . . . . . . . . . 48 3.5.2 TheB erlekamp-Masseya lgorithm( BMA) . . . . . . . . . . . . . . . 49 3.5.3 PGZ decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.4E uclideanA lgorithm( EA) . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.5C hiens earch and error correction . . . . . . . . . . . . . . . . . . . 55 3.5.E6 r rors-and-erasureds e coding . . . . . . . . . . . . . . . . . . . . . 55 3.6 Weight distribution and performance bounds . . . . . . . . . . . . . . . . . . 56 3.6.1 Erropr erformancee valuation . . . . . . . . . . . . . . . . . . . . . 57 4 Non-binary BCH codes: Reed-Solomon codes . . . . . . . . . . . . . . . . . . . 63 4.1 RS codes as polynomialc odes . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 From binary BCH to RS codes . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3 Decoding RS codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3.1R emarks on decodinga lgorithms . . . . . . . . . . . . . . . . . . . . 69 4.3.E2 r rors-and-erasureds e coding . . . . . . . . . . . . . . . . . . . . . 69 4.4 Weight distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5 Binaryc onvolutionalc odes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1 Basic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1.1R ecursives ystematicc onvolutionalc odes . . . . . . . . . . . . . . . 80 5.1.2F rede istance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2C onnections with blockc odes . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2.1 Zero-tail construction . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2.2D irect-truncationc o nstruction . . . . . . . . . . . . . . . . . . . . . 82 5.2.3 Tail-biting construction . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.2.4 Weight distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.3 Weight enumeration and performance bounds . . . . . . . . . . . . . . . . . 84 5.4 Decoding: Viterbi algorithm with Hamming metrics . . . . . . . . . . . . . . 86 5.4.1 Maximuml ikelihoodd ecoding and metrics . . . . . . . . . . . . . . 87 5.4.2T he Viterbi algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.4.I3 m plementation issues . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.5 Puncturedc onvolutionalc odes . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.5.1 Implementation issues related to punctured convolutional codes . . . 99 5.5.2 RCPC codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6 Modifyinga ndc ombiningc odes . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.M1 odifyincg o des . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.1.1 Shortening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 CONTENTS vii 6.1.E2 x tending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.1P. 3u ncturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.1.4 Augmenting and expurgating . . . . . . . . . . . . . . . . . . . . . . 106 6.2C ombiningc o des . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.1 Time-sharing of codes . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.2D irect-sums of codes . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2.3P roducts of codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.2.4C oncatenatedc odes . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.2.5G eneralizedc oncatenatedc odes . . . . . . . . . . . . . . . . . . . . 119 7 Soft-decisiond ecoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.1 Binary transmission over AWGN channels . . . . . . . . . . . . . . . . . . . 124 7.2 Viterbi algorithm with Euclidean metric .................... 124 7.3 Decoding binary linear block codes with a trellis . . . . . . . . . . . . . . . 130 7.4T heC hasea lgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.5O rdereds tatisticsd ecoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.6G eneralized minimum distanced ecoding . . . . . . . . . . . . . . . . . . . . 134 7.6.1 Sufficient conditionsf oro ptimality . . . . . . . . . . . . . . . . . . 1 35 7.7 Lisdt e coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.S8 oft-outpuat l gorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.8.1S oft-output Viterbi algorithm . . . . . . . . . . . . . . . . . . . . . . 136 7.8.2M aximum-a-posteriori (MAP) algorithm . . . . . . . . . . . . . . . 139 7.8.L3 og-MAaP l gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.8.M4 ax-Log-MAaP l gorithm . . . . . . . . . . . . . . . . . . . . . . . 142 7.8.5S oft-output OSD algorithm . . . . . . . . . . . . . . . . . . . . . . . 142 8 Iterativelyd ecodablec odes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.1 Iterativde ecoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8.2P roducct odes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8.2.1 Parallel concatenationt: u rboc odes . . . . . . . . . . . . . . . . . . 149 8.2.2 Seriac lo ncatenation . . . . . . . . . . . . . . . . . . . . . . . . . . 155 8.2.3B lockp roducct odes . . . . . . . . . . . . . . . . . . . . . . . . . . 157 8.3 Low-density parity-checkc odes . . . . . . . . . . . . . . . . . . . . . . . . 161 8.3.1 Tanner graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.3.2 Iterative hard-decision decoding: The bit-flip algorithm . . . . . . . . 163 8.3.3I terativep robabilisticd ecoding: belief propagation . . . . . . . . . . 164 9 Combiningc odesa ndd igitalm odulation . . . . . . . . . . . . . . . . . . . . . 171 9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 9.1 . 1 Examples of signal sets . . . . . . . . . . . . . . . . . . . . . . . . . 172 modula Ctioond ed 9 .l .2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 9.1.D3 istancce o nsiderations . . . . . . . . . . . . . . . . . . . . . . . . 175 9.2T rellis-codedm odulation( TCM) . . . . . . . . . . . . . . . . . . . . . . . . 176 9.2.1S etp artitioning and trellis mapping . . . . . . . . . . . . . . . . . . 1 76 9.2.2M aximum-likelihoodd ecoding . . . . . . . . . . . . . . . . . . . . . 177 9.2.3D istancec onsiderations and errorp erformance . . . . . . . . . . . . 177 9.2.4P ragmatic TCMa nd two-staged ecoding . . . . . . . . . . . . . . . . 1 78 ... v111 CONTENTS 9.3M ultilevelc odedm odulation( MCM) . . . . . . . . . . . . . . . . . . . . . . 182 9.3.1C onstructions and multi-staged ecoding . . . . . . . . . . . . . . . . 183 9.3.2 Unequal-error-protectionw itMh CM . . . . . . . . . . . . . . . . . 1 85 9.4 Bit-interleaved codedm odulation( BICM) . . . . . . . . . . . . . . . . . . . 191 9.4.1G raym apping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 9.4.2M etric generation: De-mapping . . . . . . . . . . . . . . . . . . . . 192 9.4.3 Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 9.5T urbo trellis-coded modulation( TTCM) . . . . . . . . . . . . . . . . . . . . 194 9.5.1P ragmatitc u rbo TCM . . . . . . . . . . . . . . . . . . . . . . . . . 194 9.5.2T urbo TCM with symbol interleaving . . . . . . . . . . . . . . . . . 194 9.5.3 Turbo TCM withb it interleaving . . . . . . . . . . . . . . . . . . . . 194 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Appendix A Weight distributions of extended BCH codes . . . . . . . . . . . . . . 207 A.Ll ength8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 A.2L ength1 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 A.3L ength 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 A.4L ength 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 A.L5 e ngth128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Preface This booki s the result of hundreds of emails froma ll over the world with questions on theory and applications of error correcting coding (ECC), from colleagues from both academaina d industry. Most of the questions have been from engineersa nd computer scientists needing to select, implement or simulate ap articular coding scheme. The questions were sparkebdy an ECC web site that was initially set up at Imai Laboratorya t the Institute of Industrial Science, University of Tokyo, att he beginning of 1995. The readerw ill notice the absence of theorems and proofs in this text. The approach is to teach basic concepts by using simple examples. References to theoretical developments are made when needed. This bookis intended to be a reference guidet o error correcting coding techniquesf or graduate students and professionals interested in learning the basic techniques and applications of ECC. Computer programs that implement the basic encoding and decoding algorithmso f practical coding schemes are available on a companionw eb site at: http://the-art-of-ecc.com This site is referred to as the “ECC webs ite” throughout the text. This booki s unique in that it introduces the basic concepts of error correcting codes using simplei llustrative examples. Computer programs,w ritten in C language anda vailable on the ECC web site, help to further illustrate the implementation of basic encoding and decoding algorithmso f important coding schemes, such as convolutional codes, Hamming codes, BCH codes, Reed-Solomon codes and turbo codes, andth eir application in coded modulation systems. Thme aterial focuses on basic algorithms for analyzinagn d implementing ECC. Theries a rich theory of ECC that will be touched upon,b y referring to the appropriate material. There are many good books dealing with the theory of ECC, e.g., references [LC], [MS],[ PW], [Blah], [Bos], [Wic], just to cite a few. Readers may wish to consult them before, during or after going through the material in this book. Each chapter describes, using simple and easy to follow numerical examples,t he basic concepts of a particular coding or decoding scheme, rather than going into the detail of the theory behind it. Basic analysis tools are given throughout the book, to help in the assessment of the error performance of a particular ECC scheme, for some basic channel models. With the companion webs ite, this makes the book unique. The bookd eals with the art of error correcting coding, in the sense that it addresses the need for selecting, implementing and simulating algorithmfosr encoding and decoding of codes for error correction and detection. The booki s organized as follows. In the firstc hapter, the basic concepts of error correction, and coding and decoding techniquesa, re introduced. Chapter 2 deals with important and simplteo understand families of codes, such ast he Hamming, Golay and Reed-Muller codes. In Chapter 3, cyclic codes and the important family of BCH codes are described. Finite field arithmetic is introduced and basic decoding algorithms, such as X THE ART OF ERROR CORRECTING CODING Berlekamp-Massey, Euclidean and PGZ, are described and easy to follow examples given to understand their operation. Chapter 4 deals with Reed-Solomon codes and errors-and- erasures decodingA. comprehensive treatment of the available algorithms is given, along with examples of their operation. In Chapter 5, binary convolutional codes are introduced. Focus in this chapter is on the understanding of the basic structure of these codes, along with a basic explanation of the Viterbi algorithm with Hamming metrics. Important implementation issues are discussed. In Chapter 6, several techniques for modifying a single code or combining several codesa re given and illustrated by simple examples. Chapter 7 deals with soft- decision decoding algorithms, some of which haven ot yet received attention in the literature, such as a soft-output ordered statistics decoding algorithm. Moreover, Chapter 8 presents a unique treatment of turbo codes, both parallel concatenated and serial concatenated, and block product codes, froma coding theoretical perspective. In the same chapter, low-density parity check codes are examined. Faollr these classes of codes, basic decoding algorithms are described and simple examples are given. Finally, Chapter 9 deals with powerful techniques that combine error correcting coding with digital modulation, and several clever decoding techniques are described. A comprehensive bibliography is included, for readers who wish to learn more about the beautiful theory that makes it all work. It is my hope that this book will become a valuable and indispensable tool for both students and practitioners of this interesting, exciting and never-ending area of information theory. I would like to thank the following persons for influencing this work. Professor Francisco GarciaU galde, Universidad Nacional Autonoma de MCxico, for introducing me to the exciting world of error correcting codes. Parts of this book are based on my Bachelor’s thesis under his direction. Professor Edward Bertram, University of Hawaii, for teaching me the basics of abstract algebra. Professor David Mufioz, Instituto Technologico y de Estudios Superiores de Monterrey, MCxico, for his kindness and support. Professors Tadao Kasami, Hiroshima City University, Toru Fujiwara, University of Osaka, and Hideki Imai, University of Tokyo, for supporting my stays as a visiting academic researcher in Japan. Dan Luthi and Advait Mogre, LSI LogicC orporation, for many stimulating discussions and the opportunity to experience the process of putting ideas into silicon. Professor Marc P.C. Fossorier, Universityo f Hawaii, forh is help. My colleague Dr. Misa MihaljeviC,S onyC omputer Science Laboratories, for pointing out connections between decoding and cryptanalysis. I would also like to thank wholeheartedly Dr. Mario Tokoro, President of Sony Computer Science Laboratories, and Professor Ryuji Kohno, Yokohama National University, for making it possible for me to have a fine environment in which to write this book. In particular, I want to express my eternal gratitude to Professor Shu Lin, now at the University of California at Davis, who supported me when I was a graduate student in Hawaii, and encouraged me to continue my research in this fascinating topic. Last but not least, I want to thank the many students and colleagues who throughout the years listened to my lectures in Mexico, Japan and the U.S.A. I dedicate this book to the memory of Richard W. Hamming, Claude Shannon and Gustave Solomon, three extraordinary gentlemen who greatly impacted the way people live and work today. Robert H. Morelos-Zaragoza Tokyo, Japan, April 2002. Foreword In modem digital communication ands torage systems design, information theoryis becoming increasingly important. Theb est example of this is the appearance and quick adoptioofn t urbo and block product codes in many practical satellite and wireless communication systems. I am pleased to recommend this new book, authoredb y Dr. Robert Morelos-Zaragozat, o those who are interested in error correcting codes or have to apply them. Theb ook introduces key concepts of error correcting coding (ECC)i n a mannert hat is easy to understand. Them aterial is logically well structured and presented using simple illustrative examples. This, together with the computer programs available on the web site, is a novel approach to teaching the basic techniques used in the design and application of error correcting codes. One of the best features of the book is that it provides an atural introduction to the principles and decoding techniques of turbo codes, LDPC codes,a nd product codes, froma n algebraic channel coding perspective. In this context, turbo codes are viewed as punctured product codes. With simple examples, the underlying ideas and structures used in the construction and iterative decoding of product codesa re presented in an unparalleled manner. The detailed treatment of various algebraic decoding techniques for the correction of errors and erasures using Reed-Solomon codesi s also worth a mention. On the applications of ECC in combined channel coding and digital modulation, or coded modulation, the author does a goodj ob in introducing the basic principles that are used in the construction of several important classes of coded modulation systems. I believe that practitioner engineers and computer scientists will find this book to be both a good learningt ool and a valuablere ference. The companion ECCw eb site is a uniquef eature that is not found anywhere else. Incidentally, this web site was born in my laboratory at the University of Tokyo in 1995, whereD r. Morelos-Zaragoza worked until June of 1997 and did a very good job as my associate researcher, writing many high-quality papers. Robert is polite, modest and hard-workinga,n d is always friendly. In summary, I strongly recommend The Art of Error Correcting Coding as an excellent introductory and reference book onth e principles and applications of error correcting codes. Professor Hideki Imai The University of Tokyo Tokyo, Japan, April 2002

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.