ebook img

Testing for Multigroup Invariance Using AMOS Graphics: A Road Less Traveled PDF

31 Pages·2011·9.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Testing for Multigroup Invariance Using AMOS Graphics: A Road Less Traveled

This article was downloaded by: [University of Groningen] On: 19 December 2011, At: 02:37 Publisher: Psychology Press Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Structural Equation Modeling: A Multidisciplinary Journal Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/hsem20 Testing for Multigroup Invariance Using AMOS Graphics: A Road Less Traveled Barbara M. Byrne Available online: 19 Nov 2009 To cite this article: Barbara M. Byrne (2004): Testing for Multigroup Invariance Using AMOS Graphics: A Road Less Traveled, Structural Equation Modeling: A Multidisciplinary Journal, 11:2, 272-300 To link to this article: http://dx.doi.org/10.1207/s15328007sem1102_8 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms- and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. 1 1 0 2 r e b m e c e D 9 1 7 3 2: 0 at ] n e g n ni o r G f o y sit r e v ni U [ y b d e d a o nl w o D STRUCTURAL EQUATION MODELING,11(2),272–300 Copyright ©2004, Lawrence Erlbaum Associates, Inc. TEACHER’S CORNER Testing for Multigroup Invariance Using 11 AMOS Graphics: A Road Less Traveled 0 2 r e b Barbara M. Byrne m e University of Ottawa c e D 9 1 37 Thepurposeofthisarticleistoillustratethestepsinvolvedintestingformultigroup 2: invarianceusingAmosGraphics.Basedonanalysisofcovariance(ANCOV)struc- 0 at tures,2applicationsaredemonstrated,eachofwhichrepresentsadifferentsetofcir- n] cumstances.Application1focusesontheequivalenceofameasuringinstrumentand e g testsforitsinvarianceacross3teacherpanels,givenbaselinemodelsthatareidenti- n ni calacrossgroups.Application2centersontheequivalenceofapostulatedtheoreti- o r calstructureacrossadolescentboysandgirlsinlightofbaselinemodelsthataredif- G f ferentiallyspecifiedacrossgroups.Takentogether,theseillustratedexamplesshould o y be of substantial assistance to researchers interested in testing for multigroup sit invariance using the Amos program. r e v Uni Insubstantiveresearchthatfocusesonmultigroupcomparisons,itistypicallyas- y [ sumedthattheinstrumentofmeasurementisoperatinginexactlythesameway,and b d thattheunderlyingconstructbeingmeasuredhasthesametheoreticalstructurefor e d eachgroupunderstudy.Asevidencedfromreviewsoftheliterature,however,these a o twocriticallyimportantassumptionsarerarely,ifever,testedstatistically.Oneap- nl w proachtoaddressingthisissueofequivalenceistotestfortheinvarianceofboththe o D items and the factorial structure across groups using the analysis of covariance (ANCOV)structures.Assuch,onewouldtestfortheequivalenceofallitemsde- signedtomeasuretheconstructunderlyingeachsubscale(i.e.,factor),aswellasre- lationsamongtheseunderlyingconstructs.Operatingwithinaparallelframework, thismethodologycanalsobeusedtotestforthemultigroupinvarianceofatheoreti- calstructurewherethedimensionalityofapsychologicalconstructisofprimaryin- terest.Forexample,basedondualtheoriesandtheirrelatedempiricalresearch,are- searcher may wish to test for the invariance of a postulated four-factor structure versusapostulatedtwo-factorstructureofsocialself-concept(SC)foradolescents representingdiverseculturalgroups. TESTING FOR INVARIANCE VIA AMOS 273 To date, almost all studies reported in the literature that address multigroup invariancebasedontheANCOVstructureshaveusedeithertheLISREL(Jöreskog &Sörbom,1996)orEQS(Bentler&Wu,2002)programs.Asaconsequence,it hasbeencustomarytousetheinputfile-basedstrategyassociatedwiththesepro- grams.(Foradetailedreviewandillustratedapplicationsofthisprocessforboth LISRELandEQS,readersarereferredtoByrne,1998,1994,respectively.)More recently,however,thelessconventionalgraphicalapproachtoANCOVstructures usedbytheAmosprogram(Arbuckle,1999)hasgainedmuchpopularitywithre- searchers new to the application of this methodology. Although Amos incorpo- 1 1 ratesastandardtext-basedinterface(termedAmosBasic),itsgraphicalinterface 0 2 (termed Amos Graphics) is the one more commonly used. r be DespitethisincreaseduseofAmos,however,areviewoftheliteraturesuggests m e its negligible use in testing for multigroup invariance. For example, a search of c e threejournalsinwhichmultiplegroupcomparisonsareoftenpresentedyieldedno D 9 evidence of tests for invariance using Amos; these were as follows: Structural 1 7 EquationModeling(Vol.1,1994–Vol.10,2003),JournalofCross-CulturalPsy- 3 2: chology (Vol. 27, 1996–Vol. 34, 2003), Psychological Methods (Vol. 1–Vol. 7, 0 at 2002).Givenitsratherunconventionalapproachtotheseanalyses,thisvoidlikely ] derivesfromalackoffamiliaritywiththeAmosstrategy.Thepurposeofthisarti- n ge cle,then,istoprovidesomeassistanceinalleviatingthisdifficulty.Morespecifi- n ni cally,basedonANCOVstructures,andusingthegraphicalinterfaceoftheAmos o r 4.0program,theprocessoftestingforequivalenceinlightoftwodifferentscenar- G f iosisillustrated:(a)Thehypothesizedmultigroupmodelisidenticallyspecified o y acrossgroups,and(b)thehypothesizedmultigroupmodelisdifferentiallyspeci- sit fiedacrossgroups.Although,conceptually,theanalyticapproachissimilaracross r e v these two perspectives, technically, it must necessarily differ when using Amos ni U Graphics.Bothsituationsareaddressedinthisarticle.InApplication1,testingfor [ y theinvarianceofameasuringinstrumentforwhichthespecifiedfactorialstructure b d ofthemeasureisidenticalacrossgroupsisdemonstrated.InApplication2,testing e d fortheinvarianceofatheoreticalconstructforwhichthepatternoffactorloadings a o nl differsacross groups is demonstrated. w o D TESTING FORMULTIGROUPINVARIANCE:THE GENERAL PROCEDURE Intestingforequivalenciesacrossgroups,setsofparametersareputtothetestina logicallyorderedandincreasinglyrestrictivefashion,dependingonthemodeland hypothesestobetested.Inthecaseoftestsfortheinvarianceofameasuringinstru- mentand/ortheinvarianceofatheoreticalconstruct,thetwoapplicationstobeil- lustrated in this article, only the factor-loading regression paths and the factor covariances are of interest. Except in particular instances when, for example, it 274 BYRNE mightbeofinteresttotestfortheequivalentreliabilityofanassessmentmeasure across groups (see, e.g., Byrne, 1988), the equality of error variances and covariances is probably of least importance (Bentler, 2004). Indeed, it is now widelyacceptedthattestingfortheinvarianceoftheseerrorparametersrepresents an overly restrictive test of the data. IntheJöreskogtradition,testsofhypothesesrelatedtogroupinvariancetypi- callybeginwithscrutinyofthemeasurementmodel.1Inparticular,thepatternof factorloadingsforeachobservedmeasureistestedforitsequivalenceacrossthe groups.Onceitisknownwhichobservedmeasuresaregroupinvariant,thesepa- 1 1 rametersareconstrainedequalwhilesubsequenttestsofthestructuralparameters 0 2 areconducted.Aseachnewsetofparametersistested,thoseknowntobegroupin- r be variantareconstrainedequalacrossgroups.Giventheunivariateapproachtothe m e testing of these hypotheses, as implemented in the Amos program—compared c e with,forexample,themultivariateapproachusedintheEQSprogram(Bentler& D 9 Wu,2002)—thisorderlysequenceofanalyticstepsisbothnecessaryandstrongly 1 7 recommended. 3 2: Asaprerequisitetotestingforfactorialinvariance,itiscustomarytoconsidera 0 at baselinemodel,whichisestimatedforeachgroupseparately.Thisbaselinemodel ] representsonethatbestfitsthedatafromtheperspectivesofbothparsimonyand n ge substantivemeaningfulness.However,measuringinstrumentsareoftengroupspe- n ni cificinthewaytheyoperate,andthus,baselinemodelsarenotexpectedtobecom- o r pletelyidenticalacrossgroups.Forexample,whereasthebaselinemodelforone G f groupmightincludecross-loadings2and/orerrorcovariances,thismaynotbeso o y forothergroupsunderstudy.Aprioriknowledgeofsuchgroupdifferencesiscriti- sit caltotheapplicationofinvariance-testingprocedures.Althoughthebulkofthelit- r e v eraturesuggeststhatthenumberoffactorsmustbeequivalentacrossgroupsbefore ni U furthertestsofinvariancecanbeconducted,thisstrategyrepresentsalogicalstart- [ y ingpointonly,andisnotanecessarycondition.Indeed,onlythesimilarlyspeci- b d fied parameters within the same factor need be equated (see, e.g., Byrne, e d Shavelson, &Muthén, 1989;Werts, Rock, Linn, &Jöreskog, 1976). a o nl Because the estimation of baseline models involves no between-group con- w straints,thedatacanbeanalyzedseparatelyforeachgroup.However,intestingfor o D invariance,equalityconstraintsareimposedonparticularparameters,andthus,the dataforallgroupsmustbeanalyzedsimultaneouslytoobtainefficientestimates (Bentler,2004;Jöreskog&Sörbom,1996);thepatternoffixedandfreeparame- 1AlthoughJöreskog(1971)initiallyrecommendedthatalltestsforinvariancebeginwithaglobal testoftheequalityofcovariancematricesacrossgroups,researchhasshownthatthistestoftenleadsto contradictoryfindings.Asaconsequence,itisnolongerregardedasanecessaryprerequisitetothetest- ing of specific hypotheses related to invariance. (For an elaboration of this issue, see Byrne, 2001.) 2A variable’s measurement loading on more than one factor. TESTING FOR INVARIANCE VIA AMOS 275 tersnonethelessremainsconsistentwiththebaselinemodelspecificationforeach group. We turn now to the example applications of interest in this article. APPLICATION 1 Inthisfirstapplication,hypothesesrelatedtotheinvarianceofasinglemeasuring instrument are tested across three groups of teachers. Specifically, we test for 1 equivalency of a 20-item adaptation of the Maslach Burnout Inventory (MBI; 1 0 Maslach&Jackson,1986)acrosselementary(n=1,159),intermediate(n=388), 2 r and secondary (n= 1,384) teachers. e b m e c e D The Hypothesized Model 9 7 1 ThemodelusedinthisfirstapplicationistakenfromastudybyByrne(1993)in 3 whichtheinitialtaskwastotestforthevalidityoftheMBI,a22-iteminstrument 2: 0 designedtomeasurethreedimensionsofburnout—emotionalexhaustion,deper- ] at sonalization,andpersonalaccomplishment.BasedonconsistentfindingsthatItem n e 12 (designed to measure Personal Accomplishment) and Item 16 (designed to g n measureEmotionalExhaustion)wereproblematicinfittingthemodeltothedata ni o forelementary,intermediate,andsecondaryschoolteachers,amodifiedversionof r G f theinstrumentthatexcludedtheseitemswasproposed.Thehypothesizedmodelto o y be tested here is based on this 20-item adaptation of theMBI.3 sit r e v ni The Baseline Models U [ y Intestingforthevalidityofthe20-itemMBImodelforeachteachergroup,find- b d ings were consistent in revealing exceptionally large correlated errors between e ad Items 1 and 2 and between Items 10 and 11. Scrutiny of the content for each of o nl these items revealed evidence of substantial overlap between each of these item w o pairs,asituationthatcantriggererrorcovariances.Inlightofthissubstantivejusti- D fication, these error terms were subsequently specified as free parameters in the modelforeachteachergroup.Afinalmodelthatreflectedthesemodificationswas fully cross-validated for independent samples of elementary, intermediate, and secondary teachers. Thistestingforabaselinemodel,then,yieldedonethatwasidenticallyspecified foreachofthethreeteachingpanels.However,itisimportanttoemphasizethatjust becausetherevisedmodelwassimilarlyspecifiedforeachteachergroup,itinno 3Foramoredetailedaccountofanalysesleadinguptothe20-itemmodel,readersarereferredtothe original article (Byrne, 1993), or to Byrne (2001). 276 BYRNE wayguaranteestheequivalenceofitemmeasurementsandunderlyingtheoretical structureacrossteachergroups;thesehypothesesmustbetestedstatistically. Thehypothesizedmodelundertestinthisexamplerepresentstherevised20-item MBIstructure,togetherwiththeadditionoftwoerrorcovariances,asschematically depictedinFigure1.AtissueistheextenttowhichthismodifiedversionoftheMBI isequivalentacrosselementary,intermediate,andsecondaryschoolteachers. 1 1 0 2 r e b m e c e D 9 1 7 3 2: 0 at ] n e g n ni o r G f o y sit r e v ni U [ y b d e d a o nl w o D FIGURE1 Baselinemodelofrevised20-itemMBIstructureforelementary,intermediate, and secondary teachers. From Byrne, 2001. Reprinted with permission. TESTING FOR INVARIANCE VIA AMOS 277 TESTING FORMULTIGROUPINVARIANCE USING AMOS GRAPHICS WhenworkingwithANCOVstructuresthatinvolvemultiplegroups,thedatare- latedtoeachgroupmust,ofcourse,bemadeknowntotheprogram.Typically,for moststructuralequationmodeling(SEM)programs,thedataresideinsomeexter- nalfile,thelocationofwhichisspecifiedinaninputfile.Althoughnoinputfileis usedwithAmosGraphics,boththenameofeachgroupandthelocationofitsdata filemustbeconveyedtotheprogrampriortotheanalyses.Thisprocedureisac- 1 1 complishedviatheManageGroupsdialogbox,whichismadeavailableeitherby 0 2 pullingdowntheModel-Fitmenuandselectingthe“ManageGroups”option,or r be byusingtheManageGroupsicon .Tobegin,weclickon“New”intheManage m e Groupsdialogbox,whichisshowninFigure2.4Eachclickwillyieldthename c e “Group,”alongwithanassignednumber.InthecaseofFigure2,thegroupnumber D 9 (3)pertainstosecondaryteachers;thisnamechangeisinvokedsimplybytyping 1 7 over the former name (see Figure 3). 3 2: Once the group names have been established, the next task is to identify a 0 at datafileforeach,whichisaccomplishedthroughactivationoftheDataFiledia- ] log box. This information is made available either by clicking on the Data File n ge icon ,orbypullingdowntheFilemenuandselectingthe“DataFiles”option. n ni The Data File dialog box for this application is shown in Figure 4. o r Specificationofamultigroupmodel,usingAmosGraphics,isguidedbythede- G f faultrulethat,unlessexplicitlydeclaredotherwise,allgroupsintheanalysishave o y anidenticalpathdiagramstructure.Assuch,amodelstructureneedsonlytobe sit drawnforthefirstgroup;allothergroupswillhavethesamestructurebydefault. r e v Giventhatallthreegroupsinthisfirstapplicationhavethesamebaselinemodel, ni U this default rule poses no problem. [ y Testingforinvariancenecessarilyentailsamultistepprocess.However,whenthe b d analyses involve more than two groups, and findings reveal evidence of nonin- e d variance, the number of steps required in identifying the source of such nonin- a o nl variancecanincreasesubstantially.Intheinterestofclarity,giventhatthisexample w involvesthreegroups,eachstepoftheprocesshasbeenidentifiedaccordingly. o D Step 1:Testing for the Validity of the Hypothesized Model Across Elementary, Intermediate, and Secondary Teachers Asapreliminarystepintestingforinvarianceacrossgroups,wetestforthevalidity of MBI structure as best represented by the hypothesized three-factor structure 4Inthebackground,totheleftofFigure2,youseetheAmostoolpalette,whichcontainsthevarious dialog box icons; to the right, is the model under study (Figure 1), which must remain activated throughout the analytic process. 1 1 0 2 r e b m e c e D 9 1 7 3 2: FIGURE2 TheManageGroupsdialogbox:Additionofanewgroup.FromByrne,2001.Re- at 0 printed with permission. ] n e g n ni o r G f o y sit r e v ni U [ FIGURE3 TheManageGroupsdialogbox:Labelingofanewgroup.FromByrne,2001.Re- y b printed with permission. d e d a o nl w o D FIGURE4 TheDataFilesdialogbox:Identificationofdatafiles.FromByrne,2001.Re- printed with permission. TESTING FOR INVARIANCE VIA AMOS 279 showninFigure1.Giventhatthistestofmodelfitwaspreviouslyconductedinthe processofdeterminingthebaselinemodels,readersmaywonderwhyitisnecessary torepeattheprocess.Therearetwoimportantreasonsfordoingso.First,whereasthe formertestswereconductedforeachgroupseparately,testsforthevalidityoffacto- rialstructureinthisinstanceareconductedacrossthethreegroupssimultaneously. Inotherwords,parametersareestimatedforallthreegroupsatthesametime.Sec- ond,intestingforinvarianceusingtheAmosprogram,aswithotherSEMprograms, thefitofthissimultaneouslyestimatedmodelcanprovidethebaselinevalueagainst whichallsubsequentlyspecifiedmodelsarecompared.Incontrasttosingle-group 1 1 analyses,however,thismultigroupanalysisyieldsonlyonesetoffitstatisticsfor 0 2 overallmodelfit.Giventhatchi-squarestatistics,togetherwiththeirdegreesoffree- r be dom,aresummative,theoverallchi-squarevalueforthemultigroupmodelshould m e equalthesumofthechi-squarevaluesobtainedwhenthebaselinemodelistested c e separatelyforeachgroupofteachers.Thismultigroupmodelreflectstheextentto D 9 whichtheMBIstructurefitsthedatawhennocross-groupconstraintsareimposed. 1 7 3 2: Model assessment. Goodness-of-fit statistics related to this three-group 0 at unconstrainedmodel(Model1)arereportedinTable1.Thechi-squarevalueof ] 2243.21,with495df,providesthebaselinevalueagainstwhichsubsequenttests n ge for invariance may be compared. Comparative fit index (CFI) and root mean n ni squarederrorofapproximation(RMSEA)valuesof.93and.04,respectively,indi- o r catedthatthehypothesizedthree-factormodelofMBIstructure,althoughsome- G f whatlessthantherecommendedcutoffcriterionof.95recommendedbyHuand o y Bentler (1999), still represented a relatively good fit across the three panels of sit teachers.Accordingly,wenowproceedintestingfortheinvarianceoftherevised r e v 20-itemMBIacrossgroups.(Readersinterestedindetailedinformationprovided ni U in the Amos output files are referred to Byrne, 2001.) [ y b d e Step 2:Testing for Invariance of the Fully Constrained d oa Model Across Elementary, Intermediate, and Secondary nl Teachers w o D Priortotestingfortheequalityofsetsofparameters,asoutlinedearlier,itisalways worthwhile to test for the possibility that a fully constrained model is invariant across groups. Regarding this application, this would mean specification of a modelinwhichallfactorloadings,allfactorvariances,allfactorcovariances,and thetwoerrorcovariancesareconstrainedequalacrosselementary,intermediate, andsecondaryteachers.Although,ingeneral,testingfortheequalityoferrorvari- ancesacrossgroupsisconsideredtobeexcessivelystringent,testingrelatedtothe error covariances specified in this context is well justified both statistically and substantively.Thisdecisionwasbasedonthefactthat,foreachteachergroup,the twoerrorcovarianceswerefoundtobeexcessivelylarge.Scrutinyoftheitemsas-

Description:
To cite this article: Barbara M. Byrne (2004): Testing for Multigroup . across groups (see, e.g., Byrne, 1988), the equality of error variances and.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.