ebook img

Testing a CMOS operational amplifier circuit using a combination of oscillation and IDDQ test PDF

138 Pages·2017·1.57 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Testing a CMOS operational amplifier circuit using a combination of oscillation and IDDQ test

LLoouuiissiiaannaa SSttaattee UUnniivveerrssiittyy LLSSUU DDiiggiittaall CCoommmmoonnss LSU Master's Theses Graduate School 2004 TTeessttiinngg aa CCMMOOSS ooppeerraattiioonnaall aammpplliififieerr cciirrccuuiitt uussiinngg aa ccoommbbiinnaattiioonn ooff oosscciillllaattiioonn aanndd IIDDDDQQ tteesstt mmeetthhooddss Pavan K. Alli Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Electrical and Computer Engineering Commons RReeccoommmmeennddeedd CCiittaattiioonn Alli, Pavan K., "Testing a CMOS operational amplifier circuit using a combination of oscillation and IDDQ test methods" (2004). LSU Master's Theses. 1786. https://digitalcommons.lsu.edu/gradschool_theses/1786 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. TESTING A CMOS OPERATIONAL AMPLIFIER CIRCUIT USING A COMBINATION OF OSCILLATION AND I DDQ TEST METHODS A Thesis Submitted to the Graduate faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering In The Department of Electrical and Computer Engineering by Pavan K Alli Bachelor of Engineering, Osmania University, 2001 August 2004 ACKNOWLEDGEMENTS I would like to dedicate my work to my parents, Mr. and Mrs. Alli Shankaraiah, and my brother Kiran, for their constant prayers and encouragement throughout my life. I am very grateful to my advisor Dr. A. Srivastava for his guidance, patience and understanding throughout this work. His suggestions, discussions and constant encouragement have helped me to get a deep insight in the field of VLSI design. I would like to thank Dr. Theda Daniels Race and Dr. Pratul Ajmera for being a part of my committee. I am very thankful to Electrical Engineering and Biological Engineering Departments, for supporting me financially during my stay at LSU. I am very thankful to my friends Anand, Satish and Syam for their extensive help throughout my graduate studies at LSU. I take this opportunity to thank my friends Maruthi, Sudheer, Anoop and Siva for their help and encouragement at times I needed them. I would also like to thank all my friends here who made my stay at LSU an enjoyable and a memorable one. Last of all I thank GOD for keeping me in good health and spirits throughout my stay at LSU. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS..............................................................................................ii LIST OF TABLES.............................................................................................................v LIST OF FIGURES..........................................................................................................vi ABSTRACT.......................................................................................................................x CHAPTER 1. INTRODUCTION....................................................................................1 1.1 TESTING METHODOLOGY.........................................................................................6 1.2 ADVANTAGES OF COMBINED OSCILLATION AND IDDQ TESTING...............................8 1.3 CHAPTER ORGANIZATION........................................................................................9 CHAPTER 2. DESIGN FOR TEST OF A TWO-STAGE CMOS OPERATIONAL AMPLIFIER USING OSCILLATION TESTING METHODOLOGY....................10 2.1 DESIGN OF A CMOS OPERATIONAL AMPLIFIER.....................................................10 2.1.1 A Two-Stage CMOS Amplifier Topology..................................................13 2.1.2 Current Mirrors............................................................................................15 2.1.3 Active Resistors...........................................................................................17 2.2 FREQUENCY ANALYSIS OF THE TWO-STAGE OP-AMP............................................29 2.3 STABILITY AND FEEDBACK ANALYSIS...................................................................31 2.4 TESTING FAULTS USING OSCILLATION TESTING METHODOLOGY..........................34 2.5 FAULT SENSITIVITY AND TOLERANCE BAND OF OSCILLATION FREQUENCY USING MONTE-CARLO SIMULATION.................................................................................40 CHAPTER 3. I TESTING USING BUILT-IN CURRENT SENSOR ................44 DDQ 3.1 QUIESCENT CURRENT (IDDQ) TESTING IN CMOS CIRCUITS...................................44 3.2 PHYSICAL DEFECTS IN CMOS INTEGRATED CIRCUITS..........................................47 3.2.1 Bridging Faults.............................................................................................47 3.2.2 Open Faults..................................................................................................50 3.4 DEFINITION OF IDDQ OF A FAULTY CIRCUIT............................................................52 3.4.1 Description of I Testing for a Faulty Inverter........................................52 DDQ 3.5 DESIGN CONSIDERATIONS OF BICS.......................................................................54 3.5.1 Previously Proposed Schemes.....................................................................54 3.6 DESIGN AND IMPLEMENTATION OF THE BICS........................................................55 3.6.1 BICS in Normal Mode.................................................................................57 3.6.2 BICS in Test Mode......................................................................................58 3.7 BICS LAYOUT.......................................................................................................59 3.8 FAULT MODELS, SIMULATION AND DETECTION.....................................................59 3.8.1 Fault Injection Transistor.............................................................................61 CHAPTER 4. FAULT COVERAGE AND EXPERIMENTAL RESULTS FOR THE COMBINED TEST PROCEDURE...............................................................................67 4.1 SIMULATED AMPLIFIER FUNCTIONAL TESTING RESULTS.......................................71 iii 4.2 SIMULATED IDDQ TESTING RESULTS......................................................................71 4.3 SIMULATED OSCILLATION TESTING RESULTS........................................................82 4.4 EXPERIMENTAL RESULTS.......................................................................................89 CHAPTER 5. CONCLUSION AND SCOPE OF FUTURE WORK.......................112 BIBLIOGRAPHY.........................................................................................................114 APPENDIX A: SPICE LEVEL 3 MOS MODEL PARAMETERS FOR STANDARD N-WELL CMOS TECHNOLOGY [43]..............................................119 APPENDIX B: CHIP TESTABILITY........................................................................120 VITA...............................................................................................................................127 iv LIST OF TABLES Table.1: Theoretical I for testable faults.....................................................................81 DDQ Table 2: Simulated frequency deviations under fault injections.......................................87 Table 3(a): Simulated fault coverage of oscillation testing..............................................88 Table 3(b): Simulated fault coverage of I testing........................................................88 DDQ Table 4: Observed frequency deviations under fault injections......................................103 Table 5: Detected faults using theoretical and observed results for oscillation testing..104 v LIST OF FIGURES Figure 1.1: An example to show how I can be used to detect physical defects............4 DDQ Figure 1.2: Block diagram of the proposed test strategy....................................................7 Figure 2.1: Ideal operational amplifier.............................................................................11 Figure 2.2: Block diagram of an integrated operational amplifier....................................12 Figure 2.3: A two-stage CMOS operational amplifier......................................................14 Figure 2.4(a): p-MOS current mirror................................................................................16 Figure 2.4(b): n-MOS current mirror................................................................................16 Figure 2.5: Active resistors: (a) gate connected to drain and (b) gate connected to V . 19 DD Figure 2.6: Layout of an operational amplifier design of the circuit of Fig 2.3...............22 Figure 2.7: Post layout transfer characteristics of the circuit of Fig 2.3...........................23 Figure 2.8: Post layout simulated response of the CMOS amplifier circuit of Fig 2.6....24 Figure 2.9: Post layout (Fig 2.6) simulated frequency response characteristics of the amplifier circuit of Fig 2.3. Note: The open loop gain is 81dB and the 3dB bandwidth is 1.1 kHz......................................................................................25 Figure 2.10: Post layout (Fig 2.6) simulated (a) amplitude and (b) phase versus frequency response characteristics. Note: The phase margin is 770................................26 Figure 2.11: Post layout (Fig 2.6) simulated slew rate characteristics of the amplifier circuit of Fig 2.3..............................................................................................27 Figure 2.12: Effect of pole-splitting capacitor on the gain and phase of an op-amp........28 Figure 2.13(a): A two-stage CMOS op-amp showing the feedback components............30 Figure 2.13(b): Two-port network equivalent small signal model of a two-stage op-amp configuration of Fig. 2.13(a) with an equivalent zero nulling resistance (R ) 30 Z Figure 2.14: Feedback circuit configuration.....................................................................32 Figure 2.15: Schematic representation of a testable op-amp [26]....................................35 Figure 2.16: A second order oscillator. (a) Block diagram (b) CMOS oscillator.............36 vi Figure 2.17: Pole locations for the amplifier and oscillator configurations in s-domain. 39 Figure 2.18: Simulated natural oscillation frequency of the CUT oscillator....................41 Figure 2.19: Simulated FFT analysis for obtaining the natural oscillation frequency......42 Figure 2.20: Monte-Carlo analysis for parametric tolerances of important CUT parameters. ......................................................................................................43 Figure 3.1: Block diagram of I testing.......................................................................46 DDQ Figure 3.2: Drain-source, gate-source and inter-gate bridging faults in an inverter chain................................................................................................................48 Figure 3.3: Bridging defects.............................................................................................49 Figure 3.4: Floating input and open FET – open circuit defects......................................51 Figure 3.5: Bridging fault causing I R drop and a path to the ground.......................53 DDQ B Figure 3.6: CMOS built-in current sensor circuit with the CUT [33].............................56 Figure 3.7: Layout of a built-in current sensor circuit.....................................................60 Figure 3.8 (a): n-MOS Fault-injection transistor (FIT) used in the layout.......................63 Figure 3.8 (b): Fault-injection transistor between drain and source nodes of a CMOS inverter............................................................................................................63 Figure 3.9: Layout of a two-stage CMOS amplifier with BICS showing the defects induced in the CUT using fault-injection transistors.........…...…...…............65 Figure 3.10: Injected faults using FITs.............................................................................66 Figure 4.1(a): Circuit diagram of a two-stage CMOS amplifier with BICS with seven fault-injection transistors................................................................................68 Figure 4.1(b): Layout of a two-stage CMOS amplifier with BICS with seven fault- injection transistors.........................................................................................69 Figure 4.2: CMOS chip layout of a two-stage CMOS amplifier including BICS within a padframe of 2.25mm × 2.25mm size..............................................................70 Figure 4.3: Microphotograph of the fabricated chip showing the CUT (CMOS amplifier) and the BICS for I testing..........................................................................72 DDQ vii Figure 4.4: (a) Normal and (b) faulty output of the amplifier for a sinusoidal input voltage of 100 mV p-p.................................................................................................73 Figure 4.5: Normal and faulty transfer characteristics of the amplifier............................74 Figure 4.6: Voltage gain versus frequency characteristics of the amplifier without faults and with M5DSS fault....................................................................................75 Figure 4.7: Simulated BICS output of the circuit of Fig. 3.17 when Error-signal-1 for defect-1 is activated........................................................................................77 Figure 4.8: Simulated BICS output of the circuit of Fig. 3.17 when Error-signal-3 for defect-3 is activated........................................................................................78 Figure 4.9: Simulated BICS output with defects induced using fault injection transistors........................................................................................................79 Figure 4.10: Influence of BICS on V .............................................................................80 SS Figure 4.11: Output oscillation frequency for the injected faults (i) M10DSS (ii) M5GDS (iii) M5DSS (iv) M11DSS (v) CCS (vi) M7GDS (vii) M6GDS....................83 Figure 4.12: Experimental ac-characteristics of the designed amplifier...........................91 Figure 4.13: Output response of the amplifier for an input sinusoidal p-p of 200 mV applied across a voltage divider consisting of 1 kΩ and 100 kΩ at 5 kHz.....92 Figure 4.14: Step response of the amplifier to an input step of -2.5 to 2.5 V...................93 Figure 4.15: Experimental natural oscillation frequency..................................................94 Figure 4.16 (i): Experimental faulty (defect-1 M10DSS) oscillation frequency with V E1 connected to V ............................................................................................95 DD Figure 4.16 (ii): Experimental faulty (defect-2 M5GDS) oscillation frequency with V E2 connected to 5V..............................................................................................96 Figure 4.16 (iii): Experimental faulty (defect-3 M5DSS) oscillation frequency with V E3 connected to 5V..............................................................................................97 Figure 4.16 (iv): Experimental faulty (defect-4 M11DSS) oscillation frequency with V E4 connected to 5V..............................................................................................98 Figure 4.16 (v): Experimental faulty (defect-5 CCS) oscillation frequency with V E5 connected to 5V..............................................................................................99 viii Figure 4.16 (vi): Experimental faulty (defect-6 M7GDS) oscillation frequency with V E6 connected to 5V............................................................................................100 Figure 4.16 (vii): Experimental faulty (defect-7 M6DSS) oscillation frequency with V E7 connected to 5V............................................................................................101 Figure 4.16 (viii): Experimental faulty (defect-8 M11G-VSS) oscillation frequency with M11 gate connected to V ...........................................................................102 SS Figure 4.17(i): BICS showing PASS/FAIL output from HP1660CS logic analyzer corresponding to fault M10DSS. V and V are given a 1 kHz ENABLE ERROR signal.............................................................................................................105 Figure 4.17(ii): BICS showing PASS/FAIL output from HP1660CS logic analyzer corresponding to fault M10DSS. V and V are given a 5 kHz ENABLE ERROR signal.............................................................................................................106 Figure 4.17(iii): BICS showing PASS/FAIL output from HP1600CS Logic Analyzer corresponding to fault M10DSS. V connected to 400 Hz signal and ENABLE V is connected to 1 kHz.......................................................................107 ERROR Figure 4.17(iv): BICS showing PASS/FAIL output from HP1660CS logic analyzer corresponding to faults M10DSS and M5DSS. V is connected to GND ENABLE (BICS active) and Error-signals (V ) are given a 1 kHz signal........108 ERROR 1, 2 Figure 4.17(v): BICS showing PASS/FAIL output from HP1600CS Logic Analyzer corresponding to fault M10DSS. V connected to 1 MHz signal and ENABLE V is connected to 1 kHz while V is being held at V ...........109 ERROR 1 ERROR 2 DD Figure 4.17(vi): BICS showing PASS/FAIL output from HP1600CS Logic Analyzer corresponding to fault M10DSS. V connected to 1 MHz signal and ENABLE V is connected to 1 kHz.......................................................................110 ERROR Figure 4.17(vii): BICS showing PASS/FAIL output from HP1600CS Logic Analyzer corresponding to fault M10DSS. V and V connected to 1 MHz ENABLE ERROR signal.............................................................................................................111 Figure 5.1: Block Diagram of the proposed BIST scheme.............................................113 ix

Description:
Testing a CMOS operational amplifier circuit using a combination of oscillation and IDDQ test methods. Pavan K. Alli. Louisiana State University and Agricultural and Mechanical College, [email protected]. Follow this and additional works at: http://digitalcommons.lsu.edu/gradschool_theses. Part of the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.