ebook img

Test Examples for Nonlinear Programming Codes PDF

187 Pages·1981·4.618 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Test Examples for Nonlinear Programming Codes

Lecture Notes in Economics and Mathematical Systems (Vol. 1-15: Lecture Notes in Operations Research and Mathematical Economics, Vol. 16-59: Lecture Notes in Operations Research and Mathematical Systems) For information about Vols. 1-29, please contact your bookseller or Springer-Verlag Vol. 30: H.N oltemeier. Sensitlvitatsanalyse bei dlskreten Iinearen Vol. 58: P. B. Hagelschuer, Theorie der linearen Dekomposition. Optimierungsproblemen. VI. 102 Seiten. 1970. VII, 191 Seiten. 1971. Vol. 31: M. KOhlmeyer, Die nichtzentrale t-Verteilung. II, 106 Sei Vol. 59: J. A. Hanson, Growth," Open Economies. V, t28 pages. ten_ 1970. t971. Vol. 32: F. Bartholomes und G. Hotz, Homomorphlsmen und Re duktionen linearer Sprachen. XII, 143 Seiten. 1970. DM 18,- Vol. 60: H. Hauptmann, Schatz- und Kontrolltheorie in stetigen dynamischen Wirtschaftsmodellen. V, 104 Seiten. 1971. Vol. 33: K. Hinderer, Foupdations of Non-stationary Dynamic Pro gramming with Discrete Time Parameter. VI, 160 pages. 1970. Vol. 61 : K. H. F. Meyer, Wartesysteme mit variabler Bearbeitungs rate. VII, 314 Seiten. 1971. Vol. 34: H. Stormer. Seml-Markoff-Prozesse mit endlich vlelen Zustanden. Theorie und Anwendungen. VII, 128 Seiten. 1970. Vol. 62: W. Krelle u. G. Gabisch unter Mitarbeit von J. Burger meister, Wachstumstheorie. VII, 223 Seiten. 1972. Vol. 35: F. Ferschl, Markovketten. VI, 168 Seiten. 1 970. Vol. 36: M. J. P. Magill, On a General Economic Theory of Motion. Vol. 63: J. Kohlas, Monte Carlo Simulation 1m Operations Re VI, 95 pages. 1970. search. VI, 162 Seiten. 1972. Vol. 37: H. Muller-Merbach, On Round-Off Errors in linear Pro Vol. 64: P. Gessner u. K Spremann, Optimierung in Funktionen gramming. V. 48 pages. 1970. raumen. IV, 120 Seiten. 1972. Vol. 38: Statistische Methoden I. Herausgegeben von E. Walter. VIII, 338 Seiten. 1970. Vol. 65: W. Everling, Exercises In Computer Systems Analysis. VIII, 184 pages. 1972. Vol. 39: Statistische Methoden II. Herausgegeben von E. Walter. IV. 157 Seiten. 1970. Vol. 66: F. Bauer. P. Garabedian and D. Korn, Supercritlcal Wing Sections. V, 211 pages. 1972. Vol. 40: H. Drygas, The Coordinate-Free Approach to Gauss Markov Estimation. VIII, 113 pages. 1970. Vol. 67: I. V. Girsanov, lectures on Mathematical Theory of Extremum Problems. V, 136 pages. 1972. Vol. 41: U. Uelng, Zwei losungsmethoden fUr nichtkonvexe Pro grammierungsprobleme. IV, 92 Seiten. 1971. Vol. 68: J. loeckx, Computability and Decidability. An Introduction Vol. 42: A. V. Balakrishnan, Introduction to Optimization Theory," for Students of Computer Science. VI, 76 pages. 1972. a Hilbert Space. IV, 153 pages. 1971. Vol. 69: S. Ashour, Sequencing Theory. V, 133 pages. 1972. Vol. 43: J. A. Morales. Bayesian Full Information Structural Analy sis. VI, 154 pages. 1971. Vol. 70: J. P. Brown, The Economic Effects of Floods. Investiga tions of a Stochastic Model of Rational Investment. Behavior in the Vol. 44:' G. Feichtinger, Stochastische Modelle demographischer Face of Floods. V, 87 pages. 1972. Prozesse. IX. 404 Seiten. 1971. Vol. 71 : R. Henn und O. Opitz, Konsum-und Produktionstheorle II. Vol. 45: K. Wendler, Hauptaustauschschritte (Principal Pivoting). V, 134 Seiten. 1972. 11,64 Seiten. 1971. Vol. 46: C. Boucher, le<;ons sur la theorie des automates ma Vol. 72: T. P. Bagchi and J. G. C. Templeton, Numerical Methods in thematiques. VIII, 193 pages. 1971. Markov Chains and Bulk Queues. XI, 89 pages. 1972. Vol. 47: H. A. Nour Eldin, Optimierung Ii nearer Regelsysteme Vol. 73: H. Kiendl, Suboptimale Regier mit abschnittwelse I,nearer mit quadratischer Zielfunktion. VIII, 163 Seiten. 1971. Struktur. VI, 146 Seiten. 1 972. Vol. 48: M. Constam, FORTRAN fUr Anfanger. 2. Auflage. VI, Vol. 74: F. Pokropp, Aggregation von Produktionsfunktionen. VI, 148 Seiten. 1973. 107 Seiten. 1 972. Vol. 49: Ch. SchneeweiB, -Regelungstechnische stochastische Vol. 75: GI-Gesellschalt fur Informatik e.V. Bericht Nr. 3. 1. Fach· Optimierungsverfahren. XI, 254 Seiten. 1971. tagung uber Programmiersprachen' MOnchen, 9.-11. Marz 1971. Vol. 50: Unternehmensforschung Heute - Obersichtsvortrage der Herausgegeben im Aultrag der Gesellschalt fUr Informallk von H. Zuricher Tagung von SVOR und DGU, September 1970. Heraus langmaack und M. Paul. VII, 280 Seiten. 1972. gegeben von M. Beckmann. IV, 133 Seiten. 1971. Vol. 76: G. Fandel, Optimale Entscheidung bei mehrfacher Zlel Vol. 51: Digitale Simulation. Herausgegeben von K. Bauknecht setzung.lI, 121 Seiten. 1972. und W. Nef. IV, 207 Seiten. 1971. Vol. 77: A. Auslender, Problemes de Minimax via l'Analyse Con Vol. 52: Invariant Imbedding. Proceedings 1970. Edited by R. E. vexe et les Inegalites Variationelles: Theorle et Algorithmes. VII, Bellman and E. D. Denman. IV, 148 pages. 1971. 132 pages. 1972. Vol. 53: J. RosenmOller, Kooperative Spiele und Markte. III. 152 Vol. 78: GI-Gesellschaft liir Informatik e.V. 2.J ahrestagung, Karls ruhe, 2.-4. Oktober 1972. Herausgegeben im Aultrag der Gesell Seiten. 1971. schalt fUr Informatik von P. Deussen. XI, 576 Seiten. 1973. Vol. 54: C. C.v on Weizsacker, Steady State Capital Theory. III, Vol. 79: A. Berman, Cones, Matrices and Mathematical Program· 102 pages. 1971. mingo V, 96 pages. 1973. Vol. 55: P. A. V. B. Swamy, Statistical Inference in Random Coef Vol. 80: International Seminar on Trends in Mathematical Model ficient Regression Models. VIII, 209 pages. 1971. ling, Venice, 13-18 December 1971. Edited by N. Hawkes. VI, 288 pages. 1973. Vol. 56: Mohamed A. EI-Hodiri, Constrained Extrema. Introduction to the Differentiable Case with Economic Applications. III, 130 Vol. 81: Advanced Course on Software Engineering. Edited by pages. 1971. F. l. Bauer; XII, 545 pages. 1973. Vol. 57: E. Freund, Zeitvariable MehrgroBensysteme. VIII,160 Sei Vol. 82: R. Saeks, Resolution Space, Operators and Systems. X. ten.lg71. 267 pages. 1973. continuation on page 185 Lectu re Notes in Economics and Mathematical Systems Managing Editors: M. Beckmann and H. P. Kunzi 187 Willi Hock Klaus Schittkowski Test Exam pies for Nonlinear Programming Codes Springer-Verlag Berlin Heidelberg New York 1981 EEddiittoorriiaall BBooaarrdd HH.. AAllbbaacchh AA.. VV.. BBaallaakkrriisshhnnaann MM.. BBeecckkmmaannnn ((MMaannaaggiinngg EEddiittoorr)) PP.. DDhhrryymmeess JJ.. GGrreeeenn WW.. HHiillddeennbbrraanndd WW.. KKrreellllee HH.. PP.. KKuunnzzii ((MMaannaaggiinngg EEddiittoorr)) KK.. RRiitttteerr RR.. SSaattoo HH.. SScchheellbbeerrtt PP.. SScchhoonnffeelldd RR.. SSeelltteenn MMaannaaggiinngg EEddiittoorrss PPrrooff.. DDrr.. MM.. BBeecckkmmaannnn PPrrooff.. DDrr.. HH.. PP.. KKuunnzzii BBrroowwnn UUnniivveerrssiittyy UUnniivveerrssiittaatt ZZuurriicchh PPrroovviiddeennccee,, RRII 0022991122//UUSSAA CCHH--88009900 ZZuurriicchh//SScchhwweeiizz AAuutthhoorrss WWiillllii HHoocckk KKllaauuss SScchhiittttkkoowwsskkii IInnssttiittuutt ffUUrr AAnnggeewwaannddttee MMaatthheemmaattiikk uunndd SSttaattiissttiikk,, UUnniivveerrssiittaatt WWuurrzzbbuurrgg AAmm HHuubbllaanndd,, 88770000 WWuurrzzbbuurrgg,, FFeeddeerraall RReeppuubblliicc ooff GGeerrmmaannyy AAMMSS SSuubbjjeecctt CCllaassssiiffiiccaattiioonnss:: ((11998800)):: 6655KK0055,, 9900CC3300 IISSBBNN 997788--33--554400--1100556611--99 IISSBBNN 997788--33--664422--4488332200--22 ((eeBBooookk)) 000011 1100..11000077//997788--33--664422--4488332200--22 TThhiiss wwoorrkk iiss ssuubbjjeecctt ttoo ccooppyyrriigghhtt.. AAllll rriigghhttss aarree rreesseerrvveedd,, wwhheetthheerr tthhee wwhhoollee oorr ppaarrtt ooff tthhee mmaatteerriiaall iiss ccoonncceerrnneedd,, ssppeecciiffiiccaallllyy tthhoossee ooff ttrraannssllaattiioonn,, rreepprriinnttiinngg,, rree--uussee ooff iilllluussttrraattiioonnss,, bbrrooaaddccaassttiinngg,, rreepprroodduuccttiioonn bbyy pphhoottooccooppyyiinngg mmaacchhiinnee oorr ssiimmiillaarr mmeeaannss,, aanndd ssttoorraaggee iinn ddaattaa bbaannkkss.. UUnnddeerr §§ 5544 ooff tthhee GGeerrmmaann CCooppyyrriigghhtt llaaww wwhheerree ccooppiieess aarree mmaaddee ffoorr ootthheerr tthhaann pprriivvaattee uussee,, aa ffeeee iiss ppaayyaabbllee ttoo ''VVeerrwweerrttuunnggssggeesseellllsscchhaafftt WWoorrtt'',, MMuunniicchh.. ©© bbyy SSpprriinnggeerr--VVeerrllaagg BBeerrlliinn HHeeiiddeellbbeerrgg 11998811 22114422//33114400--554433221100 ................................................................. Preface The performance of a nonlinear programming algorithm can only be ascertained by numerical experiments requiring the collection and implementation of test examples in dependence upon the desired performance criterium. This book should be considered as an assis tance for a test designer since it presents an extensive collec tion of nonlinear programming problems which have been used in the past to test or compare optimization programs. He will be in formed about the optimal solution, about the structure of the problem in the neighbourhood of the solution, and, in addition, about the usage of the corresp,onding FORTRAN subroutines if he is interested in obtaining them -ofi a magnetic tape. Chapter I shows how the test examples are documented. In par ticular, the evaluation of computable information about the solu tion of a problem is outlined. It is explained how the optimal solution, the optimal Lagrange-multipliers, and the condition number of the projected Hessian of the Lagrangian are obtained. Furthermore, a classification number is defined allowing a formal description of a test problem, and the documentation scheme is described which is used in Chapter IV to present the problems. Chapter II contains detailed information about the usage of the corresponding FORTRAN subroutines for all programmers who want to receive them on a magnetic tape from the authors. A comprehensive list of the test problems and some solution properties are given in Chapter III. Furthermore, there is a list of the identification numbers of some famous, frequently used test examples to simplify their search. Together with their solution properties, all test problems are presented then in Chapter IV using a common documen tation scheme. Appendix A contains constant data for more exten sive problems and the numerical test results computed by some well-known optimization programs are listed in Appendix B. Some further results are encluded in Appendix C where the optimal re striction function values and the corresponding Lagrange-multi pliers are listed. IV The coding of the test problem functions together with their gradients requires about 10,000 FORTRAN statements making it impossible to publish the corresponding listings. But the authors are willing to provide an interested user with all subroutines on a magnetic tape. An order form is included at the end of the book. The authors would like to express their gratitude to the Rechenzentrum of the University of Wtirzburg for the generous support and to M. Bahr, R. Ruppert, and H. Megerle for their assistance when implementing and testing the programs. .................................................................... Contents Chapter I Description of the documentation 1. Introduction 2. Computable information about a solution 3 3. The classification number 8 4. The documentation scheme 9 Chapter II Usage of the FORTRAN subroutines 12 Chapter III Condensed information about the test 17 problems Chapter IV The test problems 23 Appendix A Constant data 128 Appendix B Some numerical test results 141 Appendix C Restriction function values and Lagrange 157 multipliers References 171 .................................................................. Chapter I DESCRIPTION OF THE DOCUMENTATION This chapter shows how the information about the solution properties of the test problems are obtained, and the documen tation scheme is described. 1. Introduction The development of algorithms for solving the nonlinear pro gramming problem min f(x) g j (x) ~ 0, j =1 , ••• , m1 (NLP) gj(x) 0 j=m1+1, .•. ,m xl S x S ~ with continuously differentiable functions f and g1, .•• ,gm requires the preparation of test examples. Our intention is to present an extensive collection of o·ptimization problems which can be used by a test designer to choose from. All problems are found in the literature and have been used in the past to develop, test, or compare optimization software. There is no attempt to classify the problems in the sense of 'good' or 'bad' test examples, since this question depends on the performance profile of the test designer. It should be noted, however, that all problems have been executed to compare 26 optimization programs numerically, cf. Hock [31J. The same set of nonlinear programming codes was investigated by Schittkowski [55J in the scope of a comparative study based on randomly generated test problems with predetermined solutions. 2 Another intention is to provide a user with information about the structure of a test problem at the optimal solution to get more insight in the numerical behaviour of optimization codes. The fundamental tool is the Lagrange-function m L(x,u):= f(x) - B uJogo(x) (1) j=1 J defined for all x E ~ and u = (u1, ••• ,um)T E i m • The vari ables u1, ••• ,um are called 'Lagrange-multipliers'. To simplify the notation in this and the following section, let us assume that there are no bounds on the variables or, in other words, that they are formulated as general restrictions in the form gm +i(x):= Xi - Xli 1 (2) gm +n+i(x):= -xi + ~ 1 i T T for i=1, ••• ,n, where x = (x1, ••• ,xn) , Xl = (xl , ••• ,xl ) , 1 n x = (xu , ••• ,x )T. The Lagrange-function (1) allows to charac- u 1 -~n terize the optimality conditions which can be stated in the follow- ing form, cf. McCormick [40J. Theorem (sufficient second order optimality condition): Let f and g1, ••• ,gm be twice continuously differentiable functions. A point x* E Rn is an isolated local minimizer of (NLP) , if the re eX10 S t s a vec t or u * = (u*1 ""'UID*) T suc h tha t the following conditions are valid: a) Kuhn-Tucker-conditions: , gj(x*) ;:, 0 j=1 , ... ,m1 gj (x*) 0 j=m1+ 1 , ••• ,m , uit ;:, 0 j="1 , ••• ,m1 J Ujgj(x*) = 0 j=1, ... ,m1 VxL(x*,u*) = 0 (3) condition: For every nonzero vector y with o for all j with Uj > 0 , j=1, ••• ,m1, and o , j=m1, ••• ,m, it follows that 3 Under an additional assumption (constrained qualification), the reversal of the theorem is also valid. Since the Kuhn-Tucker condition (3) indicates that the gradient of the objective func tion is a linear combination of the gradients of the restriction functions, we can consider the Lagrange-multipliers as a measure for the scaling or ascent properties of the restrictions at the optimal solution. In addition, a vanishing Lagrange-multiplier uj with gj(x*) = 0 shows that the restriction gj is redundant. In this situation, we say that a test problem is degenerate and the quotient of the absolutely greatest and absolutely smallest non-zero Lagrange-multipliers is called 'degree of degeneracy'. The second order condition (4) is interpreted in the sense that the Lagrange-function projected on the subspace of the binding constraints is locally convex. A measure for the curva ture of the Lagrangian in this subspace is given by the condition number of the Hesse-matrix, i.e. the quotient of the greatest and smallest eigenvalue. They are positive if and only if con dition (4) is valid. 2. Computable information about a solution This describes the procedure which was used to compute sectio~ an optimal solution and to check the optimality conditions (3) and (4). For many test examples, the exact solution x* of (NLP) is known a priori within machine precision. However, in all other cases, we have to approximate x* numerically, that means by an optimization code. But since none of the implemented optimization programs could solve all problems successfully, since different codes give different numerical solutions on return, and since, in particular, no optimization program can guarantee having found the global solution of (NLP), we executed the test problems by the routines of Table 1 which encludes the name of the author and the underlying mathematical method. 4 Code Author I1ethod ) VF02AD Powell Quadratic approximation OPRQP Bartholomew-Biggs ~ GRGA Abadie Generalized reduced gradient VF01A Fletcher } Multiplier FUNMIN Kraft FI1IN Kraft , Lootsma Penalty Table 1: Optimization programs for evaluating the optimal solutions. More detailed information about these programs is contained in Schittkowski [55). The purpose of performing these test runs was not to compare the efficiency of the programs (has been done separately, cf. Hock (31)), but only to compute one solution as precise as possible. Therefore, the programs were executed with very low stopping tolerances and a decision was made which of the obtained results could be accepted and published as a solution of the test problem. This choice has been based on the objective function value f(x*) and the sum of constrained violations r(x*), i. e. of m 1 m r(x*):= - D min(O,gJo(x*)) + Digj (x*) I , j=1 j=m1+1 where x* denotes the current computed approximation of the exact, but unknown solution. A numerical solution was considered to be the best one which had the lowest objective function value among all results with a constraint violation below a tolerance of 10-7• The procedure described so far yielded for each test problem of this collection the data x*, f(x*), and r(x*), where x* is considered now to be the optimal solution of the optimization problem. But these results give too less information about the structure of the problem in the neighbourhood of the solution x*. In particular, one has to determine the active constraints allowing a computation of the optimal Lagrange-multipliers u*, i.e. of the index set

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.