ebook img

Terahertz and higher-order Brunel harmonics: from tunnel to multiphoton ionization regime in tailored fields PDF

0.42 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Terahertz and higher-order Brunel harmonics: from tunnel to multiphoton ionization regime in tailored fields

Terahertzandhigher-orderBrunelharmonics: fromtunneltomultiphotonionizationregimein tailoredfields I. Babushkin,1,2 C. Bre´e,3 C. M. Dietrich,1 A. Demircan,1,4 U. Morgner,1,4 and A. Husakou2 1InstituteforQuantumOptics,LeibnizUniversita¨tHannover,Welfengarten1,30167Hannover,Germany 2Max Born Institute, Max Born Str. 2a, 12489 Berlin, Germany 3Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany 4Hannover Centre for Optical Technologies, Nienburgerstr. 17, 30167 Hannover, Germany Brunel radiation appears as a result of a two-step process of photo-ionization and subsequent acceleration ofelectron, withouttheneedofelectronrecollision. WeshowthatforgenerationofBrunelharmonicsatall frequenciesthesubcycleionizationdynamicsisofcriticalimportance. Namely, suchharmonicsdisappearat 7 1 lowpumpintensitieswhentheionizationdynamicsdependsonlyontheslowenvelope(socalledmultiphoton 0 ionizationregime)andnotontheinstantaneousfield.Nevertheless,ifthepumppulsecontainsincommensurate 2 frequencies,Brunelmechanismdoesgeneratenewfrequencieseveninthemultiphotonionizationregime. n a I. INTRODUCTION ofplasma-inducedrectificationandleadstogenerationoffre- J quenciesinterahertz(THz)range[16–22],orthe“zero-order” 0 Brunelharmonic. Higherorderharmonicsarealsogenerated, 3 The study of the dynamics of ionization process attracted forbothsingle-andmulti-colorfields,althoughwithdecreas- significantattentionlastyears,becauselasersourcesallowing ] intenseultra-shortpulseswiththecontroloverthefastoptical ingefficiency. Brunelharmonicsaretobedistinguishedfrom h theonesappearingduetodynamicsoftheboundedelectrons p waveform shape became available. Such studies gained im- (socalledfour-wave-mixingprocess). Ingeneral,experimen- - portance also because generation of shortest possible pulses m taldifferentiationbetweenthetwoisarathercomplicatedtask isbasedheavilyonhighharmonicgeneration,whichexploits [23–27]. s the ionization dynamics. Although the ionization process in a In this article we show that, looking from the perspective most simple single-electron systems such as noble gases is l oftheclassicalelectronmotioninthecontinuum,theBrunel p studied for several decades, its details are still far from be- . ingfullyclarified, thusbeinginafocusofrecentstudies[1– harmonics appear to be extremely sensitive to the subcycle s step-wisecharacteroftheionizationprocess. Iftheionization c 11]. One of the most known peculiarities of the ionization i is“fastenough”(tunnelionizationregime),itgivesrisetothe s processisitsstronglynonlineardependenceontheinputfield y strength. Forhighenoughintensitiesionizationhaspredomi- newharmonicswhereasiftheionization“slow”(multiphoton h nantlyacharacterofaninstantaneoustunneling,whereasfor ionizationregime),Brunelharmonicsdonotappear.Weshow p thetransitionbetweenthesetworegimesforthepumppulses lowerintensitiesitisbetterdescribedasratherslowmultipho- [ containingonlyonefrequency. Wealsoprovethatthisisthe tonprocess. Theboundaryisnotexactandwasseveraltime case for the THz harmonics in two-color case. Furthermore, 1 revisited[12,13],but,roughlyspeaking,itdependsonthera- v tio of the ionization time τ and the optical oscillation period we show that the situation may change if the two-color field 4 T known as Keldysh parameter γ = 2πτ/T. The ionization contains incommensurate harmonics, that is harmonics with 7 thenon-integerfrequencyratio. Suchharmonicsleadtobeat- process above this threshold γ (cid:28) 1 is nearly instantaneous 8 ings in the envelope which can be slow enough to switch on and depends on the current field strength. This leads to an 8 theBrunelmechanismagain,eveniftheionizationprocessis 0 essentially step-wise dynamics of ionization rate, with steps slow. . localizednearextremaoftheelectricfield. Ontheotherhand, 1 below this threshold γ (cid:29) 1, ionization depends more on the The article is organized as follows: in Sec. II we make a 0 short introduction into the mechanism of Brunel harmonics 7 cycle-averagedfieldintensityratherthanontheinstantaneous generationanddescribethedetailsofionizationprocessrele- 1 field. It should be noted also that for multicolor fields the vant to our consideration. In Sec. III we analyze the Brunel : Keldyshparameterscannotbedefinedanymoreinauniversal v harmonics in tunnel and multiphoton ionization regime in way. i X single-color pump whereas Sec. IV and Sec. V are devoted Creationoffreeelectronsduetoionizationleadstomodifi- totwo-colorpulses,withcommensurateandincommensurate r cationofthematerial’srefractiveindex,thusmakingthelater a frequencies,respectively. Theanalyticaldescriptionisdevel- field-dependent and therefore introducing nonlinearity. The opedanddiscussedinSec.6followedbyconcludingremarks presence of nonlinearity leads to generation of harmonics of Sec.VII. thepumpfield,whicharesometimescalledBrunelharmonics [14, 15]. We remark that this mechanism does not requires returnoftheelectronbacktothecoreandthereforeinvolves theharmonicsofrelativelyloworder(incontrasttohighhar- II. ELECTRONTRAJECTORIES,MACROSCOPIC monics generation). In particular, if the pump field is also PLASMACURRENT,ANDIONIZATION asymmetric in time, this may create also a net macroscopic asymmetric current which persists after the pulse and thus Brunelradiationcanbedescribedclassicallyasaradiation givesrisetoalow-frequencyharmonic. Thisprocessisatype created by a current of all free electrons. In particular, as- 2 suming a small volume of gas (smaller than the considered thenetcurrentinthecaseofatwo-colorfieldinFig.1(b)pos- wavelengths) ionized in a pump field E(t), the Brunel radia- sessesaspatialasymmetry,whichisabsentinthesingle-color tion created by the free electron current J(t) in this volume case. Therefore, the net current J(t) is also very different in willbe: both cases. Already this simple example shows that the net current J(t) and thus the Brunel radiation E can be signifi- dJ(t) Br E (t)=g , (1) cantlymodifiedbythefielddynamicsonthesubcyclescale. Br dt Herewewillshowthatthedynamicsofionizationprocess itself can be also of critical importance for the macroscopic where g is a factor depending on the observation point. If current buildup. As far as we know, there is no universally delays in light propagation can be neglected but still the dis- acceptablemodelwhichdescribesionizationdynamicsforall tance to the observer r is large enough, is given as [22]: g=δV/(4πε c2r),whereδV isthevolumeoftheplasmaspot. intensities on all relevant timescales which is also valid for 0 multicolorfield. Asitwasmentionedbefore,forhighintensi- Inthecurrentarticleweassumeargonasaworkinggas. TheexpressionforthecurrentisgivenbyJ(t)=−eρ(t)v(t), ties(γ (cid:28) 1)theionizationtakesplaceonthesubcyclescale. Inthiscase,theionizationratedependingontheinstantaneous wheree,ρ(t),v(t)aretheelectroncharge,densityofelectrons fieldstrength,describingtunnelingprocessinquasi-staticap- andtheiraveragevelocity,respectively.Thechangeofcurrent δJaftertimemomentδtcanbeexpressedasδJ =−e(ρ(t)δv+ proximation,isacceptableforarbitrarypulseshapesandthus arbitrarynumberoffrequenciesinthepulse. Weuseherethe v(t)δρ). Whencalculatingthechangeofaveragevelocityδv, statictunnelingapproximationformulaintheform[28]: we take into account that the newly ionized electrons have zero average velocity, thus reducing v: δv = −eE(t)δt/me − α (cid:40) β (cid:41) aδρrve(mt)a/rρk(at)b,lywshiemreplmeeeixsptrheesseiloenctronmass. Asaresult,weget WST(t)= E˜(t)exp −E˜(t) , (6) EBr(t)=gdJd(tt) = gme2E(t)ρ(t). (2) 5w.h1e4re×W10S1T1(tV)mis−t1hiesitohneizfiaetlidonunraittei,nE˜a(tto)m=ic|sEy(stt)e|/mEao,fEuanit≈s e (a.u.),coefficientsα = 4ω r5/2 andβ = (2/3)r3/2 aredefined a H H The electron density ρ(t) is related to the ionization rate throughtheratioofionizationpotentialsofargonandhydro- W(t)as genatomsr = U /U ,U = 13.6eV,U = 15.6eV,and H Ar H H Ar ω ≈4.13×1016s−1. a ∂ρ(t) =(ρ −ρ(t))W(t), (3) Forlowerintensitiesγ (cid:29) 1,whenionizationprobabilityis ∂t 0 muchlessthenanopticalcycle,ionizationratedependsmore onthecycle-averagedintensity-thatis,onthefieldenvelope where ρ is the density of non-ionized atoms before interac- 0 rather than instantaneous field strength. The tunnel ioniza- tionwiththepulse. Ionizationratedynamicsisimportantand tion formula Eq. (6) does not catch this dynamics anymore. isdescribedbelow. To calculate corresponding ionization rate for both single- InFig.1onecanseeanexemplaryprocessoffreeelectron and two-color fields we used the generalization of the well creation and their dynamics for single- and two-color pump known Keldysh-Faisal-Reistheory [29–31] for thefield with field. WeconsidertheelectricfieldE(t)intheform: arbitrarynumberofharmonics,whichwasdevelopedbyGuo, E(t)= F (t)cosω t+F (t)cos(2ω t+φ (t)), (4) Aberg and Crasemann [32] and which we abbreviate here as 1 0 2 0 12 GACmodel. InApp.Athecorrespondingionizationratefor where φ (t) is the phase which we allow to vary slowly in the case where the field contains two colors ω0, 2ω0. This 12 model provides us the dependence of the ionization rate on time,and bothintensitiesI (t),I (t)andtherelativephaseφ inexplicit (cid:112) (cid:112) 1 2 12 Fi(t)= 2Ii(t)/(c(cid:15)0), Ii(t)= Ii0e−t2/Ti2, F0i = 2I0i/(c(cid:15)0). (thoughcumbersome)formalism: (5) areslowlyvaryingfieldamplitudesandintensitieswhichde- WGAC(t)=WGAC(I1(t),I2(t),φ12), (7) scribethecorrespondingpulseenvelope,T isthepulsedura- i tion,andφ12istherelativephase. whereWGAC isgivenbyEq.(A10)anddescribedindetailsin In Fig. 1, several exemplary trajectories have been gener- AppendixA.Importantly,nowionizationdoesnotdependon ated with the electron ionized randomly with the probability theinstantaneousfieldbutratherontheslowenvelopesofthe corresponding to the tunnel ionization rate as discussed be- harmonicsaswellasontheirphaseφ12. low,forthecasesof I = 0inFig.1(a)and I = 20TW/cm2 Finally, for the case of a single-color field there is a rela- 2 2 inFig.1(b). InbothcasesweassumedI =100TW/cm2,the tivelysimpleformuladerivedbyIvanovandYudin[1],which 1 frequency ω corresponding to 2 µm wavelength, and pulse correctlydescribesbothcycle-averagedionizationrateandits 0 duration of 50 fs. For the parameters chosen here, the elec- slow and subcycle dynamics in both tunnel and multiphoton tronsareionizedwithhighestprobabilityclosetothemaxima regimes. WewillrefertothismodelasIYone,andthecorre- ofelectricfieldandbysubsequentaccelerationmove,inaver- spondingionizationrateisgivenby: age,awayfromtheorigin. Neitherrecollisionnocorepoten- (cid:16) (cid:17) tialweretakenintoaccountinoursimulations. Remarkably, W (t)=αexp −β(cid:48)F(t)2−β(cid:48)(cid:48)E(t)2 , (8) IY 3 1.0 (a) (b) u. a. 0.5 x(t), 0, 0.0 1 × E(t) 0.5 1.0 40 20 0 20 40 40 20 0 20 40 t, fs t, fs FIG.1.Trajectoriesx(t)(redlines)ofsampleelectronsionizedintheelectricfieldE(t)(blueline)ofthestrongone-color(a)andtwo-color(b) opticalpulses(parametersaregiveninthetext).In(b),becauseofpresenceoftwocolors,thefieldshapeisslightlyasymmetricwhichleadsto anasymmetrybetweenup-anddown-directionsintheelectrontrajectoriesandthustosignificantchangeoftheresultingmacroscopiccurrent J(t)andthustheBrunelradiationE (t).Thisillustratestheimportanceofsubcycledynamicsoftheionizationandmovement. Br wherethefieldisassumedtobeintheformEq.(4)withF = in Fig. 2(c). Namely, one can see that the Brunel harmonics 2 0,thusF(t)≡ F (t)/E istheslowfieldenvelopeinEq.(5)in atthefrequenciesω = nω , n = 3,5,7...indeedariseifthe 1 a 0 theunitsofE ,andthecoefficientsaredefinedas: ionizationisinthetunnelregime(redlines)anddisappearsif a multiphotonionizationtakesplace(bluelines). Asitisshown α= πCk2 (cid:32)2κ3(cid:33)2Q/κ, β(cid:48) = 2σ0+σ(cid:48)0(cid:48),β(cid:48)(cid:48) = σ(cid:48)0(cid:48) , (9) inthenextsection,thisisbecausethefieldofBrunelharmon- τ F 2ω3 2ω3 ics appears as a convolution of the fast optical field with the 0 0 electron density, and this convolution has no new harmonics 1 1 γ σ = (G2− )lnC−G , (10) iftheρ(t)changesslowlyintime,asitisthecaseforthemul- 0 2 2 2 tiphotonregime. Notethattheharmonicatω = ω isrelated (cid:113) 0 γ σ(cid:48)(cid:48) =lnC−2 , G = 1+γ2, C =2G2−1+2Gγ. (11) relatedtothefreeelectronmovement(incontrasttoelectron 0 G birth)andisnotinterestingforusinthepresentarticle. √ Hereκ = 2r (r isdefinedbelowEq.(6)),τ = κ/F isthe H H UsingIYformulaitispossibletoobservethetransitionbe- tunneling time, γ = ω τ is the Keldysh parameter, Q is the 0 tween the two types of dynamics. Such transition is shown effectivechargeoftheioniccore(Q = 1fornoblegases),C k in Fig. 3, where the energies of the 3th and 5th Brunel har- isrelatedtotheradialasysmptoteofthequantumorbitaland monics are shown (solid black and blue lines, respectively) in our case also C ≈ 1. This formula is not applicable for k in dependence on the peak amplitude F of the single-color 01 multicolorfields,butforsingle-coloronesitprovidesapossi- field with the parameters as in Fig. 1(a). As the field am- bilitytoinspectthetransitionbetweentunnelandmultiphoton plitudedecreases,theintensitiesoftheBrunelharmonicsde- regimeindetails,whichisdoneinthenextsection. creaseratherdramatically. Therearetwoeffectsinthis,oneis connectedtotheoveralldensityoffreeelectrons,whichalso decreases, the other is connected to the ionization dynamics III. BRUNELHARMONICSINSINGLE-COLORFIELDS onitsown. Todemonstrateclearlythelatereffect,weplotted the energies rescaled per single ionized atom (technically, to We start our consideration of Brunel radiation from dis- obtainsuchquantitieswerescaletheionizationcurrent J and cussingthesingle-colorfield(I02 =0)inEq.(5),Eq.(4). We thus EBr toρ(t = ∞)/ρ0). Theresultingquantitiesareshown useEq.(2)togetherwithequationforthefreeelectrondensity inFig.3bydashedlines. Eq.(3)andionizationcalculatedusingIYformulaW = W IY Eq. (8). In Fig. 2 the dynamics of the electric field and ion- IftheBrunelharmonicenergiesdependedonlyonthenum- izationaswellastheBrunelradiationisshownfortheparam- berofionizedelectronsandnotonthecorresponding(subcy- eters as in Fig. 1(a) but with two different intensities corre- cle)ionizationdynamics,suchrescaledenergieswouldnotde- spondingtothetunnel[Fig.2(a)]andmultiphoton[Fig.2(b)] pendonF. However,thisisnotthecase.Asonecansee,they regime. Of course, the bare ionization rate W in the case of also decay quickly with decreasing F (although with much theweakfieldismanyordersofmagnitudelowerthaninthe lower rate), demonstrating the importance of the fast tunnel tunnelone.Weareinterestedinthedynamics,thustheioniza- ionizationdynamics.Thisdecayisalsomuchfasterforthe5th tionrateaswellasBrunelradiationE (t)isrenormalizedto harmonicsthanforthe3thone,indicatingstrongnonlinearity Br theirmaximumvaluesineverycase.Theionizationrateinthe of the process. As it will be shown in Sec. 6,the appearance tunnel regime demonstrates strong subcycle-scale dynamics of 3th and 5th harmonics would be impossible if the ioniza- whereasinthemultiphotonregimeitchangesonmuchlonger tionrateweretrulyslow(containsnoharmonicsatthepump timescale of the slow field envelope. The Brunel radiation frequencyandhigher). Thisshowsalsothatthefasttunneling E (t)looksnotverydifferentinthetimedomain,butsignifi- componentinionizationdynamicsisstillpresentalsoforvery Br cantdifferencecanbeobservedinthefrequencyrangeshown lowfields. 4 1.0 1.0 max (a) max (b) 100 (c) Br, Br, 10-1 E E 10-2 / / WE(t), maxBr 00..05 WE(t), maxBr 00..05 arb. units 11110000----6543 W(t)/ W(t)/ (ω), Br 1100--87 , max 0.5 , max 0.5 E 10-9 E E 10-10 / / E(t) E(t) 10-11 1.0 1.0 10-12 40 200 20 40 60 80100 40 200 20 40 60 80100 0 1 2 3 4 5 t, fs t, fs ω/ω0 FIG.2.Brunelradiationinthetunnelandmultiphotonregimesinthecaseofsinglecolorpulse.In(a)and(b),thefield(blueline),ionization (blackline)and E (t)(redline)areshownforF = 0.053a.u. (a)andF = 2.6×10−4 (200timesless)(b). Theotherparametersasin Br 01 01 Fig.1(a).In(c),thespectraofBrunelradiationE (ω)for(a)(redline)and(b)(bluedashedline)areshown. Br photonregimeaswedidthisinFig.3. Nevertheless,wecan 100 consider these two cases separately, using tunnel ionization 10-2 rate W (Eq. (6)) for higher intensities and GAC ionization ST 10-4 rateWGAC forloweronesasdiscussedinSec.II. uts 10-6 Thecorrespondingfigurefortwo-colorcaseispresentedin n gy, arb. u1100-1-80 FFcaiiggse..14i(n.b)FT.ighIn.e2pp,aarbrtauicmtunelaoterw,rswIae02rhea(cid:44)tvhe0et,asnkaaemmneeφlaysI=i0n2π/t/Ih02e1ws=ihnig0clh.e2-dcaeosllivoin-r er 12 en10-12 ersthemaximalenergyfortheTHzharmonic[33]. Onecan ctral 10-14 seethatthesamebehaviorisobserved:inthetunnelionization pe regimetheBrunelharmonicsatω = nω arevisiblewhereas s10-16 0 in the multiphoton regime they disappear. This behavior is 10-18 completelyanalogoustothesingle-colorcaseandtakesplace 10-20 becauseinthemultiphotonregimeionizationis“tooslow”to 10-22 createharmonicsasdiscussedfurtherinSec.6. 10-3 10-2 10-1 F, a.u. FIG. 3. The energy of Brunel harmonics in dependence on the V. BRUNELHARMONICSINTWO-COLORFIELDS: peak amplitude F of a single-color pulse with the parameters as 01 INCOMMENSURATECASE inFig.1(a). Black(blue)linesshowtheenergyofthe3th(5th)har- monics. Theabsoluteenergiesareshowninsolidlineswhereasthe dashedlinesrepresenttheenergiespersingleionizedatom. Letusnowtrytwo-colorpumpfieldswithincommensurate frequencies. By incommensurate frequencies we assume the oneswiththeratiobetweenthembeingnot-integer. Forthis, IV. BRUNELHARMONICSINTWO-COLORFIELDS: weslightlydetunethesecondharmonic2ω0to2ω0+∆ωwith COMMENSURATECASE ∆ω(cid:28)ω0. Thatis,theelectricfieldweconsideris: (cid:112) (cid:112) Nowletusreturntothecasewhenthepumppulseconsists E(t)= 2I1(t)/(c(cid:15)0)cosω0t+ 2I2(t)/(c(cid:15)0)cos(2ω0t+∆ωt+φ12). of the fundamental frequency ω and its second harmonics (12) 0 2ω , that is, Eq. (4), Eq. (5) with I (cid:44) 0, φ = const. In The idea behind consideration of such field shape is the fol- 0 02 12 this case, both odd and even harmonics can appear. That is, lowing:slightdetuning∆ω(cid:28)ω0leadsinsomeslowbeatings Brunelharmonicsarelocatednearfrequenciesω = nω with inthefieldamplitude,andinthiscaseeven“slow”ionization 0 n = 0,2,3,4.... In particular, a zero one, which is located inmultiphotonregimemay“see”thesebeatingsandthusgen- typicallyinrealisticsetupsatTHzfrequency,isofspecialim- eratesomeharmonics. portance because THz radiation is difficult to generate. The For the high intensity in the tunnel ionization regime we appearanceofevenharmonicsisrelatedtotheasymmetryof can still use the tunnel formula Eq. (6). On the other hand, thefieldasshowninFig.1(b).Forthetwocolorcase,asitwas the GAC formalism is valid for commensurate frequencies. mentioned before, there is no general formula for ionization However, wenotethatwiththecondition∆ω (cid:28) ω , wecan 0 processallowingtotrackthetransitionfromtunneltomulti- interpretthefrequencyshiftasadditionalrelativephasewhich 5 1.0 1.0 max (a) max (b) 100 (c) Br, Br, 10-1 E E 10-2 / / WE(t), maxBr 00..05 WE(t), maxBr 00..05 arb. units 11110000----6543 W(t)/ W(t)/ (ω), Br 1100--87 , max 0.5 , max 0.5 E 10-9 E E 10-10 / / E(t) E(t) 10-11 1.0 1.0 10-12 40 200 20 40 60 80100 40 200 20 40 60 80100 0 1 2 3 4 5 t, fs t, fs ω/ω0 FIG.4. Brunelradiationinthetunnelandmultiphotonregimesinthecaseoftwo-colorpulse. In(a)and(b),thefield(blueline),ionization (blackline)andE (t)(redline)areshownforF =0.053a.u. (a)andF =2.6×10−4a.u. (200timesless)(b). Theotherparametersasin Br 01 01 Fig.1(b).In(c),thespectraofBrunelradiationE (ω)for(a)(redline)and(b)(bluedashedline)areshown. Br 1.0 1.5 0 (a) (b) s (c) W(t), arb. units00000.....56789 W(t)E(t), , arb. units 0001....5050 E(ω)g(), arb. unitBr||11505 o l 0.4 1.0 20 0 π 2π 150 100 50 0 50 100 150 0 1 2 3 4 5 φ t, fs ω/ω0 FIG. 5. Brunel harmonics for incommensurate frequencies. (a) Two color multiphoton ionization rate W (I ,I ,φ) (normalized to the GAC 1 2 maximumoverallφ)dependingonphasesbetweentwoharmonicsφforI = I = 20TW/cm2 (blueline)andI = I = 10TW/cm2 (green 1 2 1 2 line). (b) The field (black line), tunnel ionization rate (red line) and multiphoton ionization rate (blue line) for a 200 fs pulse containing frequenciesω and2.2ω withI =I =20TW/cm2.(c)Brunelharmonics(persingleionizedelectron)duetotunnelionization(redline)and 0 0 1 2 multiphotonionization(blueline). isslowlyvaryingintime: The spectrum of the radiation generated by the Brunel mechanism for ∆ω = 0.2ω is presented in Fig. 5(c). One φ12(t)→φ12+∆ωt (13) can see the generation of ne0w frequencies in the vicinity of thepumpfrequenciesintheformofacomb-likepatternwith andthusconsiderthefieldintheformEq.(4)withφ (t)given 12 spacingofroughly0.4∆ωbothinthecaseoftunnelandmul- by Eq. (13). We then use the GAC formalism for two-color tiphoton ionization regimes. This is in contrast to the pump pumpwithfrequenciesω ,2ω andthecorrespondingioniza- 0 0 pulse which have peaks only at ω , 2ω +3∆ω. In the mul- tionrate 0 0 tiphotonregime,onlyfewsuchfrequenciesisgenerated[blue W(t)=WGAC(I1(t),I2(t),φ12+∆ωt), (14) l2iωne+in∆Fωig±.35∆(cω)]a.ppEeffareicntivtheilsy,caosnel.yInfrceoqnuteranscti,eisnωth0e±tun∆nωel, 0 withW giveninEq.(A10). ionizationregime,thiscombcontainsmuchmorefrequencies. GAC As one can see in Fig. 5(a), where the dependence of the multiphoton ionization rate on the phase between pulses for exemplaryintensitiesI ,I isshown,thechangeoftheeffec- 1 2 tive phase effective phase ∆ωt+φ lead to noticeable mod- VI. ANALYTICALCONSIDERATIONSOFBRUNEL 12 HARMONICS ification of multiphoton ionization rate. Indeed, as one can see in the Fig. 5(b), not only tunnel ionization rate but also multiphotononevariesacrossthepulse.Forthiscaseweused To get a further insight into the processes governing the longerpulses(T = 200fs)tomakeslowbeatingspossible, generation of new frequencies by Brunel mechanism, we 1,2 withtheintensitiesI = I =100TW/cm2 forthetunnelcase present the quantities E (t), E(t), and ρ(t) as Fourier series 1 2 Br andI = I =20TW/cm2forthemultiphotonone. nearthemaximumofthepumppulse. Thismethodwasfirst 1 2 6 proposedin[14]andfurtherdevelopedin[22,34,35]. Here ∆ωanditsmultiples: we neglect the slow amplitude changes due to Gaussian en- (cid:88) (cid:88) velopes,thatis,weconsiderpulsesformallyinfiniteintimeto EBr(t)= EBr,n,meit(nω0+m∆ω), E(t)= En,meit(nω0+m∆ω), keepconsiderationsimple. Underthiscondition,wehavefor n,m n,m thepumppulseswithcommensuratefrequencies: (21) (cid:88) (cid:88) EBr(t)=(cid:88)EBr,neinω0t, E(t)=(cid:88)Eneinω0t, ρ(t)= n,m ρn,meit(nω0+m∆ω),W(t)= n,m Wn,meit(nω0+m∆ω). (22) n n (cid:88) (cid:88) ρ(t)= ρneinω0t,W(t)= Wneinω0t. (15) Substituting into Eq. (2) and multiplying by e−it(n(cid:48)(cid:48)ω0+m(cid:48)(cid:48)∆ω), wewillhave: n n (cid:88) Ifρ(cid:28)ρ0wecanalsoassume∂tρ≈ρ0W,thatis: EBr,n,meit(ω0(n−n(cid:48)(cid:48))+∆ω(m−m(cid:48)(cid:48))) = n,m ρ (cid:88) ρn = iω0Wn. (16) = En,mρn(cid:48),m(cid:48)eit(ω0(n+n(cid:48)−n(cid:48)(cid:48))+∆ω(m+m(cid:48)−m(cid:48)(cid:48))), (23) n,m,n(cid:48),m(cid:48) BysubstitutingtheseriesEq.(VI)intoEq. (2),multiplicat- ing the result by e−in(cid:48)ω0t and integrating over time (assuming We can now integrate over time as we did by deriva- dthealtta(cid:82))−,+∞w∞eegitωe0t(:n−n(cid:48))dt = 2πδn,n(cid:48), where δn,n(cid:48) is the Kronecker t(cid:82)Mi−o+∞n∞theoiatf(tω0E(Nnq−ω.n(cid:48)0(cid:48))(+1+∆7ω)(.Mm−∆m(cid:48)Iω(cid:48)n))dtth==e2cπ0aδsnew,n(cid:48)eδifmc,mtah(cid:48)n(cid:48)e,rtehuuseissotbnhtoeainsriuenlcgah:tioNn:, ge2 (cid:88) EBr,n = me j Ejρn−j. (17) EBr,n,m = gmee2 (cid:88)j,i Ej,iρn−j,m−i. (24) First, consider the situation arising when we are in multi- This equation is relatively good applicable in our situation photon ionization regime. In this case, ρ contains only the since we need large N, M to get Nω + M∆ω = 0, which 0 componentρ0. Thatis, wouldrequirelargenumberofharmonicsinthespectrum. Inthemultiphotonregime,becausemultiphotonionization ρ(t)=ρ0. (18) isfastenoughtoresolvebeatingswithfrequency∆ωbutstill slowonthescaleoffundamentalfrequencyω ,wehave: 0 Inthiscase, theharmonicspresentin E coincidewiththe Br,n (cid:88) onesinthepumpEn: ρ(t)= ρ eim∆ωt, (25) 0,m m ge2 (cid:88) EBr,n = m ρ0En, EBr(t)= EBr,neinω0t. (19) which is to be compared to the multiphoton commensurate e n case Eq. (18). Because of this, instead of Eq. (19) we will have: One can see that the slow dynamics of the electron density does not lead to generation of new harmonics, but rather to ge2 (cid:88) modification of the existing ones. This is valid for arbitrary EBr,n,m(ω)= m ρ0,jEn,m−j. (26) pumpspectra(withcommensuratefrequencies). e j In contrast, in the case of tunneling ionization, ρ(t) in- As follows from the symmetry considerations and as one creases steeply each half optical period, and contains strong components with n (cid:44) 0. In this case, the Brunel harmonics can see in Fig. 5, only even harmonics of ∆ω occur in W(t) and in ρ. This leads, according to Eq. (24), to generation of appear. In particular, if E contains only a single frequency (thatis,onlyE ,E (cid:44)0),thenfromEq.(17)wehave: newfrequenciesω0+(2j+1)∆ωand2ω0+(2j+2)∆ω, j = 1 −1 0,±1,±2,...,byBrunelmechanism,asshowninFig.5.Inthe   tunnelnon-commensuratecase, thegeneralformulaEq.(24) EBr,n = gme2 E1(cid:88)ρn−1+E−1(cid:88)ρn+1. (20) applies. e j j In this case, only even components ρ , n = 2N are present, VII. DISCUSSIONANDCONCLUSION n which results, according to Eq. (17), in appearance of odd harmonicsin E (t). Incontrast,forthetwo-colorpump(we In conclusion, we have considered generation of the so- Br donotwritetheexplicitformulaforthiscasehere),allcompo- called Brunel harmonics in one- and two-color fields, com- nentsarepresentinρ ,andaccordinglyalsoinE ,including paringthesituationswhentheionizationisfastsubcycletun- n Br,n thosewithn=0. nelingprocessdependingonlyontheinstantaneousfield(tun- In the case of non-commensurate frequencies, the series nelionizationregimevalidforhighfields),andthecasewhen (VI)mustbeextendedtoincludecomponentswithfrequency it has “memory” and depends on the cycle-average intensity 7 (multiphotonregimevalidforlowerfields).Weusedapproach AppendixA:Two-colormultiphotonionization ofdirectmodelingoftheclassicalnetcurrentproducedbythe ionized electrons and have shown that, at least in this classi- cal approximation, in the multiphoton ionization the Brunel harmonicsvanishinthemultiphotonionizationregime. This Fordescriptionofmultiphotonionizationweadoptherethe showsthatBrunelharmonicsareverysensitivetotheinternal Guo, AbergandCrasemann(GAC)model[32], whichisthe dynamicsoftheionizationprocess.Forthesingle-colorfields, generalizationofthewellknownKeldysh-Faisal-Reistheory wewereabletoshowthetransitionbetweenthesetwolimits [29–31] for the field of sufficiently different frequencies and usingIvanov-Yudinapproachwhichgivescorrectlybothion- whichwasusedinanopticalsetup[36,37]. TheGACmodel izationrateandionizationdynamics. Weconfirmedthatthis is based on the scattering-matrix formalism, providing non- behaviorisalsovalidfortwo-colorpumppulsescontaininga perturbativetreatmentofelectroninelectromagneticfield. In fundamentalfrequencyanditssecondharmonics. Suchpump this section the units are used in which (cid:126) = 1, c = 1. It pulsesareespeciallyinterestingbecausetheyallowtogener- provides the cycle-average ionization rate for all intensities ate THz frequencies, which are otherwise difficult to access butfailstoresolvethefastsubcycleionizationratedynamics by other optical methods. In this case, we considered only in the tunnel ionization regime. In our case, we have two- limitingcasesofpurelytunnelorpurelymultiphotonregime. color field (for instance ω+2ω) field. The Volkov state of Nevertheless, for the two-color fields with the incommen- theelectroninbichromaticlaserfieldwithaquantizedvector suratefrequencies(ω andω +∆ω)andlongenoughpulses, potentialA: 0 0 theBrunelharmonicsoftheformω +j∆ω(forinteger j)can 0 arisealsoinmultiphotonregime,becauseoftheslowbeatings between two harmonics on the time scale ∼ 1/∆ω. In gen- eral, bychangingofthisbeatfrequency, onecanthusswitch from“typicaltunnel”to“typicalmultiphoton”regime,giving (cid:88)2 us a new tool to study the transition region between the two A(−kr)= gi((cid:126)(cid:15)jeikjraj+(cid:126)(cid:15)j∗eikjra†) (A1) ionizationregimeswithoutchangingtheintensitywhichisan j=1 interestingdirectionforthefuturestudies. FUNDING with polarization(cid:126)(cid:15) = [(cid:126)(cid:15) cos(ξ /2)+i(cid:126)(cid:15) sin(ξ /2)]exp(iφ ), j x j y j j We gratefully acknowledge support by the DFG BA definedbyellipticityξ andphaseφ forthemodes j=ω,2ω, j j 4156/4-1,MO850/20-1andNieders. VorabZN3061. canbewrittenas[32,38] (cid:12) (cid:69) (cid:88) (cid:12)(cid:12)Ψµ =Ve−1/2 exp{i[Pe+(up1− j1)k1+(up2− j2)k2]}Xj1,j2(z)|n1+ j1,n2+ j2(cid:105), (A2) j1,j2 whereV isanintegrationvolume,n isabackgroundphoton where i = 1,2, ω = ω, ω = 2ω, 2Λ is an amplitude of e i 1 2 i number in the ith mode, j is the number of transferred pho- theithmode,obtainedfromaquantizedfieldEq.(A1)inthe i √ tons, P usthemomentumoftheelectroninthefield, k , k largephotonlimitg n →Λ. e 1 2 i i i are the wavevectors of the corresponding field components, andu ,u aretheponderomotiveparametersoftheelectron p1 p2 inthefieldsωand2ωcorrespondingly: u = e2Λ2i , (A3) [38X,3j19,j2](z)arethegeneralizedphasedBesselfunctions(GPB) pi m ω e i   Xj1,j2(z)= (cid:88)∞ X−j1+2q1+q3+q4(ζ1)X−j2+2q2+q3−q4(ζ2)(cid:89)4 X−qi(zi), (A4) q1...q4=−∞ i=2 where X (z) = J (|z|)exp{inarg(z)} is a phased Bessel func- arguments n n tion[39],calculatedthroughtheusualBesselfunctionJ with n 1 ζ = 2|e|ΛiP(cid:126)(cid:15), z = u (cid:126)(cid:15)(cid:126)(cid:15), (i=1,2) (A5) i meωi i i 2 pi i i 2e2Λ Λ (cid:126)(cid:15) (cid:15)∗ z = 2e2Λ1Λ2(cid:126)(cid:15)1(cid:15)2,z = 1 2 1 2. (A6) 3 (ω1+ω2)me 4 (ω1−ω2)me 8 Using the interaction Hamiltonian of the electron and the onecanobtainthetransitionamplitudefromthegroundstate quantizedfieldA: inside an atom, described by a wavefunction Φ(r) and the i energy E, and l , l photons in the corresponding modes of i 1 2 thefield,toanelectronfreestatewithawavefunctionφ (r)= −e e2A2 f V(r)= 2m [(−i∇)A+A(−i∇)]+ 2m , (A7) eiPefrandtheenergyEf,andm1, m2photonsinthefield[32]. e e (cid:88) (cid:68) (cid:69)(cid:68) (cid:69) Tfi =Ve−1/2 φf(r);m1,m2|Ψµ Ψµ|V(r)|Φi(r);l1,l2 =Ve−1/2Bq(ω1,1q,2ω2)(Pef), (A8) εµ=εi whereq =l −m,andB(ω1,ω2)(P )isan(unnormalized)elec- i i i q1,q2 ef trontransitionamplitudetothefinalstateφ (r),accomplished f byabsorptionofexactlyq photonsfromthei-thfieldmode: i (cid:88)(cid:104) (cid:105) B(qω1,1q,2ω2)(Pef)=Φi(Pef) (up1− j1)ω1+(up2− j2)ω2 Xj1−q1,j2−q2(zf)X∗j1,j2(zf), (A9) j1,j2 withΦ(P )beingaFouriertransformofΦ(r). “biphotons”q=q +2q leadingfinallyto: i ef i 1 2 (cid:90) (cid:90) V (cid:110) (cid:111) W = e dΩd|P | |P |2δ(E −E )|T |2 = GAC (2π)2 ef ef i f fi (cid:112)2m3ω(cid:88) (cid:112) (cid:90) (cid:12)(cid:12)(cid:12)(cid:88) (cid:12)(cid:12)(cid:12)2 4π2e q−B/ω dΩ(cid:12)(cid:12)(cid:12)(cid:12) B(qω−,22qω2),q2(pef)(cid:12)(cid:12)(cid:12)(cid:12) . (A10) q q2 The total transition rate is then given by integration over Here, B is an ionization potential, Ω is a solid angle (dΩ = (cid:112) athlleppoasrstiiballeperolebcatbroilnitimesomofeanbtasoarnpdtioisneoxfppreasrstiecdulaasransuummbeorvoerf usinnitθpveefcdtθopre,fdpoφipnefti)n,ganindtpheefdi=recntiΩond2emfienωe(dqb−yBth/eωa),ngnlΩeΩis.a [1] G.L.YudinandM.Y.Ivanov,Phys.Rev.A64,013409(2001). [11] G. G. Paulus, W. Becker, and H. Walther, Phys. Rev. A 52, [2] C.I.Blaga,F.Catoire,P.Colosimo,G.G.Paulus,H.G.Muller, 4043(1995). P.Agostini, andL.F.DiMauro,NatPhys5,335(2009). [12] H.R.Reiss,Phys.Rev.Lett.101,043002(2008). [3] F.KrauszandM.Ivanov,Rev.Mod.Phys.81,163(2009). [13] T.TopcuandF.Robicheaux,Phys.Rev.A86,053407(2012). [4] L. Torlina, F. Morales, J. Kaushal, I. Ivanov, A. Kheifets, [14] F.Brunel,J.Opt.Soc.Am.B7,521(1990). A.Zielinski,A.Scrinzi,H.G.Muller,S.Sukiasyan,M.Ivanov, [15] T.Balciunas,A.Verhoef,A.Mitrofanov,G.Fan,E.Serebryan- andO.Smirnova,NatPhys11,503(2015),article. nikov,M.Ivanov,A.Zheltikov, andA.Baltuska,Chem.Phys. [5] N.I.Shvetsov-Shilovski,M.Lein,L.B.Madsen,E.Ra¨sa¨nen, 414,92(2013). C. Lemell, J. Burgdo¨rfer, D. G. Arbo´, and K. To˝ke´si, Phys. [16] D.J.CookandR.M.Hochstrasser,Opt.Lett.25,1210(2000). Rev.A94,013415(2016). [17] M.Kress,T.Lo¨ffler,S.Eden,M.Thomson, andH.G.Roskos, [6] H. Ni, U. Saalmann, and J.-M. Rost, Phys. Rev. Lett. 117, Opt.Lett.29,1120(2004). 023002(2016). [18] T.Bartel,P.Gaal,K.Reimann,M.Woerner, andT.Elsaesser, [7] E.PisantyandM.Ivanov,Phys.Rev.A93,043408(2016). Opt.Lett.30,2805(2005). [8] H. Z. Jooya, D. A. Telnov, and S.-I. Chu, Phys. Rev. A 93, [19] K.Reimann,Rep.Progr.Phys.70,1597(2007). 063405(2016). [20] K.Y.Kim,A.J.Taylor,J.H.Glownia, andG.Rodriguez,Nat [9] D. Shafir, H. Soifer, C. Vozzi, A. S. Johnson, A. Hartung, Photon2,605(2008). Z.Dube,D.M.Villeneuve,P.B.Corkum,N.Dudovich, and [21] I. Babushkin, W. Kuehn, C. Ko¨hler, S. Skupin, L. Berge´, A.Staudte,Phys.Rev.Lett.111,023005(2013). K.Reimann,M.Woerner,J.Herrmann, andT.Elsaesser,Phys. [10] C.Y.Wu,Y.D.Yang,Y.Q.Liu,Q.H.Gong,M.Wu,X.Liu, Rev.Lett.105,053903(2010). X.L.Hao, W.D.Li, X.T.He, andJ.Chen,Phys.Rev.Lett. [22] I. Babushkin, S. Skupin, A. Husakou, C. Khler, E. Cabrera- 109,043001(2012). Granado,L.Berg, andJ.Herrmann,NewJ.Phys.13,123029 (2011). 9 [23] C.Bre´e,A.Demircan, andG.Steinmeyer,Phys.Rev.Lett.106, [32] D.-S.GuoandG.W.F.Drake,J.Phys.A:Math.Gen.25,5377 183902(2011). (1992). [24] J.K.Wahlstrand,Y.-H.Cheng,Y.-H.Chen, andH.M.Milch- [33] K.-Y.Kim,J.H.Glownia,A.J.Taylor, andG.Rodriguez,Opt. berg,Phys.Rev.Lett.107,103901(2011). Express15,4577(2007). [25] J. M. Brown, E. M. Wright, J. V. Moloney, and M. Kolesik, [34] P. G. de Alaiza Mart´ınez, I. Babushkin, L. Berge´, S. Skupin, Opt.Lett.37,1604(2012). E.Cabrera-Granado,C.Ko¨hler,U.Morgner,A.Husakou, and [26] P.Be´jot,J.Kasparian,S.Henin,V.Loriot,T.Vieillard,E.Hertz, J.Herrmann,Phys.Rev.Lett.114,183901(2015). O.Faucher, B.Lavorel, andJ.-P.Wolf,Phys.Rev.Lett.104, [35] T.Balcˇiu¯nas,D.Lorenc,M.Ivanov,O.Smirnova,A.Zheltikov, 103903(2010). D. Dietze, K. Unterrainer, T. Rathje, G. Paulus, A. Baltusˇka, [27] E.E.SerebryannikovandA.M.Zheltikov,Phys.Rev.Lett.113, etal.,Opt.Express23,15278(2015). 043901(2014). [36] P. Tzankov, O. Steinkellner, J. Zheng, M. Mero, W. Freyer, [28] M.V.Ammosov,N.B.Delone, andV.P.Krainov,SovietPhys. A. Husakou, I. Babushkin, J. Herrmann, and F. Noack, Opt. JETP64,1191(1986). Express15,6389(2007). [29] L.W.Keldysh,Sov.Phys.JETP20(1965). [37] I.BabushkinandJ.Herrmann,Opt.Express16,17774(2008). [30] F.H.M.Faisal,J.Phys.B:Atom.Molec.Phys.6,L89(1973). [38] L. Gao, X. Li, P. Fu, and D.-S. Guo, Phys. Rev. A 58, 3807 [31] H.R.Reiss,Phys.Rev.A22,1786(1980). (1998). [39] J.Zhang,S.Li, andZ.Xu,Phys.Rev.A69,053410(2004).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.