Table Of ContentTensors for
Data Processing
This page intentionally left blank
Tensors for
Data Processing
Theory, Methods, and Applications
Edited by
Yipeng Liu
School of Information and Communication Engineering
University of Electronic Science and Technology
of China (UESTC)
Chengdu, China
AcademicPressisanimprintofElsevier
125LondonWall,LondonEC2Y5AS,UnitedKingdom
525BStreet,Suite1650,SanDiego,CA92101,UnitedStates
50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom
Copyright©2022ElsevierInc.Allrightsreserved.
MATLAB®isatrademarkofTheMathWorks,Inc.andisusedwithpermission.
TheMathWorksdoesnotwarranttheaccuracyofthetextorexercisesinthisbook.
Thisbook’suseordiscussionofMATLAB®softwareorrelatedproductsdoesnotconstitute
endorsementorsponsorshipbyTheMathWorksofaparticularpedagogicalapproachorparticularuse
oftheMATLAB®software.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic
ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,
withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further
informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch
astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite:
www.elsevier.com/permissions.
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe
Publisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience
broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment
maybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating
andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch
informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including
partiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume
anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,
negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas
containedinthematerialherein.
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
ISBN:978-0-12-824447-0
ForinformationonallAcademicPresspublications
visitourwebsiteathttps://www.elsevier.com/books-and-journals
Publisher:MaraConner
AcquisitionsEditor:TimPitts
EditorialProjectManager:CharlotteRowley
ProductionProjectManager:PremKumarKaliamoorthi
Designer:MilesHitchen
TypesetbyVTeX
Contents
Listofcontributors ............................................. xiii
Preface ...................................................... xix
CHAPTER 1 Tensor decompositions: computations,
applications, and challenges .................... 1
YingyueBi, YingcongLu, Zhen Long, Ce Zhu, and
Yipeng Liu
1.1 Introduction ...................................... 1
1.1.1 Whatisatensor? ............................ 1
1.1.2 Whydoweneedtensors? ..................... 2
1.2 Tensoroperations ................................. 3
1.2.1 Tensornotations ............................ 3
1.2.2 Matrixoperators ............................ 4
1.2.3 Tensortransformations ....................... 6
1.2.4 Tensorproducts ............................. 7
1.2.5 Structuraltensors ............................ 11
1.2.6 Summary.................................. 13
1.3 Tensordecompositions ............................. 13
1.3.1 Tuckerdecomposition ........................ 13
1.3.2 Canonicalpolyadicdecomposition ............... 14
1.3.3 Blocktermdecomposition ..................... 16
1.3.4 Tensorsingularvaluedecomposition ............. 18
1.3.5 Tensornetwork ............................. 19
1.4 Tensorprocessingtechniques ......................... 24
1.5 Challenges....................................... 25
References....................................... 26
CHAPTER 2 Transform-based tensor singular value
decomposition in multidimensional image recovery 31
Tai-Xiang Jiang, Michael K. Ng, and Xi-Le Zhao
2.1 Introduction ...................................... 32
2.2 Recentadvancesofthetensorsingularvaluedecomposition .. 34
2.2.1 Preliminariesandbasictensornotations ........... 34
2.2.2 Thet-SVDframework ........................ 35
2.2.3 Tensornuclearnormandtensorrecovery .......... 38
2.2.4 Extensions ................................. 41
2.2.5 Summary.................................. 44
2.3 Transform-basedt-SVD ............................. 44
2.3.1 Linearinvertibletransform-basedt-SVD .......... 45
v
vi Contents
2.3.2 Beyondinvertibilityanddataadaptivity ........... 47
2.4 Numericalexperiments ............................. 49
2.4.1 Exampleswithinthet-SVDframework ........... 49
2.4.2 Examplesofthetransform-basedt-SVD .......... 51
2.5 Conclusionsandnewguidelines....................... 53
References....................................... 55
CHAPTER 3 Partensor ...................................... 61
Paris A. Karakasis, Christos Kolomvakis, George Lourakis,
George Lykoudis,Ioannis Marios Papagiannakos,
Ioanna Siaminou, Christos Tsalidis, and
Athanasios P. Liavas
3.1 Introduction ...................................... 62
3.1.1 Relatedwork ............................... 62
3.1.2 Notation .................................. 63
3.2 Tensordecomposition .............................. 64
3.2.1 Matrixleast-squaresproblems .................. 65
3.2.2 Alternatingoptimizationfortensordecomposition ... 69
3.3 Tensordecompositionwithmissingelements ............. 70
3.3.1 Matrixleast-squareswithmissingelements ........ 71
3.3.2 Tensordecompositionwithmissingelements:the
unconstrainedcase........................... 74
3.3.3 Tensordecompositionwithmissingelements:the
nonnegativecase ............................ 75
3.3.4 Alternatingoptimizationfortensordecomposition
withmissingelements ........................ 75
3.4 Distributedmemoryimplementations ................... 75
3.4.1 SomeMPIpreliminaries ...................... 75
3.4.2 Variablepartitioninganddataallocation........... 77
3.4.3 Tensordecomposition ........................ 79
3.4.4 Tensordecompositionwithmissingelements ....... 81
3.4.5 Someimplementationdetails ................... 82
3.5 Numericalexperiments ............................. 83
3.5.1 Tensordecomposition ........................ 83
3.5.2 Tensordecompositionwithmissingelements ....... 84
3.6 Conclusion ...................................... 87
Acknowledgment.................................. 88
References....................................... 88
CHAPTER 4 A Riemannian approach to low-rank tensor
learning ....................................... 91
Hiroyuki Kasai, Pratik Jawanpuria, and Bamdev Mishra
4.1 Introduction ...................................... 91
4.2 AbriefintroductiontoRiemannianoptimization .......... 93
Contents vii
4.2.1 Riemannianmanifolds ........................ 94
4.2.2 Riemannianquotientmanifolds ................. 95
4.3 RiemannianTuckermanifoldgeometry ................. 97
4.3.1 Riemannianmetricandquotientmanifoldstructure .. 97
4.3.2 Characterizationoftheinducedspaces ............ 100
4.3.3 Linearprojectors ............................ 102
4.3.4 Retraction ................................. 103
4.3.5 Vectortransport ............................. 104
4.3.6 Computationalcost .......................... 104
4.4 Algorithmsfortensorlearningproblems ................ 104
4.4.1 Tensorcompletion ........................... 105
4.4.2 Generaltensorlearning ....................... 106
4.5 Experiments ..................................... 107
4.5.1 Choiceofmetric ............................ 108
4.5.2 Low-ranktensorcompletion ................... 109
4.5.3 Low-ranktensorregression .................... 113
4.5.4 Multilinearmultitasklearning .................. 115
4.6 Conclusion ...................................... 116
References....................................... 117
CHAPTER 5 Generalized thresholding for low-rank tensor
recovery: approaches based on model and
learning ....................................... 121
Fei Wen, ZhonghaoZhang, and YipengLiu
5.1 Introduction ...................................... 121
5.2 Tensorsingularvaluethresholding ..................... 123
5.2.1 Proximityoperatorandgeneralizedthresholding .... 123
5.2.2 Tensorsingularvaluedecomposition ............. 126
5.2.3 Generalizedmatrixsingularvaluethresholding ..... 128
5.2.4 Generalizedtensorsingularvaluethresholding ...... 129
5.3 Thresholdingbasedlow-ranktensorrecovery ............. 131
5.3.1 Thresholdingalgorithmsforlow-ranktensorrecovery 132
5.3.2 Generalizedthresholdingalgorithmsforlow-rank
tensorrecovery ............................. 134
5.4 Generalizedthresholdingalgorithmswithlearning ......... 136
5.4.1 Deepunrolling.............................. 137
5.4.2 Deepplug-and-play .......................... 140
5.5 Numericalexamples ............................... 141
5.6 Conclusion ...................................... 145
References....................................... 147
CHAPTER 6 Tensor principal component analysis ............. 153
Pan Zhou, Canyi Lu, and Zhouchen Lin
6.1 Introduction ...................................... 153
viii Contents
6.2 Notationsandpreliminaries .......................... 155
6.2.1 Notations.................................. 156
6.2.2 DiscreteFouriertransform ..................... 157
6.2.3 T-product ................................. 159
6.2.4 Summary.................................. 160
6.3 TensorPCAforGaussian-noisydata ................... 161
6.3.1 Tensorrankandtensornuclearnorm ............. 161
6.3.2 AnalysisoftensorPCAonGaussian-noisydata ..... 165
6.3.3 Summary.................................. 166
6.4 TensorPCAforsparselycorrupteddata ................. 166
6.4.1 RobusttensorPCA .......................... 167
6.4.2 Tensorlow-rankrepresentation ................. 172
6.4.3 Applications ............................... 186
6.4.4 Summary.................................. 191
6.5 TensorPCAforoutlier-corrupteddata .................. 191
6.5.1 OutlierrobusttensorPCA ..................... 192
6.5.2 ThefastOR-TPCAalgorithm .................. 196
6.5.3 Applications ............................... 198
6.5.4 Summary.................................. 206
6.6 OthertensorPCAmethods........................... 207
6.7 Futurework ...................................... 208
6.8 Summary ........................................ 208
References....................................... 209
CHAPTER 7 Tensors for deep learning theory ................. 215
Yoav Levine, Noam Wies, Or Sharir, Nadav Cohen, and
Amnon Shashua
7.1 Introduction ...................................... 215
7.2 Boundingafunction’sexpressivityviatensorization........ 217
7.2.1 Ameasureofcapacityformodelinginput
dependencies ............................... 218
7.2.2 Boundingcorrelationswithtensormatricizationranks 220
7.3 Acasestudy:self-attentionnetworks ................... 223
7.3.1 Theself-attentionmechanism .................. 223
7.3.2 Self-attentionarchitectureexpressivityquestions .... 227
7.3.3 Resultsontheoperationofself-attention .......... 230
7.3.4 Boundingtheseparationrankofself-attention ...... 235
7.4 Convolutionalandrecurrentnetworks .................. 242
7.4.1 Theoperationofconvolutionalandrecurrentnetworks 243
7.4.2 Addressedarchitectureexpressivityquestions ...... 243
7.5 Conclusion ...................................... 245
References....................................... 245
CHAPTER 8 Tensor network algorithms for image classification 249
Cong Chen, Kim Batselier, and Ngai Wong
Contents ix
8.1 Introduction ...................................... 249
8.2 Background ...................................... 251
8.2.1 Tensorbasics ............................... 251
8.2.2 Tensordecompositions ....................... 253
8.2.3 Supportvectormachines ...................... 256
8.2.4 Logisticregression .......................... 257
8.3 Tensorialextensionsofsupportvectormachine ........... 258
8.3.1 Supervisedtensorlearning ..................... 258
8.3.2 Supporttensormachines ...................... 260
8.3.3 Higher-ranksupporttensormachines ............. 263
8.3.4 SupportTuckermachines...................... 265
8.3.5 Supporttensortrainmachines .................. 269
8.3.6 Kernelizedsupporttensortrainmachines .......... 275
8.4 Tensorialextensionoflogisticregression ................ 284
8.4.1 Rank-1logisticregression ..................... 285
8.4.2 Logistictensorregression ..................... 286
8.5 Conclusion ...................................... 288
References....................................... 289
CHAPTER 9 High-performance tensor decompositions for
compressing and accelerating deep neural
networks....................................... 293
Xiao-YangLiu, Yiming Fang, Liuqing Yang, Zechu Li, and
Anwar Walid
9.1 Introductionandmotivation .......................... 294
9.2 Deepneuralnetworks .............................. 295
9.2.1 Notations.................................. 295
9.2.2 Linearlayer ................................ 295
9.2.3 Fullyconnectedneuralnetworks ................ 298
9.2.4 Convolutionalneuralnetworks.................. 300
9.2.5 Backpropagation ............................ 303
9.3 Tensornetworksandtheirdecompositions ............... 305
9.3.1 Tensornetworks ............................ 305
9.3.2 CPtensordecomposition ...................... 308
9.3.3 Tuckerdecomposition ........................ 310
9.3.4 HierarchicalTuckerdecomposition .............. 313
9.3.5 Tensortrainandtensorringdecomposition ........ 315
9.3.6 Transform-basedtensordecomposition ........... 318
9.4 Compressingdeepneuralnetworks .................... 321
9.4.1 Compressingfullyconnectedlayers .............. 321
9.4.2 CompressingtheconvolutionallayerviaCP
decomposition .............................. 322
9.4.3 CompressingtheconvolutionallayerviaTucker
decomposition .............................. 325