ebook img

Tensor products of C-star-algebras and operator spaces PDF

495 Pages·2020·2.51 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Tensor products of C-star-algebras and operator spaces

LONDONMATHEMATICALSOCIETYSTUDENTTEXTS ManagingEditor:IanJ.Leary, MathematicalSciences,UniversityofSouthampton,UK 56 Logic,inductionandsets,THOMASFORSTER 57 IntroductiontoBanachalgebras,operatorsandharmonicanalysis,GARTHDALESetal 58 Computationalalgebraicgeometry,HALSCHENCK 59 Frobeniusalgebrasand2-Dtopologicalquantumfieldtheories,JOACHIMKOCK 60 Linearoperatorsandlinearsystems,JONATHANR.PARTINGTON 61 AnintroductiontononcommutativeNoetherianrings(2ndEdition),K.R.GOODEARL& R.B.WARFIELD,JR 62 Topicsfromone-dimensionaldynamics,KARENM.BRUCKS&HENKBRUIN 63 Singularpointsofplanecurves,C.T.C.WALL 64 AshortcourseonBanachspacetheory,N.L.CAROTHERS 65 ElementsoftherepresentationtheoryofassociativealgebrasI,IBRAHIMASSEM, DANIELSIMSON&ANDRZEJSKOWRON´SKI 66 Anintroductiontosievemethodsandtheirapplications,ALINACARMENCOJOCARU& M.RAMMURTY 67 Ellipticfunctions,J.V.ARMITAGE&W.F.EBERLEIN 68 Hyperbolicgeometryfromalocalviewpoint,LINDAKEEN&NIKOLALAKIC 69 LecturesonKa¨hlergeometry,ANDREIMOROIANU 70 Dependencelogic,JOUKUVA¨A¨NA¨NEN 71 ElementsoftherepresentationtheoryofassociativealgebrasII,DANIELSIMSON& ANDRZEJSKOWRON´SKI 72 ElementsoftherepresentationtheoryofassociativealgebrasIII,DANIELSIMSON& ANDRZEJSKOWRON´SKI 73 Groups,graphsandtrees,JOHNMEIER 74 RepresentationtheoremsinHardyspaces,JAVADMASHREGHI 75 Anintroductiontothetheoryofgraphspectra,DRAGOSˇCVETKOVIC´,PETERROWLINSON& SLOBODANSIMIC´ 76 NumbertheoryinthespiritofLiouville,KENNETHS.WILLIAMS 77 Lecturesonprofinitetopicsingrouptheory,BENJAMINKLOPSCH,NIKOLAYNIKOLOV& CHRISTOPHERVOLL 78 Cliffordalgebras:Anintroduction,D.J.H.GARLING 79 IntroductiontocompactRiemannsurfacesanddessinsd’enfants,ERNESTOGIRONDO& GABINOGONZA´LEZ–DIEZ 80 TheRiemannhypothesisforfunctionfields,MACHIELVANFRANKENHUIJSEN 81 Numbertheory,Fourieranalysisandgeometricdiscrepancy,GIANCARLOTRAVAGLINI 82 Finitegeometryandcombinatorialapplications,SIMEONBALL 83 Thegeometryofcelestialmechanics,HANSJO¨RGGEIGES 84 Randomgraphs,geometryandasymptoticstructure,MICHAELKRIVELEVICHetal 85 Fourieranalysis:PartI–Theory,ADRIANCONSTANTIN 86 Dispersivepartialdifferentialequations,M.BURAKERDOG˘AN&NIKOLAOSTZIRAKIS 87 Riemannsurfacesandalgebraiccurves,R.CAVALIERI&E.MILES 88 Groups,languagesandautomata,DEREKF.HOLT,SARAHREES&CLAASE.RO¨VER 89 AnalysisonPolishspacesandanintroductiontooptimaltransportation,D.J.H.GARLING 90 Thehomotopytheoryof(∞,1)-categories,JULIAE.BERGNER 91 TheblocktheoryoffinitegroupalgebrasI,M.LINCKELMANN 92 TheblocktheoryoffinitegroupalgebrasII,M.LINCKELMANN 93 Semigroupsoflinearoperators,D.APPLEBAUM 94 Introductiontoapproximategroups,M.C.H.TOINTON 95 RepresentationsoffinitegroupsofLietype(2ndEdition),F.DIGNE&J.MICHEL LondonMathematicalSocietyStudentTexts96 Tensor Products of C*-Algebras and Operator Spaces The Connes–Kirchberg Problem GILLES PISIER TexasA&MUniversity UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108479011 DOI:10.1017/9781108782081 ©GillesPisier2020 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2020 PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-108-47901-1Hardback ISBN978-1-108-74911-4Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Introduction page1 1 Completelyboundedandcompletelypositivemaps:Basics 11 1.1 Completelyboundedmapsonoperatorspaces 11 1.2 ExtensionpropertyofB(H) 18 1.3 Completelypositivemaps 23 1.4 Normalc.p.mapsonvonNeumannalgebras 30 1.5 Injectiveoperatoralgebras 31 1.6 Factorizationofcompletelybounded(c.b.)maps 33 1.7 Normalc.b.mapsonvonNeumannalgebras 37 1.8 Notesandremarks 39 2 Completelyboundedandcompletelypositivemaps:Atoolkit 41 2.1 Rowsandcolumns:operatorCauchy–Schwarzinequality 41 2.2 Automaticcompleteboundedness 43 2.3 Complexconjugation 44 2.4 Operatorspacedual 48 2.5 Bi-infinitematriceswithoperatorentries 50 ∗ 2.6 FreeproductsofC -algebras 53 ∗ 2.7 UniversalC -algebraofanoperatorspace 57 2.8 Completelypositiveperturbationsofcompletelyboundedmaps 58 2.9 Notesandremarks 61 ∗ 3 C -algebrasofdiscretegroups 63 ∗ 3.1 Full(=Maximal)groupC -algebras 63 ∗ 3.2 FullC -algebrasforfreegroups 66 ∗ 3.3 ReducedgroupC -algebras:Fell’sabsorptionprinciple 71 3.4 Multipliers 73 3.5 GroupvonNeumannAlgebra 77 v vi Contents 3.6 Amenablegroups 78 3.7 OperatorspacespannedbythefreegeneratorsinC∗(F ) 83 λ n 3.8 Freeproductsofgroups 84 3.9 Notesandremarks 85 ∗ 4 C -tensorproducts 87 ∗ 4.1 C -normsontensorproducts 87 ∗ 4.2 NuclearC -algebras(abriefpreliminaryintroduction) 91 ∗ 4.3 TensorproductsofgroupC -algebras 92 ∗ 4.4 AbriefrepertoireofexamplesfromgroupC -algebras 95 4.5 Statesonthemaximaltensorproduct 96 4.6 Statesontheminimaltensorproduct 99 ∗ 4.7 TensorproductwithaquotientC -algebra 103 4.8 Notesandremarks 104 5 Multiplicativedomainsofc.p.maps 106 5.1 Multiplicativedomains 106 5.2 Jordanmultiplicativedomains 108 5.3 Notesandremarks 112 6 Decomposablemaps 113 6.1 Thedec-norm 113 6.2 Theδ-norm 121 6.3 Decomposableextensionproperty 125 6.4 Examplesofdecomposablemaps 129 6.5 Notesandremarks 135 7 Tensorizingmapsandfunctorialproperties 136 7.1 (α →β)-tensorizinglinearmaps 136 7.2 (cid:5)(cid:5) isprojective(i.e.exact)butnotinjective 141 max 7.3 max-injectiveinclusions 144 7.4 (cid:5)(cid:5) isinjectivebutnotprojective(i.e.notexact) 150 min 7.5 min-projectivesurjections 153 ∗ 7.6 GeneratingnewC -normsfromoldones 157 7.7 Notesandremarks 160 ∗ 8 Biduals,injectivevonNeumannalgebras,andC -norms 161 ∗ 8.1 BidualsofC -algebras 161 8.2 Thenor-normandthebin-norm 162 8.3 NuclearityandinjectivevonNeumannalgebras 163 8.4 Localreflexivityofthemaximaltensorproduct 170 8.5 Localreflexivity 174 8.6 Notesandremarks 179 Contents vii 9 Nuclearpairs,WEP,LLP,QWEP 180 9.1 Thefundamentalnuclearpair(C∗(F∞),B((cid:6)2)) 181 9.2 C∗(F)isresiduallyfinitedimensional 186 9.3 WEP(WeakExpectationProperty) 188 9.4 LLP(LocalLiftingProperty) 193 9.5 Toliftornottolift(globallifting) 198 9.6 LinearmapswithWEPorLLP 202 9.7 QWEP 204 9.8 Notesandremarks 208 10 Exactnessandnuclearity 210 10.1 Theimportanceofbeingexact 210 10.2 Nuclearity,exactness,approximationproperties 216 10.3 Moreonnuclearityandapproximationproperties 222 10.4 Notesandremarks 224 11 Tracesandultraproducts 225 11.1 Traces 225 11.2 TracialprobabilityspacesandthespaceL (τ) 228 1 11.3 ThespaceL (τ) 230 2 11.4 Anexamplefromfreeprobability:semicircularand circularsystems 235 11.5 Ultraproducts 238 11.6 FactorizationthroughB(H)andultraproducts 246 11.7 Hypertracesandinjectivity 256 11.8 Thefactorizationpropertyfordiscretegroups 259 11.9 Notesandremarks 261 12 TheConnesembeddingproblem 262 12.1 Connes’squestion 262 12.2 Theapproximatelyfinitedimensional(i.e.“hyperfinite”) II -factor 269 1 12.3 Hyperlineargroups 271 12.4 ResiduallyfinitegroupsandSoficgroups 273 12.5 Randommatrixmodels 276 12.6 CharacterizationofnuclearvonNeumannalgebras 277 12.7 Notesandremarks 279 13 Kirchberg’sconjecture 280 13.1 LLP⇒WEP? 280 13.2 ConnectionwithGrothendieck’stheorem 283 13.3 Notesandremarks 290 viii Contents 14 Equivalenceofthetwomainquestions 291 14.1 FromConnes’squestiontoKirchberg’sconjecture 291 14.2 FromKirchberg’sconjecturetoConnes’squestion 292 14.3 Notesandremarks 296 15 Equivalencewithfiniterepresentabilityconjecture 297 15.1 Finiterepresentabilityconjecture 297 15.2 Notesandremarks 299 16 EquivalencewithTsirelson’sproblem 300 16.1 Unitarycorrelationmatrices 300 16.2 Correlationmatriceswithprojectionvaluedmeasures 303 16.3 StrongKirchbergconjecture 309 16.4 Notesandremarks 310 17 Property(T)andresiduallyfinitegroups:Thom’sexample 311 17.1 Notesandremarks 316 18 TheWEPdoesnotimplytheLLP 317 18.1 TheconstantC(n):W√EP(cid:7)⇒LLP 319 18.2 ProofthatC(n)=2 n−1usingrandomunitarymatrices 323 18.3 Exactnessisnotpreservedbyextensions 327 18.4 AcontinuumofC∗-normsonB⊗B 329 18.5 Notesandremarks 332 19 OtherproofsthatC(n)<n:quantumexpanders 333 19.1 Quantumcodingsequences.Expanders.Spectralgap 333 19.2 Quantumexpanders 336 19.3 Property(T) 338 19.4 Quantumsphericalcodes 341 19.5 Notesandremarks 343 20 LocalembeddabilityintoC andnonseparabilityof(OS ,d ) 344 n cb 20.1 Perturbationsofoperatorspaces 345 20.2 Finite-dimensionalsubspacesofC 346 20.3 Nonseparability of the metric space OS of n-dimensional n operatorspaces 351 20.4 Notesandremarks 357 21 WEPasanextensionproperty 358 21.1 WEPasalocalextensionproperty 358 21.2 WEPversusapproximateinjectivity 362 21.3 The(global)liftingpropertyLP 364 21.4 Notesandremarks 365 Contents ix 22 Complexinterpolationandmaximaltensorproduct 366 22.1 Complexinterpolation 366 22.2 Complexinterpolation,WEPandmaximaltensorproduct 371 22.3 Notesandremarks 382 23 Haagerup’scharacterizationsoftheWEP 384 23.1 Reductiontotheσ-finitecase 384 23.2 Anewcharacterizationofgeneralizedweakexpectationsand theWEP 385 23.3 AsecondcharacterizationoftheWEPanditsconsequences 388 23.4 Preliminariesonself-polarforms 390 + 23.5 max -injectiveinclusionsandtheWEP 395 23.6 Complement 403 23.7 Notesandremarks 408 24 FullcrossedproductsandfailureofWEPforB⊗ B 410 min 24.1 Fullcrossedproducts 410 24.2 Fullcrossedproductswithinneractions 414 24.3 B⊗ BfailsWEP 418 min 24.4 ProofthatC (3)<3(Selberg’sspectralbound) 427 0 24.5 OtherproofsthatC (n)<n 429 0 24.6 Randompermutations 431 24.7 Notesandremarks 432 25 Openproblems 434 Appendix:Miscellaneousbackground 438 A.1 Banachspacetensorproducts 438 A.2 Acriterionforanextensionproperty 439 A.3 UniformconvexityofHilbertspace 441 A.4 Ultrafilters 441 A.5 UltraproductsofBanachspaces 443 A.6 Finiterepresentability 443 A.7 Weakandweak*topologies:bidualsofBanachspaces 444 A.8 Thelocalreflexivityprinciple 446 A.9 AvariantofHahn–Banachtheorem 447 A.10 Thetraceclass 448 ∗ A.11 C -algebras:basicfacts 448 ∗ A.12 CommutativeC -algebras 450 A.13 StatesandtheGNSconstruction 451 A.14 On∗-homomorphisms 452 ∗ A.15 Approximateunits,ideals,andquotientC -algebras 454 A.16 vonNeumannalgebrasandtheirpreduals 456

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.