ebook img

Temporal scale selection in time-causal scale space PDF

2.4 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Temporal scale selection in time-causal scale space

InJournalofMathematicalImagingandVisiondoi:10.1007/s10851-016-0691-3Jan2017. Temporal scale selection in time-causal scale space TonyLindeberg 7 Received:date/Accepted:date 1 0 2 Abstract When designing and developing scale selection alently truncated exponential kernels coupled in cascade. n mechanisms for generating hypotheses about characteristic Specifically,bythediscretenatureofthetemporalscalelev- a J scalesinsignals,itisessentialthattheselectedscalelevels elsinthisclassoftime-causalscale-spaceconcepts,westudy 9 reflecttheextentoftheunderlyingstructuresinthesignal. two special cases of distributing the intermediate temporal Thispaperpresentsatheoryandin-depththeoreticalanal- scalelevels,byusingeitherauniformdistributioninterms ] ysisaboutthescaleselectionpropertiesofmethodsforauto- ofthevarianceofthecomposedtemporalscale-spacekernel V maticallyselectinglocaltemporalscalesintime-dependent oralogarithmicdistribution. C signalsbasedonlocalextremaovertemporalscalesofscale- Inthecaseofauniformdistributionofthetemporalscale . s normalizedtemporalderivativeresponses.Specifically,this levels,weshowthatscaleselectionbasedonlocalextrema c [ paper develops a novel theoretical framework for perform- ofscale-normalizedderivativesovertemporalscalesmakes ing such temporal scale selection over a time-causal and it possible to estimate the temporal duration of sparse lo- 1 time-recursive temporal domain as is necessary when pro- calfeaturesdefinedintermsoftemporalextremaoffirst-or v 8 cessing continuous video or audio streams in real time or second-order temporal derivative responses. For dense fea- 8 whenmodellingbiologicalperception. tures modelled as a sine wave, the lack of temporal scale 0 Forarecentlydevelopedtime-causalandtime-recursive invariance does, however, constitute a major limitation for 5 scale-space concept defined by convolution with a scale- handlingdensetemporalstructuresofdifferenttemporaldu- 0 . invariantlimitkernel,weshowthatitispossibletotransfera rationinauniformmanner. 1 largenumberofthedesirablescaleselectionpropertiesthat In the case of a logarithmic distribution of the tempo- 0 7 holdfortheGaussianscale-spaceconceptoveranon-causal ral scale levels, specifically taken to the limit of a time- 1 temporaldomaintothistemporalscale-spaceconceptovera causal limit kernel with an infinitely dense distribution of v: trulytime-causaldomain.Specifically,weshowthatforthis the temporal scale levels towards zero temporal scale, we i temporal scale-space concept, it is possible to achieve true showthatitispossibletoachievetruetemporalscaleinvari- X temporalscaleinvariancealthoughthetemporalscalelevels ance to handle dense features modelled as a sine wave in r a havetobediscrete,whichisanoveltheoreticalconstruction. a uniform manner over different temporal durations of the The analysis starts from a detailed comparison of dif- temporalstructuresaswelltoachievemoregeneraltempo- ferent temporal scale-space concepts and their relative ad- ralscaleinvarianceforanysignaloveranytemporalscaling vantages and disadvantages, leading the focus to a class of transformationwithascalingfactorthatisanintegerpower recently extended time-causal and time-recursive temporal ofthedistributionparameterofthetime-causallimitkernel. scale-spaceconceptsbasedonfirst-orderintegratorsorequiv- It is shown how these temporal scale selection proper- tiesdevelopedforapuretemporaldomaincarryovertofea- The support from the Swedish Research Council (Contract No. turedetectorsdefinedovertime-causalspatio-temporaland 2014-4083)andStiftelsenOlleEngkvistByggma¨stare(ContractNo. 2015/465)isgratefullyacknowledged. spectro-temporaldomains. Tony Lindeberg, Computational Brain Science Lab, Department of Keywords Scalespace·Scale·Scaleselection·Temporal· ComputationalScienceandTechnology,SchoolofComputerScience andCommunication,KTHRoyalInstituteofTechnology,SE-10044 Spatio-temporal·Scaleinvariance·Differentialinvariant· Stockholm,Sweden.E-mail:[email protected] Featuredetection·Videoanalysis·Computervision 2 TonyLindeberg 1 Introduction Overthespatialdomain,theoreticallywell-foundedmeth- ods have been developed for choosing spatial scale levels Whenprocessingsensorydatabyautomaticmethodsinar- amongreceptivefieldresponsesovermultiplespatialscales eas of signal processing such as computer vision or audio (Lindeberg [66,65,68,74,75]) leading to e.g. robust meth- processingorincomputationalmodellingofbiologicalper- odsforimage-basedmatchingandrecognition(Lowe[89]; ception, the notion of receptive field constitutes an essen- MikolajczykandSchmid[92];TuytelaarsandvanGool[116]; tialconcept(HubelandWiesel[33,34];AertsenandJohan- Bay et al. [5]; Tuytelaars and Mikolajczyk [117]; van de nesma[2];DeAngelisetal.[16,15];Milleretal[94]). Sandeetal.[105];Larsenetal.[52])thatareabletohandle For sensory data as obtained from vision or hearing, or large variations of the size of the objects in the image do- their counterparts in artificial perception, the measurement mainandwithnumerousapplicationsregardingobjectrecog- fromasinglelightsensorinavideocameraorontheretina, nition,objectcategorization,multi-viewgeometry,construc- or the instantaneous sound pressure registered by a micro- tion of 3-D models from visual input, human-computer in- phone is hardly meaningful at all, since any such measure- teraction,biometricsandrobotics. ment is strongly dependent on external factors such as the Much less research has, however, been performed re- illumination of a visual scene regarding vision or the dis- gardingthetopicofchoosinglocalappropriatescalesintem- tancebetweenthesoundsourceandthemicrophoneregard- poraldata.Whilesomemethodsfortemporalscaleselection inghearing.Instead,theessentialinformationiscarriedby havebeendeveloped(Lindeberg[64];LaptevandLindeberg therelativerelationsbetweenlocalmeasurementsatdiffer- [50];Willemsetal.[121]),thesemethodssufferfromeither ent points and temporal moments regarding vision or lo- theoreticalorpracticallimitations. cal measurements over different frequencies and temporal Amainsubjectofthispaperispresentatheoryforhow moments regarding hearing. Following this paradigm, sen- tocomparefilterresponsesintermsoftemporalderivatives sory measurements should be performed over local neigh- thathavebeencomputedatdifferenttemporalscales,specif- bourhoods over space-time regarding vision and over lo- icallywithadetailedtheoreticalanalysisofthepossibilities cal neighbourhoods in the time-frequency domain regard- ofhavingtemporalscaleestimatesasobtainedfromatem- ing hearing, leading to the notions of spatio-temporal and poral scale selection mechanism reflect the temporal dura- spectro-temporalreceptivefields. tion of the underlying temporal structures that gave rise to Specifically, spatio-temporal receptive fields constitute the feature responses. Another main subject of this paper amainclassofprimitivesforexpressingmethodsforvideo istopresentatheoreticalframeworkfortemporalscalese- analysis (Zelnik-Manor and Irani [124], Laptev and Linde- lection that leads to temporal scale invariance and enables berg[51,49];Jhuangetal.[39];Kla¨seretal.[43];Niebleset thecomputationofscalecovarianttemporalscaleestimates. al.[97];Wangetal.[118];Poppeetal.[101];ShaoandMat- Whilethesetopicscanforanon-causaltemporaldomainbe tivi[112];Weinlandetal.[120];Wangetal.[119]),whereas addressed by the non-causal Gaussian scale-space concept spectro-temporal receptive fields constitute a main class of (Iijima[35];Witkin[122];Koenderink[45];Koenderinkand primitivesforexpressingmethodsformachinehearing(Pat- vanDoorn[47];Lindeberg[61,62,70];Florack[22];terHaar tersonetal.[100,99];Kleinschmidt[44];Ezzatetal.[19]; Romeny [26]), the development of such a theory has been MeyerandKollmeier[91];Schluteetal.[107];Heckmann missingregardingatime-causaltemporaldomain. etal.[32];Wuetal.[123];Aliasetal.[4]). A general problem when applying the notion of recep- tivefieldsinpractice,however,isthatthetypesofresponses 1.1 Temporalscaleselection that are obtained in a specific situation can be strongly de- pendent on the scale levels at which they are computed. When processing time-dependent signals in video or audio A spatio-temporal receptive field is determined by at least ormoregenerallyanytemporalsignal,specialattentionhas a spatial scale parameter and a temporal scale parameter, tobeputtothefactsthat: whereasaspectro-temporalreceptivefieldisdeterminedby – thephysicalphenomenathatgeneratethetemporalsig- at least a spectral and a temporal scale parameter. Beyond nalsmayoccuratdifferentspeed—fasterorslower,and ensuring that local sensory measurements at different spa- – thetemporalsignalsmaycontainqualitativelydifferent tial,temporalandspectralscalesaretreatedinaconsistent typesoftemporalstructuresatdifferenttemporalscales. manner, which by itself provides strong contraints on the shapesofthereceptivefields(Lindeberg[72,78];Lindeberg In certain controlled situations where the physical system andFriberg[82,83]),itisnecessaryforcomputervisionor thatgeneratesthetemporalsignalsthatistobeprocessedis machinehearingalgorithmstodecidewhatresponseswithin sufficientlywellknownandifthevariabilityofthetemporal thefamiliesofreceptivefieldsoverdifferentspatial,tempo- scales over time in the domain is sufficiently constrained, ralandspectralscalestheyshouldbasetheiranalysison. suitable temporal scales for processing the signals may in Temporalscaleselectionintime-causalscalespace 3 somesituationsbechosenmanuallyandthenbeverifiedex- tute the natural metric for measuring the scale levels in a perimentally. If the sources that generate the temporal sig- spatialscalespace(Koenderink[45];Lindeberg[59]). nals are sufficiently complex and/or if the temporal struc- As we shall see from the detailed theoretical analysis tures in the signals vary substantially in temporal duration that will follow, this will imply certain differences in scale bytheunderlyingphysicalprocessesoccurringsignificantly selectionpropertiesofatemporallyasymmetrictime-causal fasterorslower,itisontheotherhandnaturalto(i)include scalespacecomparedtoscaleselectioninaspatiallymirror a mechanism for processing the temporal data at multiple symmetric Gaussian scale space. These differences in the- temporalscalesand(ii)trytodetectinabottom-upmanner oretical properties are in turn essential to take into explicit atwhattemporalscalestheinterestingtemporalphenomena accountwhenformulatingalgorithmsfortemporalscalese- arelikelytooccur. lectionine.g.videoanalysisoraudioanalysisapplications. Thesubjectofthisarticleistodevelopatheoryfortem- Forthetemporalscale-spaceconceptbasedonauniform poral scale selection in a time-causal temporal scale space distributionofthetemporalscalelevelsinunitsofthevari- asanextensionofapreviouslydevelopedtheoryforspatial ance of the composed scale-space kernel, it will be shown scaleselectioninaspatialscalespace(Lindeberg[66,65,68, that temporal scale selection from local extrema over tem- 74,75]),togeneratebottom-uphypothesesaboutcharacter- poral scales will make it possible to estimate the temporal istictemporalscalesintime-dependentsignals,intendedto durationoflocaltemporalstructuresmodelledaslocaltem- serveasestimatesofthetemporaldurationoflocaltempo- poral peaks and local temporal ramps. For a dense tempo- ral structures in time-dependent signals. Special focus will ral structure modelled as a temporal sine wave, the lack of be on developing mechanisms analogous to scale selection true scale invariance for this concept will, however, imply innon-causalGaussianscale-space,basedonlocalextrema thatthetemporalscaleestimateswillnotbedirectlypropor- overscalesofscale-normalizedderivatives,whileexpressed tionaltothewavelengthofthetemporalsinewave.Instead, within the framework of a time-causal and time-recursive thescaleestimatesareaffectedbyabias,whichisnotade- temporalscalespaceinwhichthefuturecannotbeaccessed sirableproperty. and the signal processing operations are thereby only al- For the temporal scale-space concept based on a loga- lowedtomakeuseofinformationfromthepresentmoment rithmic distribution of the temporal scale levels, and taken andacompactbufferofwhathasoccurredinthepast. tothelimittoscale-invarianttime-causallimitkernel(Lin- Whendesigninganddevelopingsuchscaleselectionmech- deberg[78])correspondingtoaninfinitenumberoftempo- anisms,itisessentialthatthecomputedscaleestimatesre- ralscalelevelsthatclusterinfinitelyclosenearthetemporal flect the temporal duration of the corresponding temporal scalelevelzero,itwillontheotherhandbeshownthatthe structuresthatgaverisetothefeatureresponses.Tounder- temporalscaleestimatesofadensetemporalsinewavewill stand the pre-requisites for developing such temporal scale be truly proportional to the wavelength of the signal. By a selectionmethods,wewillinthispaperperformanin-depth generalproof,itwillbeshownthisscaleinvariantproperty theoreticalanalysisofthescaleselectionpropertiesthatsuch oftemporalscaleestimatescanalsobeextendedtoanysuf- temporalscaleselectionmechanismsgiverisetofordiffer- ficientlyregularsignal,whichconstitutesageneralfounda- enttemporalscale-spaceconceptsandfordifferentwaysof tion for expressing scale invariant temporal scale selection definingscale-normalizedtemporalderivatives. mechanisms for time-dependent video and audio and more Specifically,afteranexaminationofthetheoreticalprop- generallyalsootherclassesoftime-dependentmeasurement erties of different types of temporal scale-space concepts, signals. we will focus on a class of recently extended time-causal As complement to this proposed overall framework for temporalscale-spaceconceptsobtainedbyconvolutionwith temporalscaleselection,wewillalsopresentasetofgeneral truncatedexponentialkernelscoupledincascade(Lindeberg theoretical results regarding time-causal scale-space repre- [57,77,78];LindebergandFagerstro¨m[81]).Fortwonatu- sentations: (i) showing that previous application of the as- ralwaysofdistributingthediscretetemporalscalelevelsin sumption of a semi-group property for time-causal scale- sucharepresentation,intermsofeitherauniformdistribu- spaceconceptsleadstoundesirabletemporaldynamics,which tion over the scale parameter τ corresponding to the vari- howevercanberemediedbyreplacingtheassumptionofa ance of the composed scale-space kernel or a logarithmic semi-group structure be a weaker assumption of a cascade distribution,wewillstudythescaleselectionpropertiesthat propertyinturnbasedonatransitivityproperty,(ii)formu- resultfromdetectinglocaltemporalscalelevelsfromlocal lations of scale-normalized temporal derivatives for Koen- extremaoverscaleofscale-normalizedtemporalderivatives. derink’stime-causalscale-timemodel[46]and(iii)waysof Themotivationforstudyingalogarithmicdistributionofthe translatingthetemporalscaleestimatesfromlocalextrema temporalscalelevels,isthatitcorrespondstoauniformdis- over temporal scales in the temporal scale-space represen- tributioninunitsofeffectivescaleτ = A+Blogτ for tation based on the scale-invariant time-causal limit kernel eff some constants A and B, which has been shown to consti- into quantitative measures of the temporal duration of the 4 TonyLindeberg corresponding underlying temporal structures and in turn bution of the temporal scale levels, some theoretical scale- basedonascale-timeapproximationofthelimitkernel. spacepropertieswillturnouttobeeasiertostudyinclosed In these ways, this paper is intended to provide a theo- formforthistemporalscale-spaceconcept.Wewillspecif- reticalfoundationforexpressingtheoreticallywell-founded ically show that for a temporal peak modelled as the im- temporalscaleselectionmethodsforselectinglocaltempo- pulseresponsetoasetoftruncatedexponentialkernelscou- ralscalesovertime-causaltemporaldomains,suchasvideo pledincascade,theselectedtemporalscalelevelwillserve and audio with specific focus on real-time image or sound as a good approximation of the temporal duration of the streams. Applications of this scale selection methodology peak or be proportional to this measure depending on the fordetectingbothsparseanddensespatio-temporalfeatures valueofthescalenormalizationparameterγ usedforscale- invideoarepresentedinacompanionpaper[79]. normalizedtemporalderivativesbasedonvariance-basednor- malizationorthescalenormalizationpowerpforscale-norm- alizedtemporalderivativesbasedonL -normalization.For p atemporalonsetramp,theselectedtemporalscalelevelwill 1.2 Structureofthisarticle ontheotherhandbeeitheragoodapproximationofthetime constant of the onset ramp or proportional to this measure Asaconceptualbackgroundtothetheoreticaldevelopments of the temporal duration of the ramp. For a temporal sine that will be performed, we will start in Section 2 with an wave, the selected temporal scale level will, however, not overviewofdifferentapproachestohandlingtemporaldata bedirectlyproportionaltothewavelengthofthesignal,but within the scale-space framework including a comparison insteadaffectedbyasystematicbias.Furthermore,thecor- of relative advantages and disadvantages of different types responding scale-normalized magnitude measures will not oftemporalscale-spaceconcepts. be independent of the wavelength of the sine wave but in- As a theoretical baseline for the later developments of steadshowsystematicwavelengthdependentdeviations.A methodsfortemporalscaleselectioninatime-causalscale mainreasonforthisisthatthistemporalscale-spaceconcept space,weshalltheninSection3giveanoveralldescription doesnotguaranteetemporalscaleinvarianceifthetemporal of basic temporal scale selection properties that will hold scalelevelsaredistributeduniformlyintermsofthetempo- ifthenon-causalGaussianscale-spaceconceptwithitscor- ralscaleparameterτ correspondingtothetemporalvariance responding selection methodology for a spatial image do- ofthetemporalscale-spacekernel. main is applied to a one-dimensional non-causal temporal domain, e.g. for the purpose of handling the temporal do- Withalogarithmicdistributionofthetemporalscalelev- mainwhenanalysingpre-recordedvideooraudioinanof- els, we will on the other hand show that for the temporal flinesetting. scale-space concept defined by convolution with the time- In Sections 4–5 we will then continue with a theoret- causallimitkernel(Lindeberg[78])correspondingtoanin- ical analysis of the consequences of performing temporal finitely dense distribution of the temporal scale levels to- scale selection in the time-causal scale space obtained by wardszerotemporalscale,thetemporalscaleestimateswill convolution with truncated exponential kernels coupled in be perfectly proportional to the wavelength of a sine wave cascade (Lindeberg [57,77,78]; Lindeberg and Fagerstro¨m forthistemporalscale-spaceconcept.Itwillalsobeshown [81]). By selecting local temporal scales from the scales at thatthistemporalscale-spaceconceptleadstoperfectscale which scale-normalized temporal derivatives assume local invariance in the sense that (i) local extrema over temporal extremaovertemporalscales,wewillanalyzetheresulting scales are preserved under temporal scaling factors corre- temporalscaleselectionpropertiesfortwowaysofdefining spondingtointegerpowersofthedistributionparametercof scale-normalized temporal derivatives, by either variance- thetime-causallimitkernelunderlyingthistemporalscale- basednormalizationasdeterminedbyascalenormalization spaceconceptandaretransformedinascale-covariantway parameterγ orL -normalizationfordifferentvaluesofthe for any temporal input signal and (ii) if the scale normal- p scalenormalizationpowerp. ization parameter γ = 1 or equivalently if the scale nor- Withthetemporalscalelevelsrequiredtobediscretebe- malization power p = 1, the magnitude values at the local cause of the very nature of this temporal scale-space con- extrema over scale will be equal under corresponding tem- cept,wewillspecificallystudytwowaysofdistributingthe poralscalingtransformations.Forthistemporalscale-space temporalscalelevelsoverscale,usingeitherauniformdis- conceptwecanthereforefulfilbasicrequirementstoachieve tribution relative to the temporal scale parameter τ corre- temporalscaleinvariancealsooveratime-causalandtime- sponding to the variance of the composed temporal scale- recursivetemporaldomain. spacekernelinSection4oralogarithmicdistributionofthe Tosimplifythetheoreticalanalysiswewillinsomecases temporalscalelevelsinSection5. temporarily extend the definitions of temporal scale-space Because of the analytically simpler form for the time- representationsoverdiscretetemporalscalelevelstoacon- causalscale-spacekernelscorrespondingtoauniformdistri- tinuousscalevariable,tomakeitpossibletocomputelocal Temporalscaleselectionintime-causalscalespace 5 extrema over temporal scales from differentiation with re- For off-line processing of pre-recorded signals, a non- spect to the temporal scale parameter. Section 6 discusses causalGaussiantemporalscale-spaceconceptmayinmany theinfluencethatthisapproximationhasontheoverallthe- situationsbesufficient.AGaussiantemporalscale-spacecon- oreticalanalysis. ceptisconstructedoverthe1-Dtemporaldomaininasimi- Section 7 then illustrates how the proposed theory for larmannerasaGaussianspatialscale-spaceconceptiscon- temporal scale selection can be used for computing local structed over a D-dimensional spatial domain (Iijima [35]; scale estimates from 1-D signals with substantial variabili- Witkin[122];Koenderink[45];KoenderinkandvanDoorn tiesinthecharacteristictemporaldurationoftheunderlying [47];Lindeberg[61,62,70];Florack[22];terHaarRomeny structuresinthetemporalsignal. [26]),withorwithoutthedifferencethatamodelfortempo- In Section 8, we analyse how the derived scale selec- raldelaysmayormaynotbeadditionallyincluded(Linde- tion properties carry over to a set of spatio-temporal fea- berg[70]). ture detectors defined over both multiple spatial scales and Whenprocessingtemporalsignalsinrealtime,orwhen multiple temporal scales in a time-causal spatio-temporal modelling sensory processes in biological perception com- scale-spacerepresentationforvideoanalysis.Section9then putationally, it is on the other hand necessary to base the outlineshowcorrespondingselectionoflocaltemporaland temporalanalysisontime-causaloperations. logspectralscalescanbeexpressedforaudioanalysisoper- The first time-causal temporal scale-space concept was ationsoveratime-causalspectro-temporaldomain.Finally, developedbyKoenderink[46],whoproposedtoapplyGaus- Section10concludeswithasummaryanddiscussion. sian smoothing on a logarithmically transformed time axis To simplify the presentation, we have put some deriva- with the present moment mapped to the unreachable infin- tions and theoretical analysis in the appendix. Appendix A ity. This temporal scale-space concept does, however, not presents a general theoretical argument of why a require- haveanyknowntime-recursiveformulation.Formally,itre- mentaboutasemi-grouppropertyovertemporalscaleswill quiresaninfinitememory ofthepastandhastherefore not leadtoundesirabletemporaldynamicsforatime-causalscale beenextensivelyappliedincomputationalapplications. space and argue that the essential structure of non-creation Lindeberg[57,77,78]andLindebergandFagerstro¨m[81] ofnewimagestructuresfromanyfinertoanycoarsertempo- proposedatime-causaltemporalscale-spaceconceptbased ral scale can instead nevertheless be achieved with the less on truncated exponential kernels or equivalently first-order restrictive assumption about a cascade smoothing property integrators coupled in cascade, based on theoretical results overtemporalscales,whichthenallowsforbettertemporal by Schoenberg [108] (see also Schoenberg [109] and Kar- dynamicsintermsofe.g.shortertemporaldelays. lin [42]) implying that such kernels are the only variation- In relation to Koenderink’s scale-time model [46], Ap- diminishingkernelsovera1-Dtemporaldomainthatguar- pendixBshowshowcorrespondingnotionsofscale-normal- anteenon-creationofnewlocalextremaorequivalentlyzero- izedtemporalderivativesbasedoneithervariance-basednor- crossingswithincreasingtemporalscale.Thistemporalscale- malizationorL -normalizationcanbedefinedalsoforthis p spaceconceptisadditionallytime-recursiveandcanbeim- time-causaltemporalscale-spaceconcept. plementedintermsofcomputationallyhighlyefficientfirst- Appendix C shows how the temporal duration of the order integrators or recursive filters over time. This theory time-causal limit kernel proposed in (Lindeberg [78]) can hasbeenrecentlyextendedintoascale-invarianttime-causal beestimatedbyascale-timeapproximationofthelimitker- limitkernel(Lindeberg[78]),whichallowsforscaleinvari- nelviaKoenderink’sscale-timemodelleadingtoestimates ance over the temporal scaling transformations that corre- ofhowaselectedtemporalscalelevelτˆfromlocalextrema spondtoexactmappingsbetweenthetemporalscalelevels over temporal scale can be translated into a estimates of in the temporal scale-space representation based on a dis- the temporal duration of temporal structures in the tempo- cretesetoflogarithmicallydistributedtemporalscalelevels. ralscale-spacerepresentationobtainedbyconvolutionwith Basedonsemi-groupsthatguaranteeeitherself-similarity the time-causal limit kernel. Specifically, explicit expres- over temporal scales or non-enhancement of local extrema sions are given for such temporal duration estimates based with increasing temporal scales, Fagerstro¨m [20] and Lin- onfirst-andsecond-ordertemporalderivatives. deberg [70] have derived time-causal semi-groups that al- low for a continuous temporal scale parameter and studied theoreticalpropertiesofthesekernels. 2 Theoreticalbackgroundandrelatedwork Concerningtemporalprocessingoverdiscretetime,Fleet 2.1 Temporalscale-spaceconcepts andLangley[21]performedtemporalfilteringforopticflow computationsbasedonrecursivefiltersovertime.Lindeberg Forprocessingtemporalsignalsatmultipletemporalscales, [57,77,78]andLindebergandFagerstro¨m[81]showedthat different types of temporal scale-space concepts have been first-order recursive filters coupled in cascade constitutes a developedinthecomputervisionliterature(seeFigure1): natural time-causal scale-space concept over discrete time, 6 TonyLindeberg g(t; τ) gt(t; τ) gtt(t; τ) h(t; µ,K=10) ht(t; µ,K=10) htt(t; µ,K=10) √ √ √ h(t; K=10,c= 2) ht(t; K=10,c= 2) htt(t; K=10,c= 2) h(t; K=10,c=2) ht(t; K=10,c=2) htt(t; K=10,c=2) √ √ √ hKoe(t; c= 2) hKoe,t(t; c= 2) hKoe,tt(t; c= 2) hKoe(t; c=2) hKoe,t(t; c=2) hKoe,tt(t; c=2) Fig.1 Temporalscale-spacekernelswithcomposedtemporalvarianceτ =1forthemaintypesoftemporalscale-spaceconceptsconsideredinthis paperandwiththeirfirst-andsecond-ordertemporalderivatives:(toprow)thenon-causalGaussiankernelg(t; τ),(secondrow)thecomposition √ h(t; µ,K = 10)ofK = 10truncatedexponentialkernelswithequaltimeconstants,(thirdrow)thecompositionh(t; K = 10,c = 2)of √ K =10truncatedexponentialkernelswithlogarithmicdistributionofthetemporalscalelevelsforc= 2,(fourthrow)correspondingkernels √ h(t; K = 10,c = 2)forc = 2,(fifthrow)Koenderink’sscale-timekernelshKoe(t; c = 2)correspondingtoGaussianconvolutionover a logarithmically transformed temporal axis with the parameters determined to match the time-causal limit kernel corresponding to truncated √ exponentialkernelswithaninfinitenumberoflogarithmicallydistributedtemporalscalelevelsaccordingto(186)forc = 2,(bottomrow) correspondingscale-timekernelshKoe(t; c=2)forc=2.(Horizontalaxis:timet) Temporalscaleselectionintime-causalscalespace 7 based on the requirement that the temporal filtering over a 2.2 Relativeadvantagesofdifferenttemporalscalespaces 1-D temporal signal must not increase the number of local extremaorequivalentlythenumberofzero-crossingsinthe Whendevelopingatemporalscaleselectionmechanismover signal. In the specific case when all the time constants in atime-causaltemporaldomain,afirstproblemconcernswhat thismodelareequalandtendtozerowhilesimultaneously time-causalscale-spaceconcepttobasethemulti-scaletem- increasingthenumberoftemporalsmoothingstepsinsuch poral analysis upon. The above reviewed temporal scale- awaythatthecomposedtemporalvarianceisheldconstant, spaceconceptshavedifferentrelativeadvantagesfromathe- these kernels can be shown to approach the temporal Pois- oretical and computational viewpoint. In this section, we son kernel [81]. If on the other hand the time constants of will perform an in-depth examination of the different tem- the first-order integrators are chosen so that the temporal poral scale-space concepts that have been developed in the scale levels become logarithmically distributed, these tem- literature,whichwillleadustoaclassoftime-causalscale- poralsmoothingkernelsapproachadiscreteapproximation space concepts that we argue is particularly suitable with ofthetime-causallimitkernel[78]. respecttothesetofdesirablepropertiesweaimat. Thenon-causalGaussiantemporalscalespaceisinmany casestheconceptuallyeasiesttemporalscale-spaceconcept Applications of using these linear temporal scale-space to handle and to study analytically (Lindeberg [70]). The concepts for modelling the temporal smoothing step in vi- correspondingtemporalkernelsarescaleinvariant,havecom- sual and auditory receptive fields have been presented by pactclosed-formexpressionsoverboththetemporalandfre- Lindeberg[63,69,70,72,73,77,78],terHaarRomenyetal. quencydomainsandobeyasemi-grouppropertyovertem- [27], Lindeberg and Friberg [82,83] and Mahmoudi [90]. poral scales. When applied to pre-recorded signals, tempo- Non-linearspatio-temporalscale-spaceconceptshavebeen raldelayscanifdesirablebedisregarded,whicheliminates proposedbyGuichard[25].Applicationsofthenon-causal anyneedfortemporaldelaycompensation.Thisscale-space Gaussiantemporalscale-spaceconceptforcomputingspatio- conceptis,however,nottime-causalandnottime-recursive, temporal features have been presented by Laptev and Lin- which implies fundamental limitations with regard to real- deberg [50,51,49], Kla¨ser et al. [43], Willems et al. [121], time applications and realistic modelling of biological per- Wang et al. [118], Shao and Mattivi [112] and others, see ception. specifically Poppe [101] for a survey of early approaches Koenderink’sscale-timekernels[46]aretrulytime-causal, to vision-based human human action recognition, Jhuang allowforacontinuoustemporalscaleparameter,havegood et al. [39] and Niebles et al. [97] for conceptually related temporal dynamics and have a compact explicit expression non-causalGaborapproaches,AdelsonandBergen[1]and over the temporal domain. These kernels are, however, not DerpanisandWildes[17]forcloselyrelatedspatio-temporal time-recursive, which implies that they in principle require orientationmodelsandHanetal.[29]forarelatedmid-level aninfinitememoryofthepast(oratleastextendedtemporal temporalrepresentationtermedthevideoprimalsketch. buffers corresponding to the temporal extent to which the infinite support temporal kernels are truncated at the tail). Applications of the temporal scale-space model based Thereby, the application of Koenderink’s scale-time model on truncated exponential kernels with equal time constants to video analysis implies that substantial temporal buffers coupledincascadeandcorrespondingtoLaguerrefunctions are needed when implementing this non-recursive tempo- (Laguerre polynomials multiplied by a truncated exponen- ralscale-spaceinpractice.Similarproblemswithsubstantial tialkernel)forcomputingspatio-temporalfeatureshavepre- needforextendedtemporalbuffersarisewhenapplyingthe sented by Rivero-Moreno and Bres [103], Shabani et al. non-causalGaussiantemporalscale-spaceconcepttooffline [111]andBergetal.[6]aswellasforhandlingtimescales analysisofextendedvideosequences.Thealgebraicexpres- invideosurveillance(JacobandPless[37]),forperforming sions for the temporal kernels in the scale-time model are edgepreservingsmoothinginvideostreams(Paris[98])and furthermorenotalwaysstraightforwardtohandleandthere iscloselyrelatedtoTikhonovregularizationasusedforim- isnoknownsimpleexpressionfortheFouriertransformof agerestorationbye.g.Suryaetal.[115].Ageneralframe- thesekernelsornoknownsimpleexplicitcascadesmooth- workforperformingspatio-temporalfeaturedetectionbased ing property over temporal scales with respect to the regu- on the temporal scale-space model based on truncated ex- lar(untransformed)temporaldomain.Thereby,certainalge- ponential kernels coupled in cascade with specifically the braic calculations with the scale-time kernels may become both theoretical and practical advantages of using logarith- quitecomplicated. mic distribution of the intermediated temporal scale levels The temporal scale-space kernels obtained by coupling in terms of temporal scale invariance and better temporal truncated exponentialkernels orequivalently first-order in- dynamics (shorter temporal delays) has been presented in tegratorsincascadearebothtrulytime-causalandtrulytime- Lindeberg[78]. recursive(Lindeberg[57,77,78];LindebergandFagerstro¨m 8 TonyLindeberg [81]). The temporal scale levels are on the other hand re- equationsthatarehardertohandleboththeoreticallyandin quired to be discrete. If the goal is to construct a real-time terms of computational implementation. For these reasons, signal processing system that analyses continuous streams weshallnotconsiderthosetime-causalsemi-groupsfurther ofsignaldatainrealtime,onecanhoweverarguethatare- inthistreatment. strictionofthetheorytoadiscretesetoftemporalscalelev- elsislessofacontraint,sincethesignalprocessingsystem 2.3 Previousworkonmethodsforscaleselection anyway has to be based on a finite amount of sensors and hardware/wetwareforsamplingandprocessingthecontinu- Ageneralframeworkforperformingscaleselectionforlocal ousstreamofsignaldata. differential operations was proposed in Lindeberg [60,61] Inthespecialcasewhenallthetimeconstantsareequal, basedonthedetectionoflocalextremaoverscaleofscale- the corresponding temporal kernels in the temporal scale- normalizedderivativeexpressionsandthenrefinedinLinde- spacemodelbasedontruncatedexponentialkernelscoupled berg[66,65]—seeLindeberg[68,75]fortutorialoverviews. in cascade have compact explicit expressions that are easy Thisscaleselectionapproachhasbeenappliedtoalarge tohandlebothinthetemporaldomainandinthefrequency number of feature detection tasks over spatial image do- domain,whichsimplifiestheoreticalanalysis.Thesekernels mains including detection of scale-invariant interest points obeyasemi-grouppropertyovertemporalscales,butarenot (Lindeberg [66,74], Mikolajczyk and Schmid [92]; Tuyte- scaleinvariantandleadtoslowertemporaldynamicswhen laars and Mikolajczyk [117]), performing feature tracking alargernumberofprimitivetemporalfiltersarecoupledin (Bretzner and Lindeberg [10]), computing shape from tex- cascade(Lindeberg[77,78]). ture and disparity gradients (Lindeberg and Ga˚rding [84]; Inthespecialcasewhenthetemporalscalelevelsinthis Ga˚rdingandLindeberg[24]),detecting2-Dand3-Dridges scale-spacemodelarelogarithmicallydistributed,theseker- (Lindeberg[65];Satoetal.[106];Frangietal.[23];Krissian nelshaveamanageableexplicitexpressionovertheFourier et al. [48]), computing receptive field responses for object domain that enables some closed-form theoretical calcula- recognition (Chomat et al. [13]; Hall et al. [28]), perform- tions.Derivinganexplicitexpressionoverthetemporaldo- inghandtrackingandhandgesturerecognition(Bretzneret mainis,however,harder,sincetheexplicitexpressionthen al.[9])andcomputingtime-to-collision(Negreetal.[96]). correspondstoalinearcombinationoftruncatedexponential Specifically,verysuccessfulapplicationshavebeenachi- filtersforallthetimeconstants,withthecoefficientsdeter- eved in the area of image-based matching and recognition minedfromapartialfractionexpansionoftheFouriertrans- (Lowe[89];Bayetal.[5];Lindeberg[71,76]).Thecombi- form,whichmayleadtorathercomplexclosed-formexpres- nation of local scale selection from local extrema of scale- sions. Thereby certain analytical calculations may become normalizedderivativesoverscales(Lindeberg[61,66])with harder to handle. As shown in [78] and Appendix C, some affine shape adaptation (Lindeberg and Garding [85]) has such calculations can on the other hand be well approx- madeitpossibletoperformmulti-viewimagematchingover imated via a scale-time approximation of the time-causal largevariationsinviewingdistancesandviewingdirections temporalscale-spacekernels.Whenusingalogarithmicdis- (Mikolajczyk and Schmid [92]; Tuytelaars and van Gool tributionofthetemporalscales,thecomposedtemporalker- [116]; Lazebnik et al. [53]; Mikolajczyk et al. [93]; Roth- nels do however have very good temporal dynamics and ganger et al. [104]). The combination of interest point de- muchbettertemporaldynamicscomparedtocorresponding tectionfromscale-spaceextremaofscale-normalizeddiffer- kernelsobtainedbyusingtruncatedexponentialkernelswith ential invariants (Lindeberg [61,66]) with local image de- equal time constants coupled in cascade. Moreover, these scriptors (Lowe [89]; Bay et al. [5]) has made it possible kernels lead to a computationally very efficient numerical todesignrobustmethodsforperformingobjectrecognition implementation.Specifically,thesekernelsallowforthefor- of natural objects in natural environments with numerous mulation of a time-causal limit kernel that obeys scale in- applications to object recognition (Lowe [89]; Bay et al. varianceundertemporalscalingtransformations,whichcan- [5]), object category classification (Bosch et al. [8]; Mutch notbeachievedifusingauniformdistributionofthetempo- and Lowe [36]), multi-view geometry (Hartley and Zisser- ralscalelevels(Lindeberg[77,78]). man[30]),panoramastitching(BrownandLowe[12]),au- Thetemporalscale-spacerepresentationsobtainedfrom tomatedconstructionof3-Dobjectandscenemodelsfrom the self-similar time-causal semi-groups have a continuous visualinput(BrownandLowe[11];Agarwaletal.[3]),syn- scaleparameterandobeytemporalscaleinvariance(Fager- thesisofnovelviewsfrompreviousviewsofthesameobject stro¨m[20];Lindeberg[70]).Thesekernelsdo,however,have (Liu[86]),visualsearchinimagedatabases(Lewetal.[54]; lessdesirabletemporaldynamics(seeAppendixAforagen- Dattaetal.[14]),humancomputerinteractionbasedonvi- eraltheoreticalargumentaboutundesirableconsequencesof sual input (Porta [102]; Jaimes and Sebe [38]), biometrics imposingatemporalsemi-grouppropertyontemporalker- (Bicegoetal.[7];Li[55])androbotics(Seetal.[110];Si- nelswithtemporaldelays)and/orleadtopseudodifferential cilianoandKhatib[113]). Temporalscaleselectionintime-causalscalespace 9 Alternativeapproachesforperformingscaleselectionover to analyse the theoretical scale selection properties for dif- spatialimagedomainshavealsobeenproposedintermsof ferenttypesofmodelsignals. (i)detectingpeaksofweightedentropymeasures(Kadirand Brady[40])orLyaponovfunctionals(Sporringetal.[114]) overscales,(ii)minimisingnormalizederrormeasuresover 3 Scaleselectionpropertiesforthenon-causalGaussian scale (Lindeberg [67]), (iii) determining minimum reliable temporalscalespaceconcept scalesforedgedetectionbasedonanoisesuppressionmodel (ElderandZucker[18]),(iv)determiningatwhatscalelev- In this section, we will present an overview of theoretical els to stop in non-linear diffusion-based image restoration propertiesthatwillholdiftheGaussiantemporalscale-space methods based on similarity measurements relative to the conceptisappliedtoanon-causaltemporaldomain,ifaddi- originalimagedata(Mra´zekandNavara[95]),(v)bycom- tionallythescaleselectionmechanismthathasbeendevel- paringreliabilitymeasuresfromstatisticalclassifiersfortex- opedforanon-causalspatialdomainisdirectlytransferred ture analysis at multiple scales (Kang et al. [41]), (vi) by toanon-causaltemporaldomain.Thesetoftemporalscale- computing image segmentations from the scales at which space properties that we will arrive at will then be used as asupervisedclassifierdeliversclasslabelswiththehighest a theoretical base-line for developing temporal scale-space reliabilitymeasure(Loogetal.[88];Lietal.[56]),(vii)se- propertiesoveratime-causaltemporaldomain. lecting scales for edge detection by estimating the saliency ofelongatededgesegments(Liuetal.[87])or(viii)consid- ering subspaces generated by local image descriptors com- putedovermultiplescales(Hassneretal.[31]). 3.1 Non-causalGaussiantemporalscale-space More generally, spatial scale selection can be seen as a specific instance of computing invariant receptive field re- Overaone-dimensionaltemporaldomain,axiomaticderiva- sponses under natural image transformations, to (i) handle tionsofatemporalscale-spacerepresentationbasedonthe objects in the world of different physical size and to ac- assumptions of (i) linearity, (ii) temporal shift invariance, countforscalingtransformationscausedbytheperspective (iii)semi-grouppropertyovertemporalscale,(iv)sufficient mapping,andwithextensionsto(ii)affineimagedeforma- regularitypropertiesovertimeandtemporalscaleand(v)non- tions to account for variations in the viewing direction and enhancementoflocalextremaimplythatthetemporalscale- (iii)Galileantransformationstoaccountforrelativemotions spacerepresentation betweenobjectsintheworldandtheobserveraswellasto (iv)illuminationvariations(Lindeberg[73]). L(·; τ,δ)=g(·; τ,δ)∗f(·) (1) Early theoretical work on temporal scale selection in a time-causalscalespacewaspresentedinLindeberg[64]with shouldbegeneratedbyconvolutionwithpossiblytime-delayed primary focus on the temporal Poisson scale-space, which temporalkernelsoftheform(Lindeberg[70]) possesses a temporal semi-group structure over a discrete tdiemlaey-csa(usseaelAtepmppeonrdailxdAomfoarinawgehnileeralelathdeinogrettoiclaolnagrgteummpeonrta)l. g(t; τ,δ)= √1 e−(t−2τδ)2 (2) 2πτ Temporalscaleselectioninnon-causalGaussianspatio-temp- oralscalespacehasbeenusedbyLaptevandLindeberg[50] whereτ isatemporalscaleparametercorrespondingtothe andWillemsetal.[121]forcomputingspatio-temporalin- variance of the Gaussian kernel and δ is a temporal delay. terest points, however, with certain theoretical limitations Differentiatingthekernelwithrespecttotimegives thatareexplainedinacompanionpaper[79].1 Thepurpose of this article is to present a much further developed and (t−δ) more general theory for temporal scale selection in time- gt(t; τ,δ)=− τ g(t; τ,δ) (3) causal scale spaces over continuous temporal domains and ((t−δ)2−τ) g (t; τ,δ)= g(t; τ,δ) (4) 1 The spatio-temporal scale selection method in (Laptev and Lin- tt τ2 deberg[50])isbasedonaspatio-temporalLaplacianoperatorthatis notscalecovariantunderindependentrelativescalingtransformations seethetoprowinFigure1forgraphs.Whenanalyzingpre- of the spatial vs. the temporal domains [79], which implies that the recordedtemporalsignals,itcanbepreferabletosetthetem- spatialandtemporalscaleestimatewillnotberobustunderindepen- poraldelaytozero,leadingtotemporalscale-spacekernels dentvariabilitiesofthespatialandtemporalscalesinvideodata.The spatio-temporalscaleselectionmethodappliedtothedeterminantof havingasimilarformasspatialGaussiankernels: thespatio-temporalHessianin(Willemsetal.[121])doesnotmake uersaetoorfst[h7e9f]ualnldflehxaisbniloittyporefvtihoeusnloytiboenenofdγev-neolorpmeadliozveedrdaetriimvaet-ivceauospa-l g(t; τ)= √1 e−2t2τ. (5) spatio-temporaldomain. 2πτ 10 TonyLindeberg 3.2 Temporalscaleselectionfromscale-normalized over scales of γ-normalized derivatives are preserved un- derivatives derscalingtransformations.Specifically,thisscaleinvariant propertyimpliesthatifalocalscaletemporallevellevelin Asaconceptualbackgroundtothetreatmentsthatweshall dimensionoftimeσ =τ isselectedtobeproportionaltothe √ laterdevelopregardingtemporalscaleselectionintime-causal temporalscaleestimateσˆ = τˆsuchthatσ = Cσˆ,thenif temporal scale spaces, we will in this section describe the thetemporalsignalf istransformedbyatemporalscalefac- theoreticalstructurethatarisesbytransferringthetheoryfor torS,thetemporalscaleestimateandthereforealsothese- scale selection in a Gaussian scale space over a spatial do- lectedtemporalscalelevelwillbetransformedbyasimilar maintothenon-causalGaussiantemporalscalespace: temporalfactorσˆ(cid:48) =Sσˆ,implyingthattheselectedtempo- Given the temporal scale-space representation L(t; τ) ralscalelevelswillautomaticallyadapttovariationsinthe of a temporal signal f(t) obtained by convolution with the characteristictemporalscaleofthesignal.Thereby,suchlo- Gaussiankernelg(t; τ)accordingto(1),temporalscalese- calextremaovertemporalscaleprovideatheoreticallywell- lection can be performed by detecting local extrema over foundedwaytoautomaticallyadaptthescalelevelstolocal temporalscalesofdifferentialexpressionsexpressedinterms scalevariations. ofscale-normalizedtemporalderivativesatanyscaleτ ac- Specifically,scale-normalizedscale-spacederivativesof cordingto(Lindeberg[66,65,68,75]) ordernatcorrespondingtemporalmomentswillberelated accordingto ∂ =τnγ/2∂ , (6) ζn tn L(cid:48) (t(cid:48); τ(cid:48))=Sn(γ−1)L (t; τ) (10) where ζ = t/τγ/2 is the scale-normalized temporal vari- ζ(cid:48)n ζn able, n is the order of temporal differentiation and γ is a whichmeansthatγ = 1impliesperfectscale-invariancein free parameter. It can be shown [66, Section 9.1] that this thesensethattheγ-normalizedderivativesatcorresponding notion of γ-normalized derivatives corresponds to normal- points will be equal. If γ (cid:54)= 1, the difference in magnitude izing the nth order Gaussian derivatives g (t; τ) over a ζn can on the other hand be easily compensated for using the one-dimensionaldomaintoconstantL -normsoverscaleτ p scalevaluesofthecorrespondingscale-adaptiveimagefea- (cid:18)(cid:90) (cid:19)1/p tures(seebelow). (cid:107)g (·; τ)(cid:107) = |g (t; τ)|pdt =G (7) ζn p ζn n,γ t∈R 3.3 Temporalpeak with 1 p= (8) For a temporal peak modelled as a Gaussian function with 1+n(1−γ) varianceτ 0 wheretheperfectlyscaleinvariantcaseγ = 1corresponds toL1-normalizationforallordersnoftemporaldifferentia- g(t; τ0)= √21πτ e−2tτ20. (11) 0 tion. itcanbeshownthatscaleselectionfromlocalextremaover Temporalscaleinvariance. Ageneralandveryusefulscale scaleofsecond-orderscale-normalizedtemporalderivatives invariant property that results from this construction of the notionofscale-normalizedtemporalderivativescanbestated L =τγL (12) asfollows:Considertwosignalsf andf(cid:48)thatarerelatedby ζζ tt atemporalscalingtransformation implies that the scale estimate at the position t = 0 of the f(cid:48)(t(cid:48))=f(t) with t(cid:48) =St, (9) peak will be given by (Lindeberg [65, Equation (56)] [74, Equation(212)]) and assume that there is a local extremum over scales at 2γ (t0; τ0)inadifferentialexpressionDγ−normLdefinedasa τˆ= 3−2γ τ0. (13) homogeneouspolynomialofGaussianderivativescomputed from the scale-space representation L of the original sig- Ifwerequirethescaleestimatetoreflectthetemporaldura- nal f. Then, there will be a corresponding local extremum tionofthepeaksuchthat over scales at (t(cid:48); τ(cid:48)) = (St ; S2τ ) in the correspond- 0 0 0 0 ing differential expression Dγ−normL(cid:48) computed from the τˆ=q2τ0, (14) scale-space representation L(cid:48) of the rescaled signal f(cid:48) [66, thenthisimplies Section4.1]. This scaling result holds for all homogeneous polyno- 3q2 γ = (15) mial differential expression and implies that local extrema 2(q2+1)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.