Teleportation-Based Quantum Computation, Extended Temperley–Lieb DiagrammaticalApproach and Yang–BaxterEquation YongZhanga,1,KunZhanga,2,andJinglongPangb,3 a SchoolofPhysicsandTechnology,WuhanUniversity,P.R.China430072 bDepartmentofPhysics,PekingUniversity,P.R.China100871 5 1 Abstract 0 Thispaperfocusesonthestudyoftopologicalfeaturesinteleportation-basedquantumcom- 2 putationaswellasaimsatpresentingadetailedreviewonteleportaiton-basedquantumcom- n putation(GottesmanandChuang,Nature402,390,1999). IntheextendedTemperley–Lieb a J diagrammatical approach, we clearly show that such topological features bring about the fault-tolerantconstructionofbothuniversalquantumgatesandfour-partiteentangledstates 8 2 moreintuitiveandsimpler. Furthermore,wedescribetheYang–Baxtergatebyitsextended Temperley–Lieb configuration, and then study teleportation-based quantum circuit models ] using the Yang–Baxter gate. Moreover, we discuss the relationship between the extended h p Temperley–Liebdiagrammaticalapproachand the Yang–Baxtergate approach. With these - research results, we propose a worthwhile subject, the extended Temperley–Liebdiagram- t n maticalapproach,forphysicistsinquantuminformationandquantumcomputation. a u q [ KeyWords: Teleportation,QuantumComputation,Temperley–Liebalgebra,Yang–BaxterEquation 1 PACSnumbers: 03.67.Lx,03.65.Ud,02.10.Kn v 7 8 4 7 0 . 1 0 5 1 : v i X r a [email protected] [email protected] [email protected] 1 Introduction Quantum information and computation [1, 2] is an interdisciplinary research field of applying fundamentalprinciplesof quantummechanicsto informationscience and computerscience. It representsa furtherdevelopmentof quantummechanics,andindeedhelpsusto achievedeeper understandingsonquantumphysics. Quantumentanglement[3,4]asafundamentalconceptof distinguishingclassicalphysicsfromquantumphysicshasbecomeawidelyexploitedresourcein quantuminformationandcomputation. Ithasbeenexperimentallyverifiedthat,undertheassis- tanceofquantumentanglement,anunknownqubitcanbetransmittedfromAlicetoBobwithout anynon-localphysicalinteractionbetweenthem,usingthequantuminformationprotocolcalled quantumteleportation[5,6,7,8]. Hencebothquantumentanglementandquantumteleportation obligequantumphysiciststothinkabouttherelationshipbetweenEinstein’slocalityandquantum non-locality[3,4]. Fault-tolerantquantumcomputation[1, 2] is requiredin practice to overcomedecoherence, andteleportation-basedquantumcomputation[9,10,11,12,13]isapowerfulapproachtofault- tolerantquantumcomputationinwhichuniversalquantumgatesetisprotectedfromnoiseusing the teleportation protocol. Besides this, teleportation-based quantum computation is an exam- ple of measurement-based quantum computation which exploits quantum measurement as the maincomputingresourcetodeterminewhichquantumgateistobeperformed. Inquantumme- chanics, quantum measurementbreaks quantumcoherenceand is usually performedat the end ofanexperiment,someasurement-basedquantumcomputationessentiallychangesourconven- tionalviewpointonquantummeasurementandalsoonthestandardquantumcircuitmodel[10] inwhichacoherentunitarydynamicsismainlyinvolved. Asthetitleofthispaperclaims,weapplytheextendedTemperley–Liebdiagrammaticalap- proachandtheYang–Baxtergateapproachtothereformulationofteleportation-basedquantum computation. The Temperley–Liebalgebra[14] is a well knownconceptin bothstatistical me- chanicsandlowdimensionaltopology[15],andtheYang–Baxterequation[16]arisesinexactly solvingbothsome1+1-dimensionalquantummany-bodysystemsandvertexmodelsinstatistics physics. The fact [15] that a type of solutionsof the Yang–Baxterequation can be constructed usingtheTemperley–Liebalgebramotivatestheauthorstoexploreteleportation-basedquantum computationusingthetworelatedapproaches. TheextendedTemperley–Liebdiagrammaticalapproach[17,18]isanextensionofthestan- darddiagrammaticalrepresentationoftheTemperley–Liebalgebra,andwithit,aquantuminfor- mation protocol involving bipartite maximally entangled states, such as quantum teleportation, hasaverynicetopologicaldiagrammaticalinterpretation. TheYang–Baxtergatesarenontrivial unitarysolutionsofthe Yang–Baxterequation,andtheYang–Baxtergateapproach[19,20, 21] toquantuminformationandcomputationisanalgebraicmethodoriginallymotivatedbytheob- servationthattopologicalentanglements(likebraidingconfigurations[15])andquantumentan- glements may have a kind of connection. Therefore, our research is expected to be interesting for physicists in quantum information and computation, which shows that teleportation-based quantumcomputationadmitsbothtopologicalandalgebraicdescriptionsbesidesitsstandardde- scriptioninquantumcircuitmodel[9,10,11]. Aswehaveintroduced,wearegoingtogodirectlyintoatleastthreedifferentresearchsub- jectsinthispaper,includingquantuminformationandcomputation,theTemperley–Liebalgebra andtheYang–Baxterequation. Theguidingprincipleofthiskindofinterdisciplinaryresearchis that we want to explorethe nature of quantumentanglement(quantumnon-locality[3, 4]). As amatteroffact,nowadays,nobodyisabletostatethatthenatureofquantumentanglementhas beenfullyunderstood[1,2]. Inaccordancewith[22],westudythenatureofquantumentangle- mentbysettingupalinkbetweenquantumentanglement(quantumnon-locality)andtopological entanglement(topologicalnon-locality[15]). Topologicalentanglementin the paper is representedby the extended Temperley–Liebdia- grammatical configuration or the Yang–Baxter gate configuration (the braiding configuration), 2 while quantum entanglement is represented by bipartite maximally entangled two-qubit pure states, i.e., the Bell states [1, 2]. In the extended Temperley–Lieb diagrammatical approach [17, 18], both the Bell states and Bell measurementshave the Temperley–Liebdiagrammatical configurationsonwhichquantumgatesareallowedtomovefromthisqubittothatqubit. Inthe Yang–Baxtergateapproach[19,20,21],thealgebraicformulationofteleportation-basedquantum computationadmits the braiding configurationon which quantumgates are permitted to move. Especially,therelationshipbetweensuchthetwoapproacheswillbeclarifiedinthispaper. Thecompleteschemeofteleportation-basedquantumcomputationwasproposedbyGottes- man and Chuang [9] in a very brief style, so it is necessary firstly to make a detailed review on teleportation-basedquantumcomputation, topics including quantumteleportation, the fault- tolerantconstructionofuniversalquantumgatesetandthefault-tolerantpreparationoffour-qubit entangledstates. Thenwepresentatopologicaldiagrammaticaldescriptionofsuchthereviewed topics in the extended Temperley–Lieb diagrammatical approach. Afterwards, we concentrate ontheYang–BaxtergateswhicharetheBelltransform,aunitarybasistransformationfromthe product basis to the Bell states, and with the help of our previous research on teleportation- based quantumcomputationusing the Belltransform[13], we gointo the algebraicdescription ofteleportation-basedquantumcomputationin termsofthe Yang–Baxtergate. Finally, inview oftheextendedTemperley–LiebdiagrammaticalrepresentationoftheYang–Baxtergate,weset up a transparent link between the extended Temperley–Lieb diagrammatical approach and the Yang–Baxtergateapproach. Our study in this paper is meaningful and useful in the following sense. First, as we have emphasized,wetrytodigoutthenatureofquantumnon-localityfromtheviewpointoftopolog- ical non-locality. Second, the topologicalfeatures in teleportation-basedquantum computation makethefault-tolerantconstructionofbothuniversalquantumgatesetandfour-qubitentangled states more intuitive and simpler. Third, we develop the conceptof teleportation operator [13] in the Yang–Baxtergate approachto catch the intrinsic characteristic of quantumteleportation, whichis capableof includingthe algebraicformulationsof allpossible teleportaitonprocesses. Fourth,themethodologiesunderlyingourresearchareexpectedtobeappliedtoothersubjectsin quantuminformationandcomputation,seeSection7forconcludingremarksonfurtherresearch. Fifth, our research is expected to shed a light on further research in mathematical physics, see AppendixA. It is obvious that what we have done in this paper is an interdisciplinary research among quantuminformationandcomputation,thelow-dimensionaltopologyandmathematicalphysics suchastheYang–Baxterequation. ButweaimatintroducingboththeTemperley–Liebalgebra and the Yang–Baxter equation to physicists in quantum information and computation, in other words, readerscan go throughthe entire paper withoutthe preliminaryknowledgeon concepts in mathematicalphysics. All the resultsaboutboththe Temperley–Liebalgebraandthe Yang– BaxterequationarecollectedinAppendixA.Furthermore,forexpertsinmathematicalphysics, AppendixA.6indeedpresentsalistofopenproblemsforfurtherresearchwhicharebasedonour reformulationofteleportation-basedquantumcomputation. Thispaperisorganizedasfollows.Section2isareviewonteleportation-basedquantumcom- putation [9]. Section 3 focuses on the topological diagrammaticaldescription of teleportation- basedquantumcomputationintheextendedTemperley–Liebdiagrammaticalapproach. Section 4 presents the extendedTemperley–Liebconfigurationsof two types of Yang–Baxter gates de- rivedinAppendixA.Section5describestheYang–Baxtergateapproachtoteleportation-based quantumcomputation.Section6clarifiestherelationshipbetweentheextendedTemperley–Lieb diagrammaticalapproachandtheYang–Baxtergateapproach.Tomakethepaperself-consistent, wepresentfiveappendicesforreaders’conveniences. AppendixAreviewsboththeTemperley– Lieb algebra and the Yang–Baxter equation as well as presents a detailed construction on the Yang–Baxter gate via the Temperley–Lieb algebra. Appendix B collects interesting properties ofthepermutation-likeYang–Baxtergates. BothAppendixCandAppendixDpresentthetopo- logical diagrammatical construction of four-qubit entangled states respectively associated with 3 the CNOT gate and CZ gate [1]. Appendix E is about a method of calculating the extended Temperley–Liebdiagrammaticalrepresentationoftheteleportationoperator. 2 Review on teleportation-based quantum computation In this section, we make a review on teleportation-based quantum computation [9]. The key topics include the standard description of quantumteleportation, the fault-tolerantconstruction ofuniversalquantumgateset, andthe fault-tolerantconstructionoffour-qubitentangledstates. Meanwhile,wesetupournotationandconventionforthestudyinthepaper. 2.1 Notation Asingle-qubitHilbertspace hasanorthonormalbasisdenotedby i ,i = 0,1,andasingle- 2 H | i qubitstate α isgivenby α =a0 +b1 withcomplexnumbersaandb. Theunitmatrix11 2 | i | i | i | i andthePauligatesX andZ taketheform 1 0 0 1 1 0 11 = , X = , Z = (1) 2 (cid:18) 0 1 (cid:19) (cid:18) 1 0 (cid:19) (cid:18) 0 1 (cid:19) − withZ 0 = 0 andZ 1 = 1 ,andthePauligateY isdefinedasY = ZX. Asingle-qubit | i | i | i −| i gateisan elementoftheunitarygroupU(2), andatypicalsingle-qubitgateW inthe present ij paperhastheform W =XiZj, i,j =0,1, (2) ij satisfyingWiTj =Wi†j,inwhichtheupperindexT denotesthematrixtransposeconjugationand theupperindex denotesthematrixHermitianconjugation. † Atwo-qubitHilbertspace hasanorthonormalproductbasisdenotedby ij ,i,j = 2 2 H ⊗H | i 0,1.TheEPRstate Ψ [3,4]takestheform | i 1 Ψ = (00 + 11 ) (3) | i √2 | i | i andithasaverynicealgebraicproperty (11 U)Ψ =(UT 11 )Ψ (4) 2 2 ⊗ | i ⊗ | i withU denotinganysingle-qubitgate.ThesetoftheorthonormalBellstates ψ(ij) givenby | i ψ(ij) =(11 W )Ψ , i,j =0,1 (5) 2 ij | i ⊗ | i iscalledtheBellbasis[1,2]ofthetwo-qubitHilbertspace . Obviously, Ψ = ψ(00) . 2 2 H ⊗H | i | i 2.2 Quantum teleportation LetAliceandBobsharetheEPRstate Ψ ,andAlicewantstotransferanunknownquantumstate | i α toBob.AliceandBobpreparethequantumstate α Ψ whichcanbeformulatedas | i | i⊗| i 1 1 α Ψ = ψ(ij) W α (6) ij | i⊗| i 2 | i⊗ | i iX,j=0 whichwascalledtheteleportationequationin[18]. Then,AliceperformstheBellmeasurements ψ(ij) ψ(ij) 11 onthepreparedstate α Ψ , 2 | ih |⊗ | i⊗| i 1 (ψ(ij) ψ(ij) 11 )(α Ψ )= ψ(ij) W α , (7) 2 ij | ih |⊗ | i⊗| i 2| i⊗ | i 4 |αi i • BELL j • |Ψi• W† |αi ij Figure 1: Quantum circuit for quantumteleportation as a diagrammaticalrepresentation of the teleportationequation(6). An unknownqubit α is sentfromAlice to Bob. Thetop two lines | i represent Alice’s system and the bottom line represents Bob’s system. The single-lines denote qubitsandthe double-linesdenoteclassical bits. The triangleboxrepresentsthe Bell measure- mentperformedbyAliceandthesquareboxrepresentsthelocalunitarycorrectionoperatorWi†j performedbyBobtoobtainthetransmittedstate α . | i andsheinformsBobhermeasurementresultslabeledas(i,j). Finally,Bobappliestheunitary correctionoperatorWi†j onhisstate (112⊗112⊗Wi†j)(|ψ(ij)i⊗Wij|αi)=|ψ(ij)i⊗|αi (8) toobtainthetransmittedquantumstate α . SeeFigure1forthedescriptionoftheteleportation | i protocolinthelanguageofquantumcircuit. NotethattheteleportationprotocolofBobtransmittinganunknownqubit α toAliceadmits | i anothertypeoftheteleportationequation 1 1 Ψ α = WT α ψ(ij) (9) | i⊗| i 2 ij| i⊗| i iX,j=0 whichwascalledthetransposeteleportationequationin[13]andistobeusedinthefault-tolerant constructionoftwo-qubitgatesinSubsubsection2.3.4. 2.3 Fault-tolerantconstruction ofuniversal quantum gateset Quantumgates[23]aredefinedasunitarytransformationmatricesactingonquantumstates,and thesetofalln-qubitgatesformsarepresentationoftheunitarygroupU(2n). 2.3.1 Universalquantumgateset Anentanglingtwo-qubitgate[24]withsingle-qubitgatesiscalledauniversalquantumgateset whichcanperformuniversalquantumcomputationinthecircuitmodel[1]ofquantumcomputa- tion. Allsingle-qubitgatescanbegeneratedbyboththeHadamardgateH givenby 1 H = (X +Z), (10) √2 andtheπ/8gate[25]givenby 1 0 T = . (11) (cid:18) 0 eiπ4 (cid:19) Anentanglingtwo-qubitgate[24]isdefinedasatwo-qubitgatecapableoftransformingatensor productoftwosingle-qubitstatesintoanentanglingtwo-qubitstate. Forexamples,theCNOT gate CNOT = 0 0 11 + 1 1 X, (12) 2 | ih |⊗ | ih |⊗ 5 andtheCZ gate CZ = 0 0 11 + 1 1 Z. (13) 2 | ih |⊗ | ih |⊗ Theyaremaximallyentanglinggates[26],namely,withsingle-qubitgates,theycangeneratethe maximallyentanglingstatessuchastheBellstates(5)fromtheproductstates. TheCNOT gate isthewellknowntwo-qubitgateinquantuminformationandcomputationwhichisthequantum analogueoftheExclusiveORgateinclassicalcomputation[1].TheCZgateiswidelyusedinthe one-wayquantumcomputation[27],therepresentativeexampleofmeasurement-basedquantum computation,anditisrelatedtotheCNOT gateintheway CZ =(11 H)CNOT(11 H) H CNOT H (14) 2 2 2 2 ⊗ ⊗ ≡ inwhichthesubscriptoftheHadamardgateH meansthatitisactingonthesecondqubit.Hence thesetoftheCNOT gate(12)(ortheCZ gate(13))withsingle-qubitgatesH (10)andT (11) iscalledauniversalquantumgatesettoperformuniversalquantumcomputation[1]. 2.3.2 Cliffordgatesandfault-tolerantquantumcomputation The Pauli group gatesC are generatedby tensor productsof the Pauli matrices X, Z and the 1 identitymatrix11 withglobalphasefactors 1, i.QuantumgatesU [1]areclassifiedby 2 ± ± C U UC U C (15) k k 2 † k 1 ≡{ | − ⊆ − } whereC denotesthe Cliffordgatespreservingthe Pauligroupgatesunderconjugation. Obvi- 2 ously,theHadamardgateH isaCliffordgate,namelyH C ,dueto 2 ∈ HXH =Z, HZH =X, (16) andtheπ/8gateT isnotaCliffordgate,T C ,since 3 ∈ X √ 1Y TXT†= − − , TZT†=Z (17) √2 inwhich(X √ 1Y)/√2isaCliffordgate[1,28]. Hereisanotherequivalentdefinitionofthe − − Cliffordgate[1,28]. IfaquantumgatecanberepresentedasatensorproductoftheHadamard gate(10),thephasegate 1 0 S = , (18) (cid:18) 0 i (cid:19) andtheCNOT gate(12),thenitisaCliffordgate.NotethatthephasegateSisthesquareofthe π/8gate(11),S =T2,andthesquareofthephasegateS isthePauliZ gate,S2 =Z. Infault-tolerantquantumcomputation[28],thePauligroupgatesC andCliffordgatesC can 1 2 beeasilyperformedinprinciple,buttheC gatesmaybedifficultlyrealized. Theteleportation- 3 basedquantumcomputation[9]isfault-tolerantquantumcomputationinthefollowingsense: to performaC gate,itpreparesaquantumstatewiththeactionofC gateandthenappliesC or 3 3 1 C gatestosuchthequantumstateusingtheteleportationprotocol. 2 2.3.3 Fault-tolerantconstructionofsingle-qubitgates Toperformasingle-qubitgateU C (15)ontheunknownstate α ,Alicepreparesthequantum k ∈ | i state Ψ givenby U | i Ψ =(11 U)Ψ (19) U 2 | i ⊗ | i 6 |αi i • BELL j • |Ψ i• U U R† U|αi ij Figure2:Quantumcircuitforthefault-tolerantconstructionofthesingle-qubitgateU associated withthe teleportationequation(20). Withthe suchdiagrammaticalrepresentation,itisobvious thatfault-tolerantlyimplementingthesingle-qubitU becomeshowtofault-tolerantlyperformthe Ri†j gateandpreparethepreliminaryquantumstate|ΨUi(19). andreformulate α Ψ as U | i⊗| i 1 1 α Ψ = ψ(ij) R U α , (20) U ij | i⊗| i 2 | i⊗ | i iX,j=0 wherethesingle-qubitgateR hastheformR =UW U withW definedin(2). ThenAlice ij ij ij † ij makesBellmeasurements ψ(ij) ψ(ij) 11 andinformsBobhermeasurementresultslabeled 2 | ih |⊗ Sbyee(iF,ijg)u.reFi2nafollry,thBeoqbupaenrtfuomrmcsirtchueituonfitfaaruyltc-otorlreercatniotlnyoppeerrfaotromriRngi†jth∈eCsikn−g1le(-1q5u)bittogaattteaiUnUus|αinig. theteleportationprotocol. Asthesingle-qubitgateU istheHadamardgateH (10),thesingle-qubitgateR isgivenby ij R (H) = WT, whichisa tensorproductofPauligates. Andasthesingle-qubitgateU isthe ij ji π/8gate(11),thesingle-qubitgateR isgivenby ij X √ 1Y R (T)=( − − )iZj, (21) ij √2 whichcanbeeasilyfault-tolerantlyperformed,becauseitisa Cliffordgate. Notethatthediffi- cultyofperformingasingle-qubitgateU C becomeshowtofault-tolerantlypreparethestate k ∈ |ΨUiandperformthesingle-qubitgateRi†j ∈Ck−1. 2.3.4 Fault-tolerantconstructionoftwo-qubitCliffordgates Toperformatwo-qubitCliffordgateCU suchastheCNOT gate(12)andtheCZ gate(13)on twounknownsingle-qubitstates α and β ,weprepareafour-qubitentangledstate Ψ , CU | i | i | i Ψ =(11 CU 11 )(Ψ Ψ ), (22) CU 2 2 | i ⊗ ⊗ | i⊗| i withtheactionoftheCU gate,andreformulatethepreparedstate α Ψ β as CU | i⊗| i⊗| i α Ψ β CU | i⊗| i⊗| i 1 1 1 (23) = (11 Q P 11 )(ψ(i j ) CU αβ ψ(i j ) ) 4 4 1 1 2 2 4 ⊗ ⊗ ⊗ | i⊗ | i⊗| i i1X,j1=0i2X,j2=0 with11 = 11 11 ,whichiscalledtheteleportationequationassociatedwiththefault-tolerant 4 2 2 ⊗ constructionofthetwo-qubitCliffordgateCU. Thesingle-qubitgatesQandP intheteleportationequation(23)arecalculatedby Q P =CU(W WT )CU . (24) ⊗ i1j1 ⊗ i2j2 † 7 |αi i1 • BELL j1 • • Q† |ΨCUi CU CU|αβi P† • i2 • BELL |βi j2 • Figure3: Quantumcircuitforthefault-tolerantconstructionofatwo-qubitCliffordgateCU,as adiagrammaticalrepresentationoftheteleportationequation(23). Specifically,thesingle-qubit gatesQandP arecalculatedwiththeformula(24). AstheCU gateistheCNOT gate,thegatesQandP areexpressedas Q=Zj2Xi1Zj1, P =Zj2Xi2Xi1. (25) AstheCU gateistheCZ gate,thegatesQandP havetheform Q=Zi2Xi1Zj1, P =Zj2Xi2Zi1. (26) NotethattheQandP gates(24)maybenotsingle-qubitgatesiftheCU gateisnotaClifford gateinaccordancewiththedefinitionofaCliffordgate[1,28]. Next,weperformtheBellmeasurementsgivenby ψ(i j ) ψ(i j ) 11 11 ψ(i j ) ψ(i j ), (27) 1 1 1 1 2 2 2 2 2 2 | ih |⊗ ⊗ ⊗| ih | andwiththemeasurementresultslabeledby(i ,j )and(i ,j ),weperformtheunitarycorrec- 1 1 2 2 tionoperator,Q P ,toobtaintheexactactionoftheCliffordgateCU onthetwo-qubitstate † † ⊗ α β ,namely,CU αβ . | i⊗| i | i The quantum circuit for the fault-tolerant construction of the two-qubit Clifford gate CU usingtheteleportationprotocolisdepictedinFigure3. Notethatthetwo-qubitCliffordgateCU westudyheremaybenotthecontrolled-operationtwo-qubitgatessuchastheCNOT gate(12) andtheCZ gate(13). 2.4 Construction offour-qubit entangled states FromSubsection2.3,wealreadyknowthat,theconceptualpointinthefault-tolerantconstruction ofasingle-qubitquantumgateU (oratwo-qubitCliffordgateCU)usingquantumteleportation isthefault-tolerantpreparationofthetwo-qubitentangledstate(19)(orthefour-qubitentangled state(22)). Inthissubsection,wefocusonthefault-tolerantpreparationofthefour-qubitentan- gledstate Ψ (22)usingtheteleportationprotocol,whentheCU gateistheCNOT gate(12) CU | i andtheCZ gate(13)respectively. In Gottesman and Chuang’s original proposal[9] of teleportation-basedquantum computa- tion, a four-qubitentangledstate Ψ is preparedin the followingsteps. First, we preparea CU | i priorentangledsix-qubitstateasatensorproductofathree-qubitGHZstate Υ [29], | i 1 Υ = (000 + 111 ) (28) | i √2 | i | i 8 X |Υi• Z X |Ψi• i • • = BELL H j • |Ψi• |Υi• H H Figure4: Quantumcircuitfortheconstructionoffour-qubitentangledstate Ψ (29),asa CNOT | i diagrammaticalrepresentationoftheteleportationequation(30). The Υ stateisthethree-quibt | i GHZstate(28)andthesingle-qubitgatedenotedasH istheHadamardgate(10). TheCNOT gate(12)takestheconventionalconfigurationinquantumcircuitmodel[1]. and anotherthree-qubitGHZ state Υ with the localaction of the Hadamardgate H. Second, | i we performthe Bell measurementson such the six-qubitentangled state. Third, after classical communicationoftheBellmeasurementoutcomes,weperformtheunitarycorrectionoperators toobtainthefour-qubitentangledstate Ψ . CU | i 2.4.1 Constructionofthefour-qubitentangledstate Ψ CNOT | i Thefour-qubitentangledstate Ψ isthetargetstatewewanttoconstruct, CNOT 1256 | i Ψ =(11 CNOT 11 )(Ψ Ψ ) (29) CNOT 1256 2 25 2 12 56 | i ⊗ ⊗ | i ⊗| i in which the CNOT gate requires the i-th qubit as the control qubit and the j-th qubit as ij the targetqubit. We preparethe six-qubitentangledstate H H H Υ Υ , which canbe 4 5 6 123 456 | i | i reformulatedas 1 H H H Υ Υ = ψ(ij) ZjXiXi Ψ , (30) 4 5 6| i123| i456 | i34 2 1 2| CNOTi1256 iX,j=0 thenmakethejointBellmeasurementonboththethirdandfourthqubitsgivenby 11 11 ψ(ij) ψ(ij) 11 11 . (31) 2 2 34 2 2 ⊗ ⊗| i h |⊗ ⊗ Withthemeasurementoutcome(i,j),weperformtheunitarycorrectionoperator Xi XiZj 11 11 11 11 , (32) 2 2 2 2 ⊗ ⊗ ⊗ ⊗ ⊗ ontheresultantquantumstatetoobtainthefour-qubitentangledstate Ψ (29). Thequan- CNOT | i tumcircuitfortheconstructionofthe Ψ stateisshowninFigure4. CNOT | i Notethattheteleportationequation(30)admitsanequivalentform 1 H H H Υ Υ = ψ(ij) XiZjZj Ψ , (33) 4 5 6| i123| i456 | i34 5 5 6| CNOTi1256 iX,j=0 so thatwehavethe secondmethodofconstructingthe Ψ state (29) usingtheteleporta- CNOT | i tionprotocol. Thesetwomethodsarefoundtobeequivalentinthelowdimensionaltopological diagrammaticalapproach,seeSubsubsection3.4.2. 9 2.4.2 Constructionoffour-qubitentangledstates|Ψ↑CNOTiand|ΨCZi In Gottesman and Chuang’s original study [9], the fault-tolerant construction of the four-qubit entangled state |Ψ↑CNOTi (180) was presented instead of the state |ΨCNOTi (29) that we are working on. For readers’ convenience, the construction of the |Ψ↑CNOTi state is discussed in Appendix C. Besides |ΨCNOTi and |Ψ↑CNOTi, since the CZ gate (13) has a wide application in measurement-based quantum computation [27], we work out the construction of four-qubit entangledstate Ψ (188)inAppendixD. CZ | i 3 The extended Temperley–Lieb diagrammatical approach to teleportation-based quantum computation Inthissection4,weaimatexhibitingtopologicalfeaturesofteleportation-basedquantumcompu- tationinthetransparentstyle.IntheextendedTemperley–Liebdiagrammaticalapproach[17,18], westudythetopologicaldiagrammaticalconstructionofbothuniversalquantumgatesetandfour- qubitentangledstates in teleportation-basedquantumcomputation[9, 10, 11], whose algebraic counterpartshavebeenpresentedinSection2. TheextendedTemperley–Liebdiagrammaticalconfiguration[17,18] isakindoftheexten- sionofthestandardTemperley–Liebconfigurationonwhichbothsingle-qubitgatesandtwo-qubit gatesareallowedtomovealongthelinesundercertainrules. Thedefinitionofthe Temperley– LiebalgebraanditsdiagrammaticalrepresentationisshownupinAppendixA.1andA.2. 3.1 The extended Temperley–Lieb diagrammaticalapproach A single-qubit state vector ϕ is denoted by a vertical line followed by the symbol on the | i ∇ bottom, ϕ = (34) | i ∇ andthelinewiththesymbol onthetoprepresentsthecovector φ,soaverticallinewithboth △ h | symbols and ontheboundarydenotestheinnerproduct φϕ . Averticallinewithasolid ∇ △ h | i pointrepresentsasingle-qubitgateU actingonthestate ϕ , | i r U ϕ = U (35) | i ∇ inwhichthealgebraicexpressionisreadfromtherighttotheleftandthediagrammaticalrepre- sentationisreadfromthebottomtothetop. The diagrammatical configuration of the Bell state ψ(ij) (5) is the core of the extended | i Temperley–Liebdiagrammaticalapproach,andit isrepresentedbya cupwith a solid pointde- notingthesingle-qubitgateW (2), ij ψ(ij) = r (36) | i Wij so thata cup withouta solid pointdenotesthe EPRstate Ψ (3). The adjointofthe Bell state, | i ψ(ij),isrepresentedbyacap h | hψ(ij)|= rWi†j (37) 4This section is an extended version of the authors’ unpublished paper [12] in which topological features of teleportation-basedquantumcomputationareclaimedtobeassociatedwithtopologicalfeaturesofspace-time. 10