Tectonic evolution and paleogeography of the Kirşehir Block and the Central Anatolian Ophiolites, Turkey Douwe J van Hinsbergen, Marco M Maffione, Alexis Plunder, Nuretdin M Kaymakci, Morgan M Ganerød, Bart W H Hendriks, Fernando Corfu, Derya Gürer, Giovanni I.N.O. de Gelder, Kalijn Peters, et al. To cite this version: Douwe J van Hinsbergen, Marco M Maffione, Alexis Plunder, Nuretdin M Kaymakci, Morgan M Gan- erød, et al.. Tectonic evolution and paleogeography of the Kirşehir Block and the Central Anatolian Ophiolites, Turkey. Tectonics, 2016, 35 (4), pp.983-1014. 10.1002/2015TC004018. insu-01470256 HAL Id: insu-01470256 https://hal-insu.archives-ouvertes.fr/insu-01470256 Submitted on 17 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PUBLICATIONS Tectonics ı ş RESEARCH ARTICLE Tectonic evolution and paleogeography of the K r ehir 10.1002/2015TC004018 Block and the Central Anatolian Ophiolites, Turkey KeyPoints: DouweJ.J.vanHinsbergen1,MarcoMaffione1,AlexisPlunder1,2,NuretdinKaymakcı3, • CentralAnatoliaformeddueto MorganGanerød4,BartW.H.Hendriks4,5,FernandoCorfu6,DeryaGürer1,GiovanniI.N.O.deGelder1,7, interplayoftwosimultaneous subductionzones KalijnPeters1,PeterJ.McPhee1,FraukjeM.Brouwer8,EldertL.Advokaat1,9,andReinoudL.M.Vissers1 • TheAnatolianthrustbeltformedby foreland-propagatingnappestacking 1DepartmentofEarthSciences,UniversityofUtrecht,Utrecht,Netherlands,2UniversitéPierreetMarieCurie,Paris,France, • Strongvariationsinsubduction 3DepartmentofGeologicalEngineering,MiddleEastTechnicalUniversity,Ankara,Turkey,4GeologicalSurveyofNorway, obliquitymayexplaincontrasting CenterofGeodynamics,Trondheim,Norway,5StatoilASA,Rotvoll,Norway,6DepartmentofGeosciencesandCenterfor metamorphichistories EarthEvolutionandDynamics,UniversityofOslo,Oslo,Norway,7InstitutdePhysiqueduGlobedeParis,UniversitéParis Diderot,UMRF-7154CNRS,Paris,France,8FacultyofEarthandLifeSciences,VrijeUniversiteitAmsterdam,Amsterdam, SupportingInformation: Netherlands,9SEAsiaResearchGroup,DepartmentofEarthSciences,RoyalHollowayUniversityofLondon,Egham, • SupportingInformationS1 UnitedKingdom Correspondenceto: D.J.J.vanHinsbergen, AbstractInCentralandWesternAnatoliatwocontinent-derivedmassifssimultaneouslyunderthrustedan [email protected] oceaniclithosphereintheCretaceousandendedupwithverycontrastingmetamorphicgrades:high pressure,lowtemperatureintheTavşanlızoneandthelowpressure,hightemperatureintheKırşehirBlock. Citation: Toassesswhy,wereconstructtheCretaceouspaleogeographyandplateconfigurationofCentralAnatolia vanHinsbergen,D.J.J.,etal.(2016), usingstructural,metamorphic,andgeochronologicalconstraintsandAfrica-Europeplatereconstructions. Tectonicevolutionandpaleogeography oftheKırşehirBlockandtheCentral Wereviewandprovidenew40Ar/39ArandU/PbagesfromCentralAnatolianmetamorphicandmagmatic AnatolianOphiolites,Turkey,Tectonics, rocksandophiolitesandshownewpaleomagneticdataonthepaleo-ridgeorientationinaCentralAnatolian 35,983–1014,doi:10.1002/ Ophiolite.IntraoceanicsubductionthatformedwithintheNeotethysaround100–90Maalongconnected 2015TC004018. N-SandE-Wstrikingsegmentswasfollowedbyoverridingoceanicplateextension.Alreadyduring Received26AUG2015 suprasubductionzoneoceanspreading,continentalsubductionstarted.Weshowthatthecomplexgeology Accepted15MAR2016 ofcentralandsouthernTurkeycanatfirstorderbeexplainedbyaforeland-propagatingthrustingofupper Acceptedarticleonline23MAR2016 crustalnappesderivedfromadowngoing,dominantlycontinentallithosphere:theKırşehirBlockand Publishedonline27APR2016 Tavşanlızoneaccretedaround85Ma,theAfyonzonearound65Ma,andTauridesaccretioncontinued untilafterthemiddleEocene.WefindnoargumentforLateCretaceoussubductioninitiationwithina conceptual“InnerTaurideOcean”betweentheKırşehirBlockandtheAfyonzoneaswidelyinferred.We proposethatthemajorcontrastinmetamorphicgradebetweentheKırşehirBlockandtheTavşanlızone primarilyresultsfromamajorcontrastinsubductionobliquityandtheassociatedburialrates,higher temperaturebeingreacheduponhighersubductionobliquity. 1. Introduction ConvergencebetweentheAfrican/ArabianandEurasianplatessinceCretaceoustimehasformedaninten- selydeformedandinplacesmetamorphiccollageofophioliticandcontinentalrocks.Althoughthesehave beenintenselydeformedinahighlynoncylindricalfoldandthrustbelt,thegeologyofTurkeyisatfirstorder whatmaybeexpectedinasubduction-collisionzone:itcomprisesathin-skinnedfoldandthrustbeltthatin places became subjected to high-pressure, low-temperature blueschist to eclogite facies metamorphism. OnestrikingexceptionistheKırşehirBlockintheheartofAnatolia,a200×200×200kmtriangularcrystalline massifofcontinentalorigin(Figure1).Itcontainshigh-temperaturemetamorphicrocksandigneousintru- sionsofLateCretaceousage.Theserocksexperiencedregionalhigh-grademetamorphismwithconditions upto6–8kbarand700–800°C[WhitneyandDilek,2001;Lefebvre,2011;Lefebvreetal.,2015]atmuchhigher temperaturesandmuchlowerpressuresthanrecordedbycontemporaneouseclogitetoblueschistfaciescon- ©2016.TheAuthors. tinentalmetamorphicrocksoftheTavşanlızone(upto24kbarandonly500°C)onlytensofkilometerstothe Thisisanopenaccessarticleunderthe termsoftheCreativeCommons west[Sherlocketal.,1999;DavisandWhitney,2008;Whitneyetal.,2010;Plunderetal.,2013,2015](Figure1). Attribution-NonCommercial-NoDerivs ThispaperexploresapossibleexplanationforthehighgeothermalgradientthatexistedduringtheCretaceous License,whichpermitsuseanddistri- metamorphismoftheKırşehirBlock. butioninanymedium,providedthe originalworkisproperlycited,theuseis Tothisend,weattemptatconstrainingtheplatekinematiccontextwithinwhichtheKırşehirBlockmeta- non-commercialandnomodifications oradaptationsaremade. morphism occurred. Paleogeographic reconstructions invariably suggest that the complex deformation HINSBERGENETAL. TECTONICEVOLUTIONOFCENTRALANATOLIA 983 Tectonics 10.1002/2015TC004018 Figure 1.Tectonic map of Turkey, modified after Advokaat et al. [2014]. BO=Beyşehir Ophiolite; ÇkB=Çankırı Basin; HB=HaymanaBasin,SO=Sarıkaramanophiolite;TB=TuzgölüBasin;andUB=UlukışlaBasin. patternofAnatoliaiscausedbysubductionofoceaniclithosphereoftheNeotethyanOceanaswellasof continentallithosphereoftheAnatolide-TauridefragmentthatborderedtheNeotethystothesouth[e.g., DeweyandSengör,1979;SengörandYilmaz,1981;Okay,1986;Robertson,2004;BarrierandVrielynck,2008; Moixetal.,2008;Robertsonetal.,2009;Pourteauetal.,2010;Lefebvreetal.,2013].Thesereconstructions show that a minimum of two subduction zones must have existed during the metamorphism of the Tavşanlı zone and the Kırşehir Block. In a northern one, Neotethyan oceanic lithosphere has subducted below the Pontides—the southern Eurasian margin in northern Turkey—since at least Early Cretaceous time[Okayetal.,2006,2013]. SouthofthePontides,theİzmir-Ankarasuturezonemarkstheformersubductionzone.Tothesouthliesa foldandthrustbeltofophiolitesandAnatolide-Tauridederivedunits.Detailedstudiesoftheseophiolites have led workers to interpret that at least one more subduction zone must have formed south of the Pontides within the Neotethyan oceanic domain in Late Cretaceous time as attested by widespread circa 95–90Ma ages of metamorphic soles [Sengör and Yilmaz, 1981; Okay, 1986; Robertson, 2002; Çelik et al., 2006; Dilek et al., 2007; Aldanmaz et al., 2009; Dilek and Furnes, 2011; Parlak et al., 2013]. The Anatolide- Taurideunits,originallylocatedonthedowngoingplateofthisintraoceanicsubductionzone,wereunder- thrust below and accreted to Neotethyan oceanic lithosphere since Late Cretaceous time [Sengör and Yilmaz, 1981; Robertson et al., 2009; Pourteau et al., 2010;van Hinsbergen et al., 2010; Plunder et al., 2013]. Relicsoftheoverridingoceaniclithospherearepreservedasophioliteklippenthatformthehigheststructural unit above a roof thrust bringing ophiolites in contact with all but the deepest major thrust units of the Anatolide-Taurides.CollisionoftheAnatolide-Tauridefoldandthrustbeltandoverlyingophioliteswiththe Pontidesformed theIzmir-Ankara suture zonein latest Cretaceous-Paleogenetime [Kaymakci etal.,2009; Meijersetal.,2010]. HINSBERGENETAL. TECTONICEVOLUTIONOFCENTRALANATOLIA 984 Tectonics 10.1002/2015TC004018 Toobtainafirst-orderkinematicreconstructionofCentralAnatolia,wetakethefollowingapproach:(i)we review structural geological and paleomagnetic constraints on the burial, exhumation, and subsequent deformationhistoryoftheKırşehirBlocksinceCretaceoustime,aswellasfromophiolitesthatoverliethe KırşehirBlock;(ii)weassesstheplatekinematiccontextinwhichtheKırşehirBlockaswellastheadjacent Tavşanlızonewereburiedbelowtheophiolitesandbecamemetamorphosed;(iii)weassessthekinematic historybyreviewingthecomplexgeologyof CentralTurkeyandassessingthemomentof onsetof intra- Neotethyansubductionbyreviewingageconstraintsonthecrystallizationofophiolitesandthecoolingof theirmetamorphicsoles;(iv)weprovidenewU/PbagesonplagiogranitesoftheSarıkaramanophiolitethat overliestheKırşehirBlock(SOinFigure1)anddetermineapaleospreadingdirectionthroughapaleomag- neticanalysisofsheeteddikesofthisophiolite,tobeabletotakeintoaccountinourplatemodeltheorienta- tion of the plate boundary at which the ophiolite formed; (v) we infer the moment of accretion and subsequent exhumation of the metamorphic massifs of Central Anatolia by reviewing geochronological constraintsandbyaddingnewU/Pband40Ar/39AragesforrocksoftheKırşehirBlock.Together,thesecon- straintsdefinethetimewindowbetweentheonsetofintraoceanicsubductionandtheaccretionofthemeta- morphic domains to the overriding Neotethyan oceanic plate lithosphere represented by the ophiolite klippen;and(vi)weassessthenetarealossduringthistimeperiodfromcontemporaneousAfrica-Europe convergenceusingAtlanticoceanreconstructions[Setonetal.,2012;Torsviketal.,2012].Thecombinedana- lysisdeterminestherateanddirectionatwhichtheTavşanlızoneandKırşehirBlockwereunderthrustand metamorphosed.Apossibleexplanationforthemetamorphiccontrastbetweenthetwodomainsisoffered. 2. Geological Setting 2.1. Cretaceous-CenozoicTectonicHistoryofCentralAnatolia AnatoliaevolvedbetweentheEurasianandAfricanplates(Figure1)thathavebeenconvergingsinceEarly Cretaceoustime[e.g.,Torsviketal.,2012].Atpresent,mostofAnatoliaandtheAegeanregioncanbeapproxi- matedasamicroplatethatmoveswestwardrelativetoEurasiaandAfrica/ArabiaalongtheNorthAnatolian transformfaulttothenorth,theHellenicandCyprustrenchesinthesouth,andtheEastAnatolianfaultinthe east[e.g.,Reilingeretal.,2010](Figure1).Itsplateboundaryisdiffuseinseveralplacesandpoorlyconstrained [e.g.,Biryoletal.,2011;vanHinsbergenandSchmid,2012;Özbakıretal.,2013],andthe“microplate”isinternally deforminginmanyplaces[Reilingeretal.,2010;Koçetal.,2012,2016b].Theformationofthemicroplateis believedtorelatetotheindentationofArabiaintoeasternAnatolialeadingtoawestwardescape[Dewey andSengör,1979;SengörandKidd,1979]andtoslabretreat[Faccennaetal.,2006;Sternaietal.,2014]since theLateMiocene[Keskin,2003;Sengöretal.,2003;Faccennaetal.,2006;Hüsingetal.,2009;Okayetal.,2010]. Priortothattime,Anatoliawasnotacoherentplate,butinsteadunderwentdistributed,majorinternaldefor- mation in the wider Africa-Europe plate boundary zone. At first order, Anatolia is subdivided into two continent-derived fold and thrust belts and an intervening “İzmir-Ankara” suture zone. The Pontide fold andthrustbeltinnorthernTurkeycontainsrocksthathadbeenpartofthesouthernEurasianmarginsince atleastthemid-Mesozoic[SengörandYilmaz,1981;OkayandNikishin,2015].TheAnatolide-Tauridedomain incentralandsouthernTurkeywasderivedfromcontinentallithospherethatriftedanddriftedawayfrom Gondwana since Triassic time [Sengör and Yilmaz, 1981; Altiner et al., 1999; Frizon de Lamotte et al., 2011] andsubsequentlybecamepartoftheAfricanplate.TheAnatolidesarecomprisedofmetamorphosedand exhumedmassifsinTurkey(KırşehirBlock,Tavşanlızone,Afyonzone,andMenderesmassif;Figure1)and theTauridesrefertoabeltofnon-metamorphosedsedimentaryrocks(includinglargeplatformcarbonates) insouthernTurkey.TheTauridesareathin-skinnedfoldandthrustbeltformedbelowophiolitesfromLate CretaceousuntilatleastEocenetime[Özgül,1984],andtheirCretaceousnappesarelikelythenonmetamor- phosedequivalentsofsomeofthemetamorphosed“Anatolide”massifs. OneormoreNeotethyanoceanicbasin(s)onceseparatedthePontidesandAnatolide-Taurides.Relicsofthis oceanarefoundoffscrapedinmélanges,aswellasinophiolites.Theoldestknownradiolarianchertsfoundin mélangealongtheİzmir-Ankarasuturehaveamid-TriassicageshowingaminimumagefortheNeotethys OceaninTurkey[Tekinetal.,2002;TekinandGöncüoğlu,2007].Theophiolitesthatarewidespreadsouthof theIzmir-Ankarasuturehaveasanaddedplatekinematiccomplexity,asuprasubductionzone(SSZ)geo- chemicalsignature[Yalınızetal.,2000b;Parlaketal.,2002;Dileketal.,2007;Yalınız,2008;Aldanmazetal., 2009] suggesting that they formed by spreading above a subduction zone [Pearce et al., 1984]. Based on HINSBERGENETAL. TECTONICEVOLUTIONOFCENTRALANATOLIA 985 Tectonics 10.1002/2015TC004018 008],hrustğ şıdafterGautieretal.[2002,2008],Iketal.[2dLefebvreetal.[2011,2015].LocationsoftışB=Ayhan-BüyükklaBasin;BG=BaranadaıOphiolite;KyG=KaracayrGranitoid;detailsandreferencesoftheages. fiesimplie[2011],an[2014].ABı=Karsantovidethe ışficmapoftheKrehirBlockmodiedafterMTA[2002].Stretchinglineationorientationsandshearsensesarefebvreetal.[2011,2015].LocationsofextensionaldetachmentscomefromGautieretal.[2008],Lefebvreşıüoglu[1997],MTA[2002],YürürandGenç[2006],Gülyüzetal.[2013],Advokaatetal.[2014],andIketal.ğığııÇG=ÇiçekdaGranitoid;ÇO=ÇiçekdaOphiolite;KD=KamanDetachment;KG=KurancalGabbro;KOııSavclThrust;andYB=YozgatBatholith.NumbersbehindagesrefertolistingsinTable1,whichalsopr Figure2.GeologicalandtectonişıIk[2009],Lefebvre[2011],andLfaultsbasedonKöksalandGöncğıgranitoid;ÇB=ÇiçekdaBasin;ıSO=Sarkaramanophiolite;ST= HINSBERGENETAL. TECTONICEVOLUTIONOFCENTRALANATOLIA 986 Tectonics 10.1002/2015TC004018 geochemical and metamorphicdata SSZ ophiolites are widely interpreted to formshortly (<10Myr) after subduction initiation [Casey and Dewey, 1984; Stern and Bloomer, 1992; Stern et al., 2012; Dewey and Casey, 2013;Maffioneetal.,2015a;vanHinsbergenetal.,2015].Afterinitiationofsubduction,atleastonespreadingcenter mustthereforehaveexistedwithintheNeotethyandomainbetweenthesubductionzonebelowthePontides andtheintra-Neotethyansubductionzone(s),closetotheintraoceanictrench.Thisspreadingproducedoceanic crust, and the amount of lithosphere that subducted in the Anatolian subduction zones in Late Cretaceous timemustthereforehavebeenhigherthantheamountofcontemporaneousAfrica-Eurasiaconvergence. 2.2. UpperCretaceousCrystallineUnits The metamorphic units of western and central Anatolia are subdivided into three massifs based on their metamorphicgradeandstructuralposition:theKırşehirBlockinthenortheast,theTavşanlızoneinthenorth- west,andtheAfyonzonefringingbothzonestothesouth(Figure1). 2.2.1. KırşehirBlockandCentralAnatolianOphiolites TheKırşehirBlockoccupiestheheartofAnatoliaandcurrentlyformsatriangularmassifalsoknownasthe CentralAnatolianCrystallineComplex[Göncüoğluetal.,1991;Lefebvre,2011](Figure2).Itissubdividedinto threesubmassifs,onthebasisofcommontrendsofstretchinglineations,plutonicbelts,andpaleomagnetic declinations,boundedbyfaults:theAkdaǧ,Kırşehir,andNiǧde-Aǧaçören-Hırkadağmassifs[Lefebvre,2011; Lefebvre et al., 2013] (Figure 2). These are composed of Paleozoic to Mesozoic metasedimentary rocks, intrudedbyabeltofgranitoids[Kadıoğluetal.,2006].Themetamorphicrocksareinplacesoverlainbyultra- maficandmaficrocksofanophiolitesuitedefinedastheCentralAnatolianOphiolites,wherebyallelements ofthePenrosesequence[Anonymous,1972]canbefound.Theyare,however,severelydismemberedand scatteredacrosstheKırşehirBlock:ophioliteblocksvaryinsizefromhundredsofmeterstotensofkilometers andareonlyafewhundredmeters thick[Yaliniz etal.,1996,2000a,2000b,2000c;YalınızandGöncüoğlu, 1998;Floydetal.,2000;Toksoy-KöksalandGöncüoğlu,2001;Yalınız,2008].Itisgenerallyassumedthatthese ophiolite fragments are the remains of a once coherent oceanic lithosphere below which the Kırşehir Blockbecameunderthrustandmetamorphosed[SengörandYilmaz,1981;Yalinizetal.,1996;Boztuğetal., 2009c].Theseophioliteblocksincludewell-studiedoccurrencesofultramaficandmaficbodiessuchasthe Sarıkaramanophiolite,theÇiçekdağıophiolite,andtheKurancalımetagabbro(Figure2).Thesearethebest studiedandmostcompleteophioliticsequencesintheregion,andwereviewtheirstructureandcomposi- tiontoinferthenatureandevolutionofthelithospherebelowwhichtheKırşehirBlockwasunderthrust. ThemostprominentandbeststudiedophioliteontheKırşehirBlockistheSarıkaramanophiolite(Figure2).It is composed of a crustal sequence of isotropic gabbros intruded by late stage plagiogranites that likely resulted from fractional crystallization of basaltic magmas [Floyd et al., 1998; Yalınız et al., 2000c; Toksoy- Köksaletal.,2001].Thissequenceisoverlainbysheeteddikesandpillowlavas,plagiogranite-relatedrhyolites andTuronian-Santoniancherts[Floydetal.,1998;Yalınız,2008].Theophioliteisintrudedbyaquartzmonzo- nite pluton that also cuts the underlying high-grade metamorphic rocks of the Kırşehir Block [Yalınız and Güncüoglu,1999;Yalınızetal.,1999]. The Çiçekdağı Ophiolite retains a fairly complete crustal sequence with gabbros, dikes, extrusives, and a Turonian-Santonian epi-ophiolitic cover. The Sarıkaraman and Çiçekdağı ophiolites have geochemical compositions consistent with formation at a suprasubduction zone spreading center [Yaliniz et al., 1996, 2000a;YalınızandGüncüoglu,1999].Maficblocksinthesubophioliticmélanges,however,havemid-oceanic ridgebasaltor,toalesserdegree,oceanislandbasaltgeochemicalsignatures[Floydetal.,2000]reflecting derivationfromtheoriginalNeotethyanoceaniccrust. TheKurancalımetagabbro(Figure2)isakilometerscale,isolatedgabbrobodydescribedindetailbyToksoy- Köksal and Göncüoğlu [2001] that is interpreted to be a remnant of the severely dismembered Central Anatolianophiolitesequence[YalınızandGöncüoğlu,1998;İlbeyli,2008].Itisanisolatedbodyofcompo- sitionally layered pyroxene and hornblende gabbro with a calc-alkaline geochemical composition that was interpreted to have formed in an incipient island arc above an intraoceanic subduction zone [Toksoy-Köksal and Göncüoğlu, 2001]. The gabbro body measures ~1km across and is separated from thehigh-grademetamorphicrocksoftheKırşehirBlockbyanintenselyshearedmélangezonewithmetao- phioliticandmetacarbonaterocks.Thegabbros,mélanges,andtheKırşehirBlockmetamorphicrocksare allintrudedbyfelsicdikeslikelyrelatedtothenearbyBaranadaǧgranitoid[Toksoy-KöksalandGöncüoğlu, 2001](Figure2). HINSBERGENETAL. TECTONICEVOLUTIONOFCENTRALANATOLIA 987 Tectonics 10.1002/2015TC004018 ThemetamorphicrocksoftheKırşehirBlockweresubjectedtoregionalhigh-temperature,medium-pressure (HT-MP)conditionsandconsistofgreenschisttoupperamphibolite-faciesmarbles,calcsilicates,metapelites,and quartzites.PeakP-T(Pressure-Temperature)estimatesthroughoutthemassifareratheruniform.IntheAkdaǧ massif peak metamorphic conditions were estimated around 5–8kbar/550–675°C [Whitney et al., 2001] and 3.5–6.5kbar/400–700°C [Şahin and Erkan, 1999]. The P-T estimates in the Kırşehir massif reach 6.5–7.5kbar/ 700–770°C[Whitneyetal.,2001].Paragenesesassociatedwith7–8kbar/700°CintheHırkadağmassifareover- printedat3–4kbar/800°Cduringgraniteintrusion[WhitneyandDilek,2001;Lefebvre,2011;Lefebvreetal.,2015]. AnalysesofschistsoftheNiǧdemassifhaveyieldedmetamorphicconditionsvaryingfrom5–6kbar/>700°Cto 3–4kbar/640–650°C,ofwhichthelatterconditionslikelyprevailedduringsyn-decompressionalgranitoidintrusion [WhitneyandDilek,1998,2001].Similarpressuresbelow4kbarweredeterminedforrareschistsintheAǧaçören massifclosetothegranitoidintrusions[Whitneyetal.,2001].Regionalpeakmetamorphismhenceoccurredunder conditionsupto~8kbar/700°C,withlocaloverprintsatevenhighertemperaturesupto800°Cbutlowerpressures of3–4kbarduringgranitoidintrusion.Theregionalpeakmetamorphicmineralparagenesesarefoundinaregion- allypervasive,flatlying,andmildlyundulatingfoliation[Seymen,1983;Lefebvre,2011]. The regional foliation was cut by a prominent belt of granitoids currently exposed along the western and northern perimeter of the Kırşehir Block [Yalınız et al., 1999; Kadıoğlu et al., 2003, 2006; Köksal et al., 2013](Figure2).Thesegranitoidscanbesubdividedintobeltswithincreasingalkalinityfromwesttoeast [İlbeyli, 2004a, 2005]. In the Ağaçören massif felsic intrusions occur together with gabbro intrusions that shouldnotbeconfusedwithophiolite-relatedgabbros[Kadıoğluetal.,2003].Thegranitoids’geochemistry showsthattheywerederivedfromamantlesourceenrichedbysubduction-relatedfluids,furthercontami- natedbypartialmeltsofcontinentalcrust[Kadıoğluetal.,2003;İlbeyli,2004a,2005;İlbeylietal.,2009;Delibaş andGenç,2012a;Köksaletal.,2013].Geochemicalstudiesinterpretedthatmeltingwastriggeredbyexten- sionofanalreadyhotKırşehirBlockandthedecompressionofanunderlying,metasomatizedmantlewedge [İlbeyli,2005;Köksaletal.,2013].Processessuchaslithosphericdelaminationorslabbreakoffhavebeenpro- posedtoexplainthehightemperaturesandgranitoidintrusionsoftheKırşehirBlock[İlbeyli,2004a,2004b, 2005;Kadıoğluetal.,2006;İlbeylietal.,2009;Köksaletal.,2012]. Thegranitoidsarelargelyundeformed,clearlypostdatingthepervasiveregionalfoliation,andintrudedat pressuresvaryingfrom2.6to5.3kbar[İlbeyli,2005].Inplaces,theyaredeformedbygreenschistfaciesshear zones,interpretedtobesyn-exhumational[Işıketal.,2008;Işık,2009].Moreover,thegranitoidsintrudenot onlytheKırşehirBlockbutalsotheoverlyingophiolitesandophioliticmélange(Figure2)[e.g.,Yalınızetal., 1999; İlbeyli, 2005]. A detachment fault in marbles near Kaman that accommodated exhumation of the Kırşehirmassifrelativetoanchimetamorphicophioliticmélangewasintrudedbyandrecrystallizedaround the Baranadaǧ granitoid [Lefebvre et al., 2011]. These crosscutting relationships show that the Kırşehir Blockwasburiedbelowoceaniclithosphererepresentedbytheophioliteremnantsandwasthenintensely deformedandmetamorphosed.Theblockwassubsequentlyintrudedbythegranitoidbelt.Thesegranitoids wereaffectedbyandintrudeexhumation-relatedretrogradeshearzones.Theythusappeartohaveformed duringregionalextensionandexhumationoftheKırşehirBlock[seealsoWhitneyandDilek,1998;Whitney etal.,2003]. Pervasive stretching lineation orientations were mapped in detail by Lefebvre [2011] and Lefebvre et al. [2011,2015]fortheAkdaǧ,Kırşehir,andHırkadaǧmassifsandbyGautieretal.[2008]andIşık[2009]for the Niǧde and Aǧaçören massifs, respectively (Figure 2). The lineations demonstrate that the pervasive regionalfoliationisassociatedwithatop-to-the-SWsenseofshearinthecenteroftheAkdaǧmassif,a top-to-the-S sense of shear in the center of the Kırşehir massif, and a top-to-the-SSE sense of shear in thecenteroftheNiǧdemassif.Towardtheedgesofeachmassif,however,shearsensesinlowergrade metamorphicrocksarenearlyorthogonaltothesyn-regionalmetamorphicstretchinglineationsandpoint fromthecoreofthemassifsoutward:top-to-the-Ninthenorthandtop-to-the-SinthesouthoftheAkdaǧ massif; top-to-the-NW in the northwest; top-to-the-SE in the southeast of the Kırşehir massif [Işık et al., 2008;Lefebvre,2011;Lefebvreetal.,2011];top-to-the-SWintheAǧaçörenmassif[Işık,2009];andtop-to- the-ENE in the Hırkadaǧ andNiǧde massifs [Whitney and Dilek, 2000; Gautier et al., 2008; Lefebvre et al., 2015].Thelowergradeandoutwardpointingshearsensesareincontrastwiththemainstructuraltrend definedbytheKırşehirBlock’sgranitoidbeltsandtop-to-the-SWlineationsthatcharacterizethedeeper, centralpartoftheBlockandcoincidewiththoseonsyn-exhumationalshearzonesandextensionaldetach- ments [Gautier et al., 2008; Işık et al., 2008; Işık, 2009; Lefebvre et al., 2011, 2015]. They formed during a HINSBERGENETAL. TECTONICEVOLUTIONOFCENTRALANATOLIA 988 Tectonics 10.1002/2015TC004018 e. olit hi p O ınt a s ar K = O K 1. e bl a T n i s g n sti li o t er ef r s e g a d n hi e b s er b m u N 2]. 0 0 2 [ A T M er aft d e fi di o m y, e k ur T of p a m e olit hi p o d n a c hi p or m a et M 3. e ur g Fi HINSBERGENETAL. TECTONICEVOLUTIONOFCENTRALANATOLIA 989 Tectonics 10.1002/2015TC004018 second phase of deformation postdating formation of the main regional metamorphism and synchro- nouslywithgranitoidintrusion. Finally,theHırkadaǧdetachmentwasassociatedwiththeformationofthesyn-kinematicAyhansedimentary basin [Advokaat et al., 2014]. In the deepest, syn-extensional part of the stratigraphy a series of upper Cretaceousvolcanicsyieldeda40Ar/39Arplagioclaseageof72.1±1.5Maandextensionalfaultsareuncon- formablycoveredbyLutetianlimestones[Advokaatetal.,2014],whichprovidethebeststratigraphiccon- straintontheextensionalexhumationhistoryoftheKırşehirBlock. 2.2.2. TavşanlıandAfyonZones TheTavşanlızonewasdefinedbyOkay[1984]andformsan~EWtrending,300kmlongand50kmwide belt of high-pressure, low-temperature metamorphic rocks. It contains continent-derived metasediments ascribedtothenorthernmarginoftheAnatolide-Tauridecontinent.Tavşanlırocksweresubductedbelow anoceanic lithosphere in theCretaceous. Dismemberedrelics of this lithosphere have beenpreserved as ophiolites[OkayandTüysüz,1999;OkayandWhitney,2010].TheTavşanlızonesensustrictoisaPaleozoic toMesozoicsedimentarysequence,composedofdetritalsedimentsatthebasegradingintoplatformcarbo- nates.Theseweremetamorphosedunderblueschisttoeclogitefaciesconditions,upto24kbar/500°C[Okay, 2002;DavisandWhitney,2008;Whitneyetal.,2010;Plunderetal.,2013,2015]duringtheLateCretaceous [Okay and Kelley, 1994; Sherlock et al., 1999; Sherlock and Kelley, 2002]. The continental unit that recorded theseconditionsisalsoknownastheOrhanelisequenceorunit[Okay,1986;Plunderetal.,2013]. The Orhaneli sequence is overlain by an accretionary complex, derived from the Neotethyan Ocean. The sequenceis mostlymade of basalt, tuff, and chertand was divided into threemain tectonometamorphic units with increasing metamorphic grade at increasing structural depth from 4–8kbar/250–300°C to 17kbar/450°C[Okay,1980a,1980b,1982;Plunderetal.,2013,2015].Theseocean-derivedunitsarefrequently includedintheTavşanlızone,butinFigure3theyareseparatelyindicated,astheydonotbelongtothe passive margin sequence and are also found also atop the Afyon zone. The Tavşanlı and ocean-derived high-pressure units are overlain by ophiolites, and in places they include a metamorphic sole [Lisenbee, 1972;ÖnenandHall,1993;Okayetal.,1998]. To the east, the Tavşanlı zone becomes poorly defined. Blueschist facies continent-derived rocks were reportedinnumerousplacesinAnatolia[e.g.,vanderKaaden,1966;Okay,1986;Pourteauetal.,2010],but these may also be part of the Afyon zone [van der Kaaden, 1966; Okay, 1986; Dilek and Whitney, 1997; Pourteau et al., 2010]. The Orhaneli sequence has not been documented to the east or south of the Sivrihisarmassif(Figure3).IntheregionofAltınekin,blueschisthasbeendescribedquestioningtheextent of the Tavşanlı zone [Droop et al., 2005]. Most of the rocks described are similar to the oceanic complex describedintheTavşanlıregionandsharesimilarP-Tconditionsat10.5kbar/440°C.TheHP-LTconditions inthecontinentalrocksofthisareaat9.4kbar/400°C[Droopetal.,2005]areidenticaltosomedocumented intheAfyonzone[Pourteauetal.,2014].Unfortunately,nopublisheddataregardingtheageofthoseblues- chistsareavailable. TheAfyonzone,partoftheBolkardağnappe,wasoriginallydefinedbyOkay[1984,1986]asapassivemargin sequencemetamorphosedundergreenschistfaciesconditions.Itisa~800kmlongbeltwrappedaroundthe KırşehirBlocktoitswestern,southern,andeasternside(Figure1).TheAfyonzoneisoverlyingtheMenderes massif[Pourteauetal.,2010].TheTavşanlızonestructurallyoverliestheAfyonzone,whereastheexactstruc- turalrelationshipsbetweentheKırşehirBlockandtheTavşanlıandAfyonzonescannotbedirectlyobserved inthefieldastheyarecoveredbysedimentarybasins.TheTavşanlıandAfyonzonesarealsostructurally overlain by Cretaceous SSZ ophiolites (Figure 3). The discovery of glaucophane in metagabbros of the Pan-African basement units and of Fe-Mg carpholite in conglomerates of the metasedimentary cover interpreted as Permo-Triassic in age constrain the burial history of the Afyon zone with peak pressure- temperature conditions at 10kbar and 350–400°C [Rimmelé et al., 2003; Candan et al., 2005; Pourteau etal.,2010,2014]. 2.2.3. PostCretaceousTectonicHistoryofCentralAnatolia Afteritsexhumation,theKırşehirBlockwasbrokenintothreemassifsthatunderwentsignificantdifferential vertical axis rotations as shown by paleomagnetic data from Upper Cretaceous granitoids [Lefebvre et al., 2013].PostLutetiancontractionalfoldandthrustzoneswithpossiblestrike-slipcomponentsaccommodated these rotations [Gülyüz et al., 2013; Lefebvre et al., 2013; Advokaat et al., 2014] and remained active until HINSBERGENETAL. TECTONICEVOLUTIONOFCENTRALANATOLIA 990 Tectonics 10.1002/2015TC004018 Table1. OverviewofAvailableGeochronologicalConstraintsFromAnatolianOphiolitesandTheirSoles,andtheKırşehirBlock,theTavşanlıandAfyonZones,and theAlanyaNappesa Number SampleCode RockType Mineral Method Age(Ma) Error Reference OphioliteCrust 1 FEM093 gabbro hornblende Ar/Ar 150.5 1.5 a 2 FEM173 gabbro hornblende Ar/Ar 150.0 3.9 a 3 FK69 gabbro zircon U/Pb 69.1 2.1 b 4 FK57 gabbro zircon U/Pb 82.8 4.0 b 5 K27099J plagiogranite zircon U/Pb 90.5 0.2 c 6 K27099C plagiogranite zircon U/Pb 89.4 0.6 c 74 K05107J gabbro plagioclase Ar/Ar 83.5 5.7 c MetamorphicSole 7 P349 amphibolite hornblende Ar/Ar 93.0 2.0 d 8 P534 garnetamphibolite hornblende Ar/Ar 90.0 3.0 e 9 YLK-228 amphibolite hornblende Ar/Ar 93.1 0.9 f 10 YLK229 amphibolite hornblende Ar/Ar 93.0 0.9 f 11 YLK253 metamorphicsoleschist muscovite Ar/Ar 93.0 1.0 f 12 YLK-255 metamorphicsoleschist muscovite Ar/Ar 91.7 0.7 f 13 YLK266 metamorphicsoleschist muscovite Ar/Ar 93.6 0.8 f 14 YL-103 amphibolite hornblende Ar/Ar 90.7 0.5 f 15 YL-134 amphibolite hornblende Ar/Ar 91.3 0.9 f 16 YL-106 amphibolite hornblende Ar/Ar 91.2 2.3 f 17 A-292 amphibolite hornblende Ar/Ar 93.0 1.0 f 18 A-295 amphibolite hornblende Ar/Ar 93.8 1.7 f 19 B-192 amphibolite hornblende Ar/Ar 90.9 1.3 f 20 B-194 amphibolite hornblende Ar/Ar 91.5 1.9 f 21 A2 amphibolite hornblende Ar/Ar 85.6 0.3 g 22 A8 amphibolite hornblende Ar/Ar 87.0 0.4 g 23 A12 amphibolite hornblende Ar/Ar 85.3 0.2 g 24 A13 amphibolite hornblende Ar/Ar 84.7 0.3 g 25 94-PO-65 amphibolite hornblende Ar/Ar 90.6 0.9 h 26 93-MO-5 amphibolite hornblende Ar/Ar 91.0 0.8 h 27 93-MO-22 amphibolite hornblende Ar/Ar 91.3 0.4 h 28 OP257 amphibolite hornblende Ar/Ar 93.7 0.3 j 29 OP256 amphibolite hornblende Ar/Ar 96.1 0.3 j 30 OP255 amphibolite hornblende Ar/Ar 93.6 0.4 j 31 OP254 amphibolite hornblende Ar/Ar 93.9 0.4 j 32 OP253 amphibolite hornblende Ar/Ar 91.8 0.3 j 33 OP132 amphibolite hornblende Ar/Ar 92.7 0.3 j 34 OP131 amphibolite hornblende Ar/Ar 91.9 0.3 j 35 PK-20 metamorphicsoleschist muscovite Ar/Ar 92.4 1.3 f 36 EY-92-2 amphibolite hornblende Ar/Ar 90.4 0.9 h 37 93-AO-3 amphibolite hornblende Ar/Ar 91.7 0.6 h 38 FEM-076 amphibolite hornblende Ar/Ar 166.9 1.1 k 39 FEM-068 amphibolite hornblende Ar/Ar 177.1 1.0 k 40 FEM-067 amphibolite hornblende Ar/Ar 174.1 0.9 k 41 FEM-084 amphibolite hornblende Ar/Ar 169.9 1.0 k KırşehirBlock 42 BAL76 syenite biotite Ar/Ar 64.9 0.3 l,m 43 BAL78 syenite biotite Ar/Ar 66.6 0.2 l,m 44 BAL72 leucogranite biotite Ar/Ar 73.6 0.3 l 45 BAL69 leucogranite biotite Ar/Ar 71.5 0.3 l 46 BAL66 granitoid hornblende Ar/Ar 67.1 0.3 l 47 BAL66 granitoid biotite Ar/Ar 65.7 0.2 l 48 A22109C schist biotite Ar/Ar 75.2 0.5 c 49 A19109B schist biotite Ar/Ar 75.0 0.3 c 50 A19109B schist K-feldspar Ar/Ar 73.4 0.4 c 51 03V-34 mylonitizedgranite hornblende Ar/Ar 72.4 0.2 n 52 03V-34 mylonitizedgranite K-feldspar Ar/Ar 71.6 0.2 n 53 03V-56 granite hornblende Ar/Ar 81.2 0.5 n 54 03V-56 granite K-feldspar Ar/Ar 82.4 0.3 n 55 03V-47 mylonitizedgranite hornblende Ar/Ar 71.6 0.3 n HINSBERGENETAL. TECTONICEVOLUTIONOFCENTRALANATOLIA 991
Description: