ebook img

Technology for Advanced Focal Plane Arrays of HgCdTe and AlGaN PDF

698 Pages·2016·33.57 MB·English
by  Li He
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Technology for Advanced Focal Plane Arrays of HgCdTe and AlGaN

Li He · Dingjiang Yang Guoqiang Ni Technology for Advanced Focal Plane Arrays of HgCdTe and AlGaN Technology for Advanced Focal Plane Arrays of HgCdTe and AlGaN Li He Dingjiang Yang Guoqiang Ni (cid:129) (cid:129) Technology for Advanced Focal Plane Arrays of HgCdTe and AlGaN With Contributions by: Lu Chen, Xiaoshuang Chen, Yong Deng, Ruijun Ding, Qi Feng, Haimei Gong, Liwei Guo, Ping Han, Li He, Weida Hu, Xiaoning Hu, Xiangyang Li, Wu Liu, Wei Lu, Ji Luo, Guoqiang Ni, Jun Shao, Xiumei Shao, Hao Sun, Yanfeng Wei, Jintong Xu, Dingjiang Yang, Jianrong Yang, Zhenhua Ye, Songlin Yu, Dongqing Yue, Yan Zhang, Degang Zhao, Liqing Zhou, Xian Zhu 123 LiHe Guoqiang Ni ShanghaiInstitute of TechnicalPhysics Opto-electronics School ChineseAcademy of Sciences Beijing Institute of Technology Shanghai Beijing China China Dingjiang Yang Tianjin LishenBattery Joint-Stock Co.Ltd. Tianjin China ISBN978-3-662-52716-0 ISBN978-3-662-52718-4 (eBook) DOI 10.1007/978-3-662-52718-4 JointlypublishedwithNationalDefenceIndustryPress,China LibraryofCongressControlNumber:2016942799 TranslationfromtheChineselanguageedition:IntroductiontoAdvancedFocalPlaneArraysbyLiHe, ©NationalDefenseIndustryPress2011.AllRightsReserved. ©NationalDefenseIndustryPress,BeijingandSpringer-VerlagBerlinHeidelberg2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublishers,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublishers,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publishers nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringer-VerlagGmbHBerlinHeidelberg Preface Electro-optical (EO) infrared (IR) imaging is distinguished by such characteristics asoperatingpassivelyandpossessinghighspatialresolutionascomparedtoactive microwave imaging technology. IR detectors for military usage were first devel- oped in WW2, but most significant recent development occurred after the demonstrationoffocalplanearrays(FPAs)inthe1970s.Nowadays,thetechnology of IR FPAs has become one of the most essential elements of information-based military systems. As driven by military and civil needs, FPA technology is con- tinuously evolving to ever stronger capabilities in long range sensitivity, high speed, environmental and weather compatibility, compactness in volume, low-power consumption, and cost. Ingeneral,advancedFPAscanbeacomprehensiveconcept.Theymayworkin spectralrangesofeitherbroadorverynarrowspectralbandsfromthermalIRtoUV wavelengths. They may be sensitive to polarization or phase of incident radiation, and may also work actively with laser beams for 3D imaging. The fundamental semiconducting material for IR FPAs can be HgCdTe or AlGaAs/GaAs quantum wells (or dots), InAs/GaSb superlattices as well as VO or amorphous Si, etc. x Since EO imaging device technology is progressing very rapidly, it is difficult to treatthestate-of-the-arttechnologiesinasinglebook.Instead,thisbookintendsto provide readers with a fundamental guide for understanding advanced FPAs of HgCdTe or AlGaN based on third-generation IR fabrication technology. Emphasis will be on features of multipixel arrays for very large-scale and/or multiband use, pixel (column)-level analog to digital conversion, digital signal multiplexing and integratedprocessing.Somerecentresultsobtainedbytheauthorsondevicedesign and fundamental epitaxial fabrication processes are also presented. The Chinese version of this book was published in 2011. Some updates and modifications for the present English version are made to reflect recent develop- ments. The chapter dealing with optical links and data processing in the original version is removed due to space limitations in the English version which contains seven chapters. Chapter 1 briefly reviews the history and trends of IR FPAs. Advanced FPAs of HgCdTe or AlGaN are outlined to provide readers with v vi Preface backgroundforthesubsequentchapters.Chapter2presentsnumericalmethodsfor designingHgCdTemultibandpixels.Chapters3and4presentepitaxialtechniques formultilayeredHgCdTedevicesonSisubstratesandAlGaN,respectively.Device processingforpixelarraysofHgCdTeandAlGaNarediscussedinChaps.5and6, respectively. Chapter 7 introduces methods for designing and testing CMOS readout circuits for dual-band preamps and analog to digital conversions. The authors greatly benefitted from the work achieved by scientists and engi- neers worldwide in developing advanced FPAs. Those remarkable achievements have established theoretical and technical bases for this study. The authors would like to acknowledge academician Junhong Su, and Zailong Sun, Suisheng Mei, XiaochiZhu,ShupingZhang,BangkuiFan,YiCai,YadongJiang,YingruiWang, and Xin Lyu for encouragement, critical reviews, and instructive advice. Academician Jiaxiong Fang, academician Junhao Chu, and Ning Dai, Yanjin Li, Zhifeng Li, Xiaohao Zhou, Yunzhi Ni, Zili Xie, Ruolian Jiang, Ming Du, Yefang Zhou,ShurongDai,LingWang,JianzhongJiang,HuiminHou,andJianjunYinall madeimportantcontributionstothiswork.Namesofstudentsandstaffinvolvedin the work can be found in the references. Academician Lianghui Chen and others provided helpful suggestions in completing the book. Jianxin Chen, Gangyi Xu, ChunLin,KaihuiChu,HongleiChen,ChangzhiShi,YanHuang,ShiweiXue,Hui Qiao,QuanzhiSun,XingChen,XintianChen,WeichengQiu,JianLiang,JiaoXu et al. assisted the authors with translation and proofreading. James Torley, University of Colorado–Colorado Springs, USA, kindly assisted in language revising. The authors also thank Jianzhen Pan for her extensive efforts on the organization and coordination of this work. Shanghai, China Li He May 2015 Contents 1 Fundamentals of Focal Plane Arrays . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 History and Trends of Infrared Imaging Detectors. . . . . . . . . . . . 1 1.2 Introduction to Advanced FPAs of HgCdTe and AlGaN. . . . . . . . 5 1.2.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Improving DRI Range by High Spatial and Temperature Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Improving DRI Range by Multiband Imaging. . . . . . . . . . 13 1.2.4 Improving Compactness and Intelligence by Integrated Processing Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Design Methods for HgCdTe Infrared Detectors. . . . . . . . . . . . . . . 17 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Simulation and Design of HgCdTe Infrared Detectors . . . . . . . . . 18 2.2.1 Foundation for HgCdTe Infrared Detector Designs . . . . . . 18 2.2.2 Design of Heterojunctions HgCdTe Infrared Detectors. . . . 31 2.2.3 Design of Long Wavelength HgCdTe Detectors . . . . . . . . 42 2.2.4 Design of Two-Color HgCdTe Detector. . . . . . . . . . . . . . 64 2.3 Methods of Extracting Parameters from HgCdTe Materials and Chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.3.1 Extracting Device Parameters by Electrical Method. . . . . . 83 2.3.2 Extracting Device Parameters by Photoelectric Method . . . 99 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3 CdTe/Si Composite Substrate and HgCdTe Epitaxy . . . . . . . . . . . . 121 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 3.2 Basic Models on Si-Based HgCdTe Epitaxy. . . . . . . . . . . . . . . . 122 3.2.1 Physical Model of Selective Growth on Si Surface (Mechanism of as Passivation on Surface) . . . . . . . . . . . . 123 3.2.2 Atomic Distribution Model of Si Substrate ZnTe/CdTe . . . 133 vii viii Contents 3.2.3 Arsenic Impurity in MCT. . . . . . . . . . . . . . . . . . . . . . . . 140 3.2.4 Amphoteric Doping Behavior of as in MCT. . . . . . . . . . . 154 3.3 HgCdTe Growth on Si by MBE . . . . . . . . . . . . . . . . . . . . . . . . 173 3.3.1 ZnTe/CdTe Grading Buffer on Si by MBE. . . . . . . . . . . . 173 3.3.2 HgCdTe Growth on Large-size Alternative Substrates . . . . 189 3.3.3 Extrinsic Doping in HgCdTe by MBE. . . . . . . . . . . . . . . 197 3.4 Si-Based HgCdTe LPE Technology. . . . . . . . . . . . . . . . . . . . . . 219 3.4.1 The Surface Treatment of CdTe/Si Composite Substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 3.4.2 LPE Process Optimization . . . . . . . . . . . . . . . . . . . . . . . 224 3.4.3 Basic Properties of HgCdTe LPE Materials . . . . . . . . . . . 227 3.4.4 Remaining Issues and Analysis. . . . . . . . . . . . . . . . . . . . 236 3.5 Thermal Stress of Si-Based HgCdTe Materials . . . . . . . . . . . . . . 239 3.5.1 Spectral Characteristics of Si-Based HgCdTe Materials . . . 240 3.5.2 Theoretical Analysis of Stress of Multilayer Structure Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 4 AlGaN Epitaxial Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 4.2 Basic Properties of GaN-Based Material and Preparation Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 4.2.1 The Basic Properties of GaN-Based Material and Its Use in Ultraviolet Detectors. . . . . . . . . . . . . . . . . 266 4.2.2 MOCVD Epitaxial Deposition System and In Situ Monitoring Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 4.3 MOCVD Epitaxial Growth Technique of AlGaN Material . . . . . . 279 4.3.1 AlGaN Epitaxial Technology on GaN Buffer Layer. . . . . . 280 4.3.2 AlN Buffer Layer and AlGaN Epitaxial Technique . . . . . . 299 4.3.3 The P-Type Doping Technique of GaN Material. . . . . . . . 318 4.4 Overall Performance Analysis of AlGaN Material . . . . . . . . . . . . 323 4.4.1 Effects on Optical and Electrical Properties of GaN Material from Dislocations. . . . . . . . . . . . . . . . . . . . . . . 323 4.4.2 Measurement of Al Components in AlGaN and Determination of Its Strain State. . . . . . . . . . . . . . . . . . . 328 4.4.3 Uniformity of AlGaN with High Al Component . . . . . . . . 334 4.4.4 Oxidation of AlGaN Materials . . . . . . . . . . . . . . . . . . . . 337 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 5 HgCdTe Detector Chip Technology . . . . . . . . . . . . . . . . . . . . . . . . 351 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 5.2 HgCdTe Detector Chip Processing Technologies. . . . . . . . . . . . . 354 5.2.1 Isolation Technology of HgCdTe Micro-Mesa Array. . . . . 354 Contents ix 5.2.2 Micro-Mesa Photolithography. . . . . . . . . . . . . . . . . . . . . 415 5.2.3 High-Quality Sidewall Passivation Technique of Micro-Mesa Arrays. . . . . . . . . . . . . . . . . . . . . . . . . . 418 5.2.4 Metallization of Micro-Mesa Array . . . . . . . . . . . . . . . . . 426 5.2.5 Indium Bump Preparation and Hybridized Interconnection of Micro-Mesa Array . . . . . . . . . . . . . . . 434 5.3 Two-Color Micro-Mesa Detector Chip. . . . . . . . . . . . . . . . . . . . 440 5.3.1 Selection of Two-Color Detector Chip Architecture. . . . . . 440 5.3.2 Fabrication of Two-Color HgCdTe Micro-Mesa Preliminary Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 5.3.3 Simultaneous 128 (cid:1) 128 Two-Color HgCdTe IRFPAs Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 5.4 Si-Based HgCdTe Processing Technology . . . . . . . . . . . . . . . . . 449 5.4.1 Stress Analysis and Structure Design of Si-Based HgCdTe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 5.4.2 Low Damage Stress Chip Processing Technology of 3-Inch Si-Based HgCdTe Wafer . . . . . . . . . . . . . . . . . 461 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 6 Chip Technique of AlGaN Focal Plane Arrays . . . . . . . . . . . . . . . . 477 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 6.2 AlGaN P–I–N Solar-Blind UV Detectors-Model and Design. . . . . 478 6.2.1 Material Parameters of AlGaN Thin Films . . . . . . . . . . . . 479 6.2.2 Response Model and Design of AlGaN P–I–N Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 6.3 AlGaN Resonant-Cavity-Enhanced UV Detectors . . . . . . . . . . . . 487 6.3.1 The Basic Structure of Resonant-Cavity-Enhanced UV Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489 6.3.2 Design and Fabrication of RCE Ultraviolet Detectors. . . . . 491 6.4 AlGaN Detector Chip Fabrication . . . . . . . . . . . . . . . . . . . . . . . 498 6.4.1 Mesa Formation Technology . . . . . . . . . . . . . . . . . . . . . 500 6.4.2 Passivation of the Chip . . . . . . . . . . . . . . . . . . . . . . . . . 523 6.4.3 Ohmic Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 6.5 Irradiation Effects of AlGaN Ultraviolet Detectors. . . . . . . . . . . . 561 6.5.1 Proton Irradiation Effects . . . . . . . . . . . . . . . . . . . . . . . . 562 6.5.2 Electron Irradiation Effects. . . . . . . . . . . . . . . . . . . . . . . 564 6.5.3 c Irradiation Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 570 6.5.4 Irradiation Hardening Study of the GaN-Based UV Detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573 6.6 Imaging and Application of UV Focal Plane Assembly . . . . . . . . 582 6.6.1 Imaging of Quartz Tube Heated by Oxyhydrogen Flame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582 6.6.2 Imaging in Visible-Blind Waveband . . . . . . . . . . . . . . . . 583 x Contents 6.6.3 Imaging of Outside Scene . . . . . . . . . . . . . . . . . . . . . . . 584 6.6.4 Aerial UV Photographs of Oil on Sea Surface . . . . . . . . . 584 6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 7 Readout Integrated Circuit, Measurement, and Testing Technology for Advanced Focal Plane Array . . . . . . . . . . . . . . . . . 595 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 7.2 Introduction and Development for Readout Integrated Circuit . . . . 596 7.3 Dual-Band Readout Integrate Circuit . . . . . . . . . . . . . . . . . . . . . 598 7.3.1 Conventional Topologies of a Dual-Band ROIC . . . . . . . . 600 7.3.2 The Proposed Topology for a Simultaneous Dual-Band ROIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612 7.3.3 The Implementation of a Dual-Band Infrared ROIC and an Ultraviolet ROIC . . . . . . . . . . . . . . . . . . . . . . . . 616 7.4 Digital Transmission System on Chip for IRFPA. . . . . . . . . . . . . 632 7.4.1 The Architecture of the Digital System for IRFPA . . . . . . 633 7.4.2 Algorithms for the Implementation of ADC on the Focal Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638 7.4.3 Implementations for the ADC on Focal Plane. . . . . . . . . . 652 7.5 Measurement and Testing Technology for Focal Plane Array . . . . 678 7.5.1 Measurement of Parameters for Infrared FPA. . . . . . . . . . 679 7.5.2 Measurement of Parameters for Ultraviolet FPA . . . . . . . . 685 7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

Description:
This book introduces the basic framework of advanced focal plane technology based on the third-generation infrared focal plane concept. The essential concept, research advances, and future trends in advanced sensor arrays are comprehensively reviewed. Moreover, the book summarizes recent research ad
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.