DEGREE PROJECT IN TECHNOLOGY AND MANAGEMENT, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2016 TECHNO-ECONOMIC ANALYSIS AND BUSINESS FEASIBILITY STUDY TO PORTABLE POLYGENERATION SYSTEM FOR CONSTRUCTION INDUSTRY HAIKUO LIU KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT Techno-economic analysis and business feasibility study to portable polygeneration system for construction industry Haikuo Liu Master of Science Thesis KTH School of Industrial Engineering and Management Energy Technology EGI_2016-046 MSC EKV1145 Division of Heat and Power Technology SE-100 44 STOCKHOLM Master of Science Thesis EGI_2016-046 MSC EKV1145 Techno-economic analysis and business feasibility study to portable polygeneration system for construction industry Haikuo Liu Approved Examiner Supervisor 2016-08-22 Anders Malmquist Anders Malmquist Aapo Sääsk Commissioner Contact person Abstract Polygeneration technology is to utilize a single plant to offer multiple energy products, and the multiple processes are integrated into one system. In comparison with the single-product technology, polygeneration improves the system efficiency significantly since it has multiple outputs, and reduces the relevant capital and production cost accordingly. In this thesis, a polygeneration system was designed specifically for a project in construction industry and the business feasibility of the system was analyzed. The status quo and problems of present temporary power system were introduced and the idea of using polygeneration system as the substitute was described. A substation project in Al Kharj, Saudi Arabia was utilized as the reference to design the polygeneration system and to analyze the system’s technical and business feasibility. After the study of energy demand, 12 scenarios were proposed based on the available energy sources and commercialized technologies in the market. RETScreen 4 software was used to simulate proposed scenarios and relevant techno-economic discussion and analysis of the results were made. Based on “RETScreen 4” software’s simulation results, one optimized scenario was selected for the polygeneration system design and business feasibility analysis. A polygeneration system with two polygeneration sets were designed to meet energy demand of the reference project in this thesis. Considered the technical and economic information of the designed system, a business feasibility analysis of the polygeneration system for the construction industry was studied. As the last part of the thesis, a summary of business plan was made to the designed system based on the results of market research and business feasibility study. -2- Sammanfattning Polygenereringsteknik är att utnyttja en enda anläggning för att erbjuda flera energitjänster där multipla processer är integrerade i ett gemensamt system. I jämförelse med separata tekniklösningar, förbättrar polygenerering systemets effektivitet avsevärt eftersom flera tjänster produceras och kapital- och produktionskostnadernadärmed minskar. I denna avhandling har ett polygenereringssystem utformats speciellt för ett projekt i byggbranschen och lämpligheten hos systemet har analyserats. Status quo och problem med nuvarande tillfälliga kraftsystemet togs med i analysen och idén att använda polygenereringssystemet som substitut har beskrivits. Ett ställverksprojekt i Al Kharj, Saudi Arabien användes som referens för att utforma polygenereringssystemet och för att analysera systemets tekniska och affärsmässiga genomförbarhet. Efter studier av efterfrågan på energi, har 12 scenarier föreslagits baserat på tillgängliga energikällor och kommersialiserade teknologier på marknaden. “RETScreen 4” programvaran användes för att simulera föreslagna scenarier och en teknisk-ekonomisk diskussion och analys av resultaten gjordes. Baserat på RETScreen 4 programvarans simuleringsresultat, har ett optimalt scenario valts för design av ett polygenereringsystem och en affärsgenomförbarhetsstudie har utförts. Ett polygenereringssystem med två uppsättningar av polygenerernde subsystem har utformats för att möta efterfrågan på energi hos referensprojektet i denna avhandling. Med hänsyn taget till de tekniska och ekonomiska uppgifterna i det utformade systemet, har realiseringen av polygenereringssystemet för byggindustrin studerats. Den sista delen av avhandlingen utgör en sammanfattning av affärsplanen för det utformade systemet baserat på resultaten av marknadsundersökningar och en affärsförstudie. -3- Acknowledgement The author would like to give the sincere gratitude to Professor Anders Malmquist (KTH) and Mr. Aapo Sääsk (Scarab Development AB) for the supervision to this thesis. The thesis’ preparation and production also benefited from polygeneration research activities from “KIC Innoenergy”, “Renewable Energy Programme”, and “STandUP for energy projects”. The author would like to thank Al Kharj project team, Saudi Arabia Energy and Infrastructure Company (EICO) and Mrs. Qixan Yang The author would like to extend his gratitude to Professor Manuel Rubio (UCLV, Santa Clara, Cuba) and Dr. Alaa Kullab (KTH) for their valuable help and guidance. The author also would like to extend his gratitude to Scarab Development AB for its helps and feedbacks on the AGMD technologies. Haikuo Liu Stockholm, August 2016 -4- Nomenclature Notations and Abbreviations that are used in this Master thesis are listed as below. Notations Symbol Description mS/cm milli-Siemens per centimeter (conductivity) $ US dollar Abbreviations AC Air Conditioner AGMD Air Gap Membrane Distillation AIIB Asian Infrastructure Investment Bank AM Air Mass APAC Asian and Pacific Coasts ASEAN Association of Southeast Asian Nations CAGR Compound Annual Growth Rate CHP Combined Heat and Power COP Coefficient of Performance CPV Concentration Photovoltaics CPV/T Concentrating Photovoltaic Thermal System CSP Concentrating Solar Power CXM Customer Experience Management DCMD Direct Contact Membrane Distillation Dia. Diameter EES Electrical Energy Storage EICO Energy and Infrastructure Company ENR Engineering News-Record GDP Gross Domestic Product Genset Generator Set HCPV High Concentration Photovoltaics ICE Internal Combustion Engine IRENA International Renewable Energy Agency LHV Low Heating Value -5- LNG Liquefied Natural Gas LPG Liquefied Petroleum Gas MD Membrane Distillation MEA Middle East and Africa MJSC Multijunction Solar Cells MSW Municipal Solid Waste MVP Minimum Viable Product N/A Not Applicable NASA National Aeronautics and Space Administration ORC Organic Rankie Cycle PEFC Polymer Electrolyte Membrane Fuel Cells PH Potential of Hydrogen PTFE Polytetrafluoroethylene Polyset Polygeneration Set PV Photovoltaics R&D Research and Development RO Reverse Osmosis SGMD Sweep Gas Membrane Distillation SLFC Swim Lane Flowchart SOFC Solid Oxide Fuel Cells STS Solar Thermal System S.W.O.T Strength, Weakness, Opportunity, Threat Temp. Temperature TDS Total Dissolved Solids TOC Total Organic Carbon US United States VMD Vacuum Membrane Distillation WHO World Health Organization -6- Table of Contents Abstract ........................................................................................................................................................................... 2 Sammanfattning ............................................................................................................................................................. 3 Acknowledgement ......................................................................................................................................................... 4 Nomenclature ................................................................................................................................................................ 5 List of figures ............................................................................................................................................................... 10 List of tables ................................................................................................................................................................. 11 1 Introduction ........................................................................................................................................................ 12 1.1 Background ................................................................................................................................................12 1.2 Objective ....................................................................................................................................................13 1.3 Delimitations ..............................................................................................................................................13 1.4 Methodology ..............................................................................................................................................13 1.4.1 Polygeneration system design ........................................................................................................14 1.4.2 Market survey and interviews .........................................................................................................14 1.4.3 Business feasibility study and business plan ................................................................................14 2 Problem identification ....................................................................................................................................... 15 2.1 Diesel genset in construction industry ...................................................................................................15 2.2 Challenges and obstacles ..........................................................................................................................15 3 Energy demands on construction site ............................................................................................................. 16 3.1 Energy demands on construction site ...................................................................................................16 3.2 Energy demands of the project in Saudi Arabia ..................................................................................16 4 Available sources on project S site .................................................................................................................. 20 4.1 Solar and wind ...........................................................................................................................................20 4.2 Biomass .......................................................................................................................................................20 4.3 Water ...........................................................................................................................................................20 5 Portable polygeneration system proposal ....................................................................................................... 21 5.1 Initial polygeneration system for project S ...........................................................................................21 5.2 Polygeneration set generation proposal .................................................................................................22 5.3 Polygeneration set design overall proposal ...........................................................................................22 6 Technologies study ............................................................................................................................................ 24 6.1 Software introduction – RETScreen 4 ..................................................................................................24 6.2 Solar .............................................................................................................................................................25 6.2.1 Solar Photovoltaics ..........................................................................................................................25 6.2.2 Solar Thermal Energy .....................................................................................................................28 6.3 Wind ............................................................................................................................................................30 6.4 Biomass .......................................................................................................................................................30 6.5 Micro Combined Heat and Power technologies ..................................................................................30 -7-
Description: