ebook img

Taller de Matemàtiques Pràctiques en Matlab/Octave, amb un apèndix en Python PDF

160 Pages·2011·4.023 MB·Catalan
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Taller de Matemàtiques Pràctiques en Matlab/Octave, amb un apèndix en Python

CIÈNCIES CIÈNCIES APLICADES APLICADES n o h yt P n e x di n è p a n u b m a Taller de Matemàtiques e, v a Pràctiques en Matlab/Octave, amb un apèndix en Python ct O b/ Aquests apunts s’han elaborat per a les pràctiques del Taller de Matemàtiques, a que són comunes a les assignatures Àlgebra Lineal i Càlcul I de primer curs Matl dels graus de l’ETSEIB. L’objectiu és introduir un conjunt d’eines informàtiques n que permetin donar solucions numèriques als problemes que sorgeixen en s e aquestes assignatures. Entre d’altres fi tes, es vol que els alumnes siguin capaços ue deset ufedria crà-nlceu lesl se zleemroesn, tcaallsc ualmarb i nmteagtrriaulss .i. .vectors, representar i defi nir funcions, àctiq En aquestes pràctiques, hem decidit usar el llenguatge que comparteixen els Pr paquets Matlab i Octave, que tenen un ús molt estès en enginyeria. De tota es. manera, hem volgut centrar-nos en els procediments que seguim per a l’estudi u q dels problemes, més enllà de les eines que cadascuna de les plataformes ens ti à ofereix. Finalment, hi hem inclòs un petit apèndix per poder seguir en Python m el que fem en Matlab/Octave. e t a M Joaquim Puig és professor titular del Departament de Matemàtica Aplicada I de la UPC. La seva docència es reparteix entre l’Escola Tècnica d’Enginyeria de Industrial de Barcelona (ETSEIB) i la Facultat de Matemàtiques i Estadística r e (FME). La seva àrea de recerca en matemàtiques són els sistemes dinàmics i la all teoria espectral, amb interès en les eines computacionals. És casat i té una fi lla. T U UPCGRAU A R G C P U www.upc.edu/idp Taller de Matemàtiques Pràctiques en Matlab/Octave, amb un apèndix en Python g Joaquim Puig ui P m ui q a o J UPCGRAU Taller de Matemàtiques Pràctiques en Matlab/Octave, amb un apèndix en Python Joaquim Puig En col·laboració amb el Servei de Llengües i Terminologia de la UPC Primera edició: setembre de 2011 Disseny i dibuix de la coberta: Jordi Soldevila Disseny maqueta interior: Jordi Soldevila Maquetació: Mercè Aicart © Joaquim Puig i Sadurní, 2011 © Iniciativa Digital Politècnica, 2011 Oficina de Publicacions Acadèmiques Digitals de la UPC Jordi Girona Salgado 31, Edifici Torre Girona, D-203, 08034 Barcelona Tel.: 934 015 885 Fax: 934 054 101 www.upc.edu/idp E-mail: [email protected] Dipòsit legal: B-29936-2011 ISBN: 978-84-7653-742-8 Aquesta obra és sota una llicencia de Creative Commons Reconeixement-No comercial-Sense obres deriva- des 3.0. “Desitjoque,comaboninformàtic,no resisteixislatemptaciódemanipularel programa(...)Lavarietatderesultats, totalmentimprevisibles,famoltestimulant aquestatasca.”JoanPuigiReixach[15] Dedicatalmeupare Índex Índex Presentació.............................................................. 9 Pràctica1.Matlab/Octavecomacalculadoracientífica.................... 13 1.1.Matlab,Octave...Quèésaixò?...................................... 13 1.2.Úscomacalculadoracientífica ..................................... 16 1.3.Complementsopcionals............................................ 24 1.4.Exercicis.......................................................... 25 1.5.Esquemadelapràctica............................................. 26 Pràctica2.Vectorsipolinomis............................................ 29 2.1.Vectors........................................................... 29 2.2.Elspolinomisilessevesarrels...................................... 31 2.3.Exercicis.......................................................... 38 2.4.Esquemadelapràctica............................................. 39 Pràctica3.Representaciógràfica......................................... 41 3.1.L’ordreplot().................................................... 41 3.2.Fitxersm......................................................... 47 3.3.ModificariexportargràfiquesenMatlab/Octave.................... 49 3.4.Exercicis.......................................................... 50 3.5.Esquemadelapràctica............................................. 51 Pràctica4.Zerosiextremsdefuncions.................................... 55 4.1.Localitzargràficamentzerosdefuncions............................. 55 4.2.L’ordrefzero().................................................. 57 4.3.Elmètodedelabisecció............................................ 60 4.4.Màximsimínimsdefuncions....................................... 62 4.5.Exercicis.......................................................... 65 4.6.Esquemadelapràctica............................................. 66 Pràctica5.Creacióimanipulaciódematrius.............................. 69 5.1.MatriusenMatlab/Octave........................................ 69 5.2.Operacionsambmatriusivectors ................................... 72 5.3.Creaciódematriusespecials........................................ 77 5.4.Exercicis.......................................................... 83 5.5.Esquemadelapràctica............................................. 84 7 TallerdeMatemàtiques Pràctica6.Sistemesd’equacionslineals................................... 87 1 6.1.Resoluciódesistemesquadratsinvertibles.......................... 87 1 6.2.Formaesglaonadareduïdad’unamatriu............................. 90 1 6.3.Imatgeinuclid’unamatriu........................................ 92 1 6.4.Aplicacióaladiscussiódesistemesd’equacionslineals.............. 95 1 6.5.Exercicis........................................................ 101 1 6.6.Esquemadelapràctica............................................ 102 Pràctica7.Mètodesd’integraciónumèrica................................ 105 1 7.1.Elmètodedelstrapezis............................................ 105 1 7.2.ElmètodedeSimpson............................................ 109 1 7.3.Esquemadelapràctica............................................ 112 Pràctica8.IntegraciónumèricaenMatlab/Octave........................ 115 1 8.1.CàlculdesumesdeRiemann ...................................... 115 1 8.2.TrapezisiSimpsoncompostosenMatlab/Octave.................. 116 1 8.3.QuadraturaadaptativadeGauss-Legendre-Lobato ................... 117 1 8.4.Repàsd’integracióenMatlab/Octave............................. 119 1 8.5.Exercicis........................................................ 120 1 8.6.Esquemadelapràctica............................................ 121 Pràctica9.Controldeflux................................................ 123 1 9.1.Iteradorsisuccessionsrecurrents................................... 123 1 9.2.Sumesdesèries.................................................. 126 1 9.3.Complementopcional:Condicionals................................ 127 1 9.4.Exercicis........................................................ 128 1 9.5.Esquemadelapràctica............................................ 129 Pràctica10.Valorsivectorspropis........................................ 131 10.1.Polinomiscaracterísticsivalorspropis.............................. 131 10.2.Espaispropisidiagonalitzaciódematrius........................... 134 10.3.Exercicis........................................................ 140 10.4.Esquemadelapràctica............................................ 141 ApèndixA.Comfer-hoenPython?....................................... 143 1 A.1.Configuraciódel’entorn.......................................... 143 1 A.2.Úscomacalculadoracientífica.................................... 144 1 A.3.Vectorsipolinomis............................................... 145 1 A.4.Representaciógràfica............................................. 148 1 A.5.Zerosiextremsdefuncions....................................... 151 1 A.6.IntegraciónumèricaenPython/Pylab............................. 152 1 A.7.Controldeflux................................................... 153 1 A.8.Matriusisistemesd’equacionslineals.............................. 154 Bibliografia.............................................................. 159 8 Presentació Presentació Aquests apunts que presentem s’han elaborat per a unes pràctiques anomenades “Ta- llerdeMatemàtiques”,quesóncomunesalesassignaturesÀlgebraLinealiCàlculIde primercursdelsgrausdel’EscolaTècnicaSuperiord’EnginyeriaIndustrialdeBarcelona (ETSEIB).L’objectiuésintroduirunconjuntd’einesinformàtiquesquepermetindonar solucions numèriques a problemes que sorgeixen en aquestes assignatures. Entre altres coses, es vol que els alumnes siguin capaços de fer càlculs elementals amb matrius i vectors,representaridefinirfuncions,estudiar-neelszeros,calcularintegrals... És evidentque fer unespràctiquesen abstracteno tindriacap sentiti,pertant,cal triar un programari que ens permeti dur-les a terme de forma eficient. Hi ha força paquets que reuneixen unes característiques adequades, tant lliures i gratuïts (Python, Octave, Scilab)compropietarisidepagament(Matlab). En aquestes pràctiques, hem decidit usar el llenguatge que comparteixen els paquets MatlabiOctave,quetenenunúsmoltestèsenl’enginyeria.Detotamanera,hemvolgut centrar-nos en els procediments que seguim per a l’estudi de problemes, més enllà de leseines quecadascunade lesplataformesens ofereixi.Finalment,heminclòsun petit apèndixperpoderseguirenPythonelquefemenMatlab/Octave. Referències:Peral’elaboraciód’aquestsapuntshemutilitzatmaterialdiversqueelDe- partamentdeMatemàticaAplicadaIdelaUniversitatPolitècnicadeCatalunyahaproduït alllargdelsanys,comsónelsapuntsdeToniSusín[17,18]ideJaumeAmorós[1].Tam- bé hem usat els apunts de Guillem Borrell [2] i els desenvolupatsa la UPM [4]. Quant alsllibres,totiquequedenforadel’abastdelcurs,hemseguitelsdeQuarteroniiSaleri [16]ieldeMoler[14]. Agraïments: Vull agrair a les persones següents, que han aportat millores a aquests apunts: David Alonso, Jaume Amorós, Inma Baldomá, Marc Camara, Marta Casane- llas,JoanCirera,AmadeuDelshams,HumildadEscorihuela,JosepFerrer,TomàsLázaro, José Vicente Mandé, Maria Rosa Massa, Marta Peña, Rafael Ramírez Ros, Fátima Ro- mero,GermánSánchez,ToniSusíniMartaValència.Vullferextensiul’agraïmentatot 9 TallerdeMatemàtiques elDepartamentdeMatemàticaAplicadaIpelsuportquem’handonatenl’elaboracióde lespràctiquesid’aquestsapunts. Errata i material complementari: A l’adreça web www.ma1.upc.edu/~jpuig/taller trobareumaterialaddicionalperaquestsapunts,comtambéelscodisenMatlab,Octave iPythonquepodreudescarregar.Sihitrobeuerrorsoteniusuggerènciesdemilloraper aquestsapunts,podeuusartambéaquestawebperposar-vosencontacteambmi. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.