ebook img

Systems biology : mathematical modeling and model analysis PDF

379 Pages·2014·3.138 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Systems biology : mathematical modeling and model analysis

Biomedical Engineering S Y “Systems Biology: Mathematical Modeling and Model Analysis is S SYSTEMS a rich resource of mathematical methods and approaches that can be utilized to analyze and understand biological systems. It will be particularly T attractive to engineers and mathematicians who want to learn the basics E of modern biology in a condensed fashion and then apply the tools of their trades to relevant biological questions. … Systems Biology devotes BIOLOGY M a good portion of the material to state-of-the-art model diagnostics and engineering techniques, such as linear systems analysis and control theory, which so far are rarely found in systems biology texts and are S therefore a welcome addition to the repertoire of textbook literature. … Laudably, all topics are illustrated with step-by-step examples, and Mathematical Modeling many of them are reinforced with exercises.” B —Eberhard Voit, Georgia Institute of Technology and Model Analysis I “… a meticulous and far-reaching treatment of this critically important O subject. … comprehensive without sacrificing depth … an exhaustive survey of modeling approaches. Each chapter is thoughtfully crafted to L draw in novices to the field while still engaging to experts. Additionally, a number of well-designed exercises complement each chapter.” O —Markus Covert, Stanford University Drawing on the latest research in the field, this book presents many G methods for modeling and analyzing biological systems, in particular cellular systems. It shows how to use predictive mathematical models Y to acquire and analyze knowledge about cellular systems. The text also explores how the models are systematically applied in biotechnology. Features • Presents methods for the analysis of motifs, modules, and large- scale networks • Explains how deterministic models and graphs can be used in the analysis and verification of networks K • Shows how to model the complete synthesis of macromolecules and r e compare measured data m • Uses the lactose uptake system to demonstrate various modeling l i and analysis tools n • Contains many analytical and numerical examples g Andreas Kremling K16367 K16367_Cover.indd 1 9/23/13 9:27 AM SYSTEMS BIOLOGY Mathematical Modeling and Model Analysis CHAPMAN & HALL/CRC Mathematical and Computational Biology Series Aims and scope: This series aims to capture new developments and summarize what is known over the entire spectrum of mathematical and computational biology and medicine. It seeks to encourage the integration of mathematical, statistical, and computational methods into biology by publishing a broad range of textbooks, reference works, and handbooks. The titles included in the series are meant to appeal to students, researchers, and professionals in the mathematical, statistical and computational sciences, fundamental biology and bioengineering, as well as interdisciplinary researchers involved in the field. The inclusion of concrete examples and applications, and programming techniques and examples, is highly encouraged. Series Editors N. F. Britton Department of Mathematical Sciences University of Bath Xihong Lin Department of Biostatistics Harvard University Hershel M. Safer School of Computer Science Tel Aviv University Maria Victoria Schneider European Bioinformatics Institute Mona Singh Department of Computer Science Princeton University Anna Tramontano Department of Biochemical Sciences University of Rome La Sapienza Proposals for the series should be submitted to one of the series editors above or directly to: CRC Press, Taylor & Francis Group 3 Park Square, Milton Park Abingdon, Oxfordshire OX14 4RN UK Published Titles Algorithms in Bioinformatics: A Practical Data Analysis Tools for DNA Microarrays Introduction Sorin Draghici Wing-Kin Sung Differential Equations and Mathematical Bioinformatics: A Practical Approach Biology, Second Edition Shui Qing Ye D.S. Jones, M.J. Plank, and B.D. Sleeman Biological Computation Dynamics of Biological Systems Ehud Lamm and Ron Unger Michael Small Biological Sequence Analysis Using Engineering Genetic Circuits the SeqAn C++ Library Chris J. Myers Andreas Gogol-Döring and Knut Reinert Exactly Solvable Models of Biological Cancer Modelling and Simulation Invasion Luigi Preziosi Sergei V. Petrovskii and Bai-Lian Li Cancer Systems Biology Game-Theoretical Models in Biology Edwin Wang Mark Broom and Jan Rychtáˇr Cell Mechanics: From Single Scale- Gene Expression Studies Using Based Models to Multiscale Modeling Affymetrix Microarrays Arnaud Chauvière, Luigi Preziosi, Hinrich Göhlmann and Willem Talloen and Claude Verdier Genome Annotation Cellular Potts Models: Multiscale Jung Soh, Paul M.K. Gordon, and Extensions and Biological Applications Christoph W. Sensen Marco Scianna and Luigi Preziosi Glycome Informatics: Methods and Clustering in Bioinformatics and Drug Applications Discovery Kiyoko F. Aoki-Kinoshita John D. MacCuish and Norah E. MacCuish Handbook of Hidden Markov Models Combinatorial Pattern Matching in Bioinformatics Algorithms in Computational Biology Martin Gollery Using Perl and R Introduction to Bioinformatics Gabriel Valiente Anna Tramontano Computational Biology: A Statistical Introduction to Biological Networks Mechanics Perspective Alpan Raval and Animesh Ray Ralf Blossey Introduction to Bio-Ontologies Computational Hydrodynamics of Peter N. Robinson and Sebastian Bauer Capsules and Biological Cells Introduction to Computational C. Pozrikidis Proteomics Computational Neuroscience: Golan Yona A Comprehensive Approach Introduction to Proteins: Structure, Jianfeng Feng Function, and Motion Computational Systems Biology of Amit Kessel and Nir Ben-Tal Cancer An Introduction to Systems Biology: Emmanuel Barillot, Laurence Calzone, Design Principles of Biological Circuits Philippe Hupé, Jean-Philippe Vert, and Uri Alon Andrei Zinovyev Published Titles (continued) Kinetic Modelling in Systems Biology Quantitative Biology: From Molecular to Oleg Demin and Igor Goryanin Cellular Systems Sebastian Bassi Knowledge Discovery in Proteomics Igor Jurisica and Dennis Wigle Spatial Ecology Stephen Cantrell, Chris Cosner, and Meta-analysis and Combining Shigui Ruan Information in Genetics and Genomics Rudy Guerra and Darlene R. Goldstein Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, Methods in Medical Informatics: and Simulation Fundamentals of Healthcare Horst Malchow, Sergei V. Petrovskii, and Programming in Perl, Python, and Ruby Ezio Venturino Jules J. Berman Statistics and Data Analysis for Modeling and Simulation of Capsules Microarrays Using R and Bioconductor, and Biological Cells Second Edition C. Pozrikidis Sorin Dra˘ghici Niche Modeling: Predictions from Stochastic Modelling for Systems Statistical Distributions Biology, Second Edition David Stockwell Darren J. Wilkinson Normal Mode Analysis: Theory and Structural Bioinformatics: An Algorithmic Applications to Biological and Chemical Approach Systems Forbes J. Burkowski Qiang Cui and Ivet Bahar Systems Biology: Mathematical Optimal Control Applied to Biological Modeling and Model Analysis Models Andreas Kremling Suzanne Lenhart and John T. Workman The Ten Most Wanted Solutions in Pattern Discovery in Bioinformatics: Protein Bioinformatics Theory & Algorithms Anna Tramontano Laxmi Parida Python for Bioinformatics Sebastian Bassi SYSTEMS BIOLOGY Mathematical Modeling and Model Analysis Andreas Kremling Technische Universität München Germany Originally published in the German language by Vieweg + Teubner, 65189 Wiesbaden, Germany as Kremling, Andreas: Kompendium Systembiologie, Mathematische Modellierung und Modellanalyse, ©Vieweg+Teubner-Springer Fachmedien Wiesbaden GmbH 2012, Springer Fachmedien is part of Springer Science + Business Media. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2014 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20130910 International Standard Book Number-13: 978-1-4665-6790-0 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Preface xiii About the Author xv I Fundamentals 1 1 Introduction 3 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Biological Basics 11 2.1 The Cell — an Introduction . . . . . . . . . . . . . . . . . . 11 2.2 Cell Division and Growth . . . . . . . . . . . . . . . . . . . . 12 2.3 Basics of Metabolism . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Energy generation . . . . . . . . . . . . . . . . . . . . 14 2.3.2 Metabolic pathways . . . . . . . . . . . . . . . . . . . 16 2.3.3 Enzymes. . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.4 Degradation of carbohydrates . . . . . . . . . . . . . . 17 2.3.5 Respiratory chain. . . . . . . . . . . . . . . . . . . . . 19 2.3.6 Mass transport into the cell . . . . . . . . . . . . . . . 19 2.4 Replication, Transcription and Translation . . . . . . . . . . 22 2.4.1 Regulation of enzyme activity and enzyme synthesis . 24 2.4.2 Signal transduction. . . . . . . . . . . . . . . . . . . . 27 2.4.3 Cell-cell communication . . . . . . . . . . . . . . . . . 29 3 Fundamentals of Mathematical Modeling 31 3.1 Definition — Overview of Different Model Classes . . . . . . 31 3.1.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.1.3 Process of modeling . . . . . . . . . . . . . . . . . . . 34 3.2 Basics of Reaction Engineering . . . . . . . . . . . . . . . . . 36 3.3 Stochastic Description . . . . . . . . . . . . . . . . . . . . . . 40 3.3.1 Stochastic simulation using the Gillespie algorithm . 45 3.4 Deterministic Modeling . . . . . . . . . . . . . . . . . . . . . 50 3.4.1 Relationship between specific growth rate µ and rates r0 . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ai 3.4.2 Intracellular reaction networks . . . . . . . . . . . . . 56 vii viii Contents 3.5 Qualitative Modeling and Analysis . . . . . . . . . . . . . . . 59 3.5.1 Cycles, loops and elementary modes . . . . . . . . . . 62 3.6 ModelingontheLevelofSingleCells—thePopulationBalance 63 3.7 Data Driven Modeling . . . . . . . . . . . . . . . . . . . . . 67 3.8 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . 68 3.8.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . 68 3.8.2 Relation between ∆G and flux distributions . . . . . . 72 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4 Model Calibration and Experimental Design 87 4.1 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.1.1 Least square method & maximum likelihood estimation 87 4.1.2 Linear models . . . . . . . . . . . . . . . . . . . . . . . 89 4.2 Model and Parameter Accuracy . . . . . . . . . . . . . . . . 90 4.2.1 Nonlinear models . . . . . . . . . . . . . . . . . . . . . 96 4.2.1.1 Linearization . . . . . . . . . . . . . . . . . . 97 4.2.1.2 Bootstrapping . . . . . . . . . . . . . . . . . 97 4.2.2 Experimental design . . . . . . . . . . . . . . . . . . . 99 4.3 Dynamic Systems . . . . . . . . . . . . . . . . . . . . . . . . 101 4.4 Identifiability of Dynamic Systems . . . . . . . . . . . . . . . 103 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 II Modeling of Cellular Processes 109 5 Enzymatic Conversion 111 5.1 Fundamentals of Enzyme Kinetics . . . . . . . . . . . . . . . 111 5.2 Models for Allosteric Enzymes . . . . . . . . . . . . . . . . . 115 5.3 Influence of Effectors . . . . . . . . . . . . . . . . . . . . . . 119 5.3.1 Competitive inhibition . . . . . . . . . . . . . . . . . . 119 5.3.2 Essential activation. . . . . . . . . . . . . . . . . . . . 120 5.4 The Hill Equation . . . . . . . . . . . . . . . . . . . . . . . . 122 5.5 Multi-substrate Kinetics . . . . . . . . . . . . . . . . . . . . 124 5.6 Transport Processes . . . . . . . . . . . . . . . . . . . . . . . 127 5.7 The Wegscheider Condition . . . . . . . . . . . . . . . . . . . 128 5.8 Alternative Kinetic Approaches . . . . . . . . . . . . . . . . 130 5.9 Thermodynamic of a Single Reaction . . . . . . . . . . . . . 132 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6 Polymerization Processes 139 6.1 Macroscopic View . . . . . . . . . . . . . . . . . . . . . . . . 139 6.2 Microscopic View . . . . . . . . . . . . . . . . . . . . . . . . 140 6.2.1 Calculation of the transcription rate . . . . . . . . . . 141 6.2.2 Calculation of the translation rate . . . . . . . . . . . 143 Contents ix 6.2.3 Combination of equations . . . . . . . . . . . . . . . . 145 6.3 Influence of Regulatory Proteins (Transcription Factors, Repressors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.3.1 Induction model . . . . . . . . . . . . . . . . . . . . . 146 6.3.2 Repression model . . . . . . . . . . . . . . . . . . . . . 148 6.3.3 Extended induction model . . . . . . . . . . . . . . . . 148 6.4 Interaction of Several Regulators . . . . . . . . . . . . . . . . 151 6.4.1 AND – OR gates . . . . . . . . . . . . . . . . . . . . . 151 6.4.2 Hierarchal approach . . . . . . . . . . . . . . . . . . . 152 6.5 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7 Signal Transduction and Genetically Regulated Systems 163 7.1 Simple Schemes of Signal Transduction . . . . . . . . . . . . 163 7.2 Oscillating Systems . . . . . . . . . . . . . . . . . . . . . . . 171 7.3 Genetically Regulated Networks . . . . . . . . . . . . . . . . 173 7.3.1 Inputs/outputs . . . . . . . . . . . . . . . . . . . . . . 173 7.3.2 Negative and positive feedback reactions . . . . . . . . 174 7.3.3 Toggle switch . . . . . . . . . . . . . . . . . . . . . . . 177 7.4 Spatial Gradients by Signal Transduction . . . . . . . . . . 180 7.5 Analysis of Signaling Pathways by Heinrich . . . . . . . . . 183 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 III Analysis of Modules and Motifs 189 8 General Methods of Model Analysis 191 8.1 Analysis of Time Hierarchies . . . . . . . . . . . . . . . . . . 191 8.1.1 Linear systems . . . . . . . . . . . . . . . . . . . . . . 192 8.1.2 Classification of fast and slow reactions . . . . . . . . 197 8.1.3 Complete procedure for model reduction . . . . . . . . 199 8.1.4 Singular perturbation theory . . . . . . . . . . . . . . 201 8.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . 204 8.2.1 Definition of the parametric sensitivity w . . . . . . 205 ij 8.2.2 Sensitivity analysis using Hearne’s method . . . . . . 207 8.2.3 Sensitivity matrix . . . . . . . . . . . . . . . . . . . . 209 8.2.4 Sensitivities for dynamic systems . . . . . . . . . . . . 210 8.3 Robustness in Stoichiometric Networks . . . . . . . . . . . . 211 8.4 Metabolic Control Analysis . . . . . . . . . . . . . . . . . . . 216 8.4.1 Control coefficients . . . . . . . . . . . . . . . . . . . . 216 8.4.2 Summation and connectivity theorems for linear pathways . . . . . . . . . . . . . . . . . . . . . . . . . 218 8.4.3 General summation and connectivity theorems . . . . 220 8.5 Biochemical Systems Theory . . . . . . . . . . . . . . . . . . 222

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.