ebook img

System Design for Epidemics Using Machine Learning and Deep Learning PDF

336 Pages·2023·16.05 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview System Design for Epidemics Using Machine Learning and Deep Learning

Signals and Communication Technology G. R. Kanagachidambaresan Dinesh Bhatia Dhilip Kumar Animesh Mishra   Editors System Design for Epidemics Using Machine Learning and Deep Learning Signals and Communication Technology Series Editors Emre Celebi, Department of Computer Science University of Central Arkansas Conway, AR, USA Jingdong Chen, Northwestern Polytechnical University Xi’an, China E. S. Gopi, Department of Electronics and Communication Engineering National Institute of Technology Tiruchirappalli, Tamil Nadu, India Amy Neustein, Linguistic Technology Systems Fort Lee, NJ, USA H. Vincent Poor, Department of Electrical Engineering Princeton University Princeton, NJ, USA Antonio Liotta, University of Bolzano Bolzano, Italy Mario Di Mauro, University of Salerno Salerno, Italy This series is devoted to fundamentals and applications of modern methods of signal processing and cutting-edge communication technologies. The main topics are information and signal theory, acoustical signal processing, image processing and multimedia systems, mobile and wireless communications, and computer and communication networks. Volumes in the series address researchers in academia and industrial R&D departments. The series is application-oriented. The level of presentation of each individual volume, however, depends on the subject and can range from practical to scientific. Indexing: All books in “Signals and Communication Technology” are indexed by Scopus and zbMATH For general information about this book series, comments or suggestions, please contact Mary James at [email protected] or Ramesh Nath Premnath at [email protected]. G. R. Kanagachidambaresan Dinesh Bhatia • Dhilip Kumar • Animesh Mishra Editors System Design for Epidemics Using Machine Learning and Deep Learning Editors G. R. Kanagachidambaresan Dinesh Bhatia Department of CSE Department of Biomedical Engineering Vel Tech Rangarajan Dr Sagunthala R&D North Eastern Hill University Institute of Science and Technology Shillong, Meghalaya, India Chennai, India Animesh Mishra Visiting Associate Professor North Eastern Indira Gandhi Regional Department of Institute of Institute Intelligent Systems Shillong, India University of Johannesburg South Africa ∙ Dhilip Kumar Computer Science and Engineering Vel Tech Rangarajan Dr. Sagunthala R&D, Institute of Science and Technology Chennai, TN, India ISSN 1860-4862 ISSN 1860-4870 (electronic) Signals and Communication Technology ISBN 978-3-031-19751-2 ISBN 978-3-031-19752-9 (eBook) https://doi.org/10.1007/978-3-031-19752-9 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland To family, students, and friends. Preface The World Health Organization (WHO) proclaimed a COVID-19 pandemic in March 2020 (WHO 2020). COVID-19 is a multi-system disorder caused by the SARS-CoV-2 coronavirus. Vaccine development was prioritized for managing and controlling the pandemic due to concerns about the disease’s spread and severity, as well as the effectiveness of available therapies. During epidemics or pandemics, such as the current Coronavirus Disease 2019 (COVID-19) crisis, healthcare prac- titioners (HCPs) face a variety of difficult situations. The stress of treating patients during an epidemic or pandemic may be detrimental to HCPs’ mental health. Evidence-based recommendations on what would be useful in reducing this impact are lacking. Digital healthcare has been a hot topic among people for quite a while. The pre/post pandemic situations have led patients and subjects to be monitored outside the hospital environment with more digital equipment to avoid spreading of COVID. Tapping into the available data to extract useful information is a challenge that’s starting to be met using the pattern matching abilities of machine learning (ML) – a subset of the field of artificial intelligence (AI). In order to provide smarter environments, machine learning needs to be implemented in the Internet of Things (IoT). Machine learning will allow these smart devices to become smarter in a lit- eral sense. It can analyze the data generated by the connected devices and get an insight into the human’s behavioral pattern. Without implementing ML, it would really be difficult for smart devices and the IoT-based digital healthcare to make smart decisions in real time, severely limiting their capabilities. This book provides the challenges and the possible solutions in these areas. Various image-based and data-based artificial intelligence approaches are discussed in this book to improve the healthcare services in hospital. Chennai, India G. R. Kanagachidambaresan Shillong, India Dinesh Bhatia Dhilip Kumar Animesh Mishra vii Acknowledgments We thank all authors, who have put a lot of time effort and their findings in this book project. We would like to thank our reviewers for providing timely reviews. The support from Vel Tech, North Eastern Hill University, and North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences allowed editing and sup- port of our projects. We hope this book will be a valuable material for all healthcare researchers. ix Contents Pandemic Effect of COVID-19: Identification, Present Scenario, and Preventive Measures Using Machine Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Nazar Ali, Jai Ganesh, A. T. Sankara Subramanian, L. Nagarajan, and G. R. Subhashree Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Coronavirus First Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Corona Cases in India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Structure of Coronavirus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Growing Stages of Virus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Statistical Data of COVID-19 at Present Scenario . . . . . . . . . . . . . . . . . . . . . 5 COVID-19: Confirmed Cases and Causalities . . . . . . . . . . . . . . . . . . . . . . 5 COVID-19: Transmission Rate and Statistics on Different Stages of Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 COVID-19: Case Fatality Rate (CFR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 COVID-19: Category-Wise Fatal Cases – Age Factor and Medical History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Machine Learning Model for COVID-19 Prediction . . . . . . . . . . . . . . . . . . . 10 Baseline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Training Using Unbiased Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Development of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Evaluation of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Transmission and Prevention of COVID-19 . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Transmission of COVID-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Prevention and Control Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 xi xii Contents A Comprehensive Review of the Smart Health Records to Prevent Pandemic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Kirti Verma, Neeraj Chandnani, Adarsh Mangal, and M. Sundararajan Introduction to a Smart Health Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Various Types of Records in Smart Health . . . . . . . . . . . . . . . . . . . . . . . . . 21 Development of EHR Standards for India . . . . . . . . . . . . . . . . . . . . . . . . . 22 Traditional Paper Records vs Smart Health Records . . . . . . . . . . . . . . . . . 23 Comparison Between Paper-Based Records and Electronic Health Records . 24 Interoperability and Standards in the Smart Healthcare System . . . . . . . . 25 Guidelines for Proposed Smart Health Records . . . . . . . . . . . . . . . . . . . . . 26 Introduction of Machine Learning in Healthcare . . . . . . . . . . . . . . . . . . . . 27 Introduction to Vector Machine Techniques . . . . . . . . . . . . . . . . . . . . . . . . 28 Introduction to OCR Techniques in Healthcare . . . . . . . . . . . . . . . . . . . . . 30 Flood of Paper Claims After the Arrival of Optical Character Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Electronic Exchange of Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Advantages of OCR in Healthcare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Privacy and Security in Smart Health Records . . . . . . . . . . . . . . . . . . . . . . 32 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Automation of COVID-19 Disease Diagnosis from Radiograph . . . . . . . . 37 Keerthi Mangond, B. S. Divya, N. Siva Rama Lingham, and Thompson Stephan Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Proposed Classification Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 First Phase (Data Augmentation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Second Phase Pre-Trained VGG16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 COVID-19 Classification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Confusion Matrix and Feature Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Comparison with State-of-the-Art Methods . . . . . . . . . . . . . . . . . . . . . . . . 44 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Applications of Artificial Intelligence in the Attainment of Sustainable Development Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Nisha Solanki, Archana Chaudhary, and Dinesh Bhatia Introduction to Artificial Intelligence and Sustainable Developmental Goals (SDGs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Artificial Intelligence and SDGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.