SymplecticTopologyandFloerHomology Volume2 Publishedintwovolumes,thisisthefirstbooktoprovideathoroughandsystematic explanationofsymplectictopology,andtheanalyticaldetailsandtechniquesusedin applyingthemachineryarisingfromFloertheoryasawhole. Volume1coversthebasicmaterialsofHamiltoniandynamicsandsymplecticgeom- etryandtheanalyticfoundationsofGromov’spseudoholomorphiccurvetheory.One novelaspectofthistreatmentistheuniformtreatmentofbothclosedandopencases and a complete proof of the boundary regularity theorem of weak solutions of pseu- doholomorphic curves with totally real boundary conditions. Volume 2 provides a comprehensive introduction to both Hamiltonian Floer theory and Lagrangian Floer theory,includingmanyexamplesoftheirapplicationstovariousproblemsinsymplectic topology. SymplecticTopologyandFloerHomologyisacomprehensiveresourcesuitablefor expertsandnewcomersalike. Yong-GeunOhisDirectoroftheIBSCenterforGeometryandPhysicsandisProfes- sorintheDepartmentofMathematicsatPOSTECH(PohangUniversityofScienceand Technology)inKorea.HewasalsoProfessorintheDepartmentofMathematicsatthe UniversityofWisconsin–Madison.HeisamemberoftheKMS,theAMS,theKorean NationalAcademyofSciences,andtheinauguralclassofAMSFellows.In2012he receivedtheKyung-AhmPrizeofScienceinKorea. NEWMATHEMATICALMONOGRAPHS EditorialBoard Béla Bollobás, William Fulton, Anatole Katok, Frances Kirwan, Peter Sarnak, Barry Simon,BurtTotaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridge UniversityPress.Foracompleteserieslistingvisitwww.cambridge.org/mathematics. 1. M.CabanesandM.EnguehardRepresentationTheoryofFiniteReductive Groups 2. J.B.GarnettandD.E.MarshallHarmonicMeasure 3. P.CohnFreeIdealRingsandLocalizationinGeneralRings 4. E.BombieriandW.GublerHeightsinDiophantineGeometry 5. Y.J.IoninandM.S.ShrikhandeCombinatoricsofSymmetricDesigns 6. S.Berhanu,P.D.CordaroandJ.HounieAnIntroductiontoInvolutive Structures 7. A.ShlapentokhHilbert’sTenthProblem 8. G.MichlerTheoryofFiniteSimpleGroupsI 9. A.BakerandG.WüstholzLogarithmicFormsandDiophantineGeometry 10. P.KronheimerandT.MrowkaMonopolesandThree-Manifolds 11. B.Bekka,P.delaHarpeandA.ValetteKazhdan’sProperty(T) 12. J.NeisendorferAlgebraicMethodsinUnstableHomotopyTheory 13. M.GrandisDirectedAlgebraicTopology 14. G.MichlerTheoryofFiniteSimpleGroupsII 15. R.SchertzComplexMultiplication 16. S.BlochLecturesonAlgebraicCycles(2ndEdition) 17. B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups 18. T.DownarowiczEntropyinDynamicalSystems 19. C.SimpsonHomotopyTheoryofHigherCategories 20. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesI 21. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesII 22. J.Goubault-LarrecqNon-HausdorffTopologyandDomainTheory 23. J.S´niatyckiDifferentialGeometryofSingularSpacesandReductionof Symmetry 24. E.RiehlCategoricalHomotopyTheory 25. B.MunsonandI.Volic´CubicalHomotopyTheory 26. B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups(2ndEdition) 27. J.Heinonen,P.Koskela,N.ShanmugalingamandJ.T.TysonSobolevSpaces onMetricMeasureSpaces 28. Y.-G.OhSymplecticTopologyandFloerHomologyI 29. Y.-G.OhSymplecticTopologyandFloerHomologyII Symplectic Topology and Floer Homology Volume 2: Floer Homology and its Applications YONG-GEUN OH IBSCenterforGeometryandPhysics,PohangUniversityofScience andTechnology,RepublicofKorea UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107109674 (cid:2)c Yong-GeunOh2015 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2015 AcatalogrecordforthispublicationisavailablefromtheBritishLibrary ISBN–2VolumeSet978-1-107-53568-8Hardback ISBN–Volume1978-1-107-07245-9Hardback ISBN–Volume2978-1-107-10967-4Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents of Volume 2 ContentsofVolume1 pageix Preface xiii PART 3 LAGRANGIAN INTERSECTION FLOER HOMOLOGY 12 Floerhomologyoncotangentbundles 3 12.1 Theactionfunctionalasageneratingfunction 4 12.2 L2-gradientflowoftheactionfunctional 7 12.3 C0boundsofFloertrajectories 11 12.4 Floer-regularparameters 15 12.5 FloerhomologyofsubmanifoldS ⊂ N 16 12.6 Lagrangianspectralinvariants 23 12.7 DeformationofFloerequations 33 12.8 Thewavefrontandthebasicphasefunction 36 13 Theoff-shellframeworkofaFloercomplexwithbubbles 41 13.1 Lagrangiansubspacesversustotallyrealsubspaces 41 13.2 ThebundlepairanditsMaslovindex 43 13.3 Maslovindicesofpolygonalmaps 47 13.4 NovikovcoveringandNovikovring 50 13.5 Actionfunctional 53 13.6 TheMaslov–Morseindex 55 13.7 AnchoredLagrangiansubmanifolds 57 13.8 AbstractFloercomplexanditshomology 60 13.9 Floerchainmodules 64 14 On-shellanalysisofFloermodulispaces 73 14.1 Exponentialdecay 73 14.2 SplittingendsofM(x,y;B) 82 v vi ContentsofVolume2 14.3 Brokencusp-trajectorymodulispaces 93 14.4 Chainmapmodulispaceandenergyestimates 97 15 Off-shellanalysisoftheFloermodulispace 109 15.1 Off-shellframeworkofsmoothFloermodulispaces 109 15.2 Off-shelldescriptionofthecusp-trajectoryspaces 115 15.3 Indexcalculation 119 15.4 Orientationofthemodulispaceofdiscinstantons 122 15.5 GluingofFloermodulispaces 127 15.6 CoherentorientationsofFloermodulispaces 140 16 FloerhomologyofmonotoneLagrangiansubmanifolds 150 16.1 Primaryobstructionandholomorphicdiscs 150 16.2 ExamplesofmonotoneLagrangiansubmanifolds 156 16.3 Theone-pointopenGromov–Witteninvariant 161 16.4 TheanomalyoftheFloerboundaryoperator 166 16.5 Productstructure;triangleproduct 176 17 Applicationstosymplectictopology 182 17.1 NearbyLagrangianpairs:thick–thindichotomy 183 17.2 LocalFloerhomology 188 17.3 Constructionofthespectralsequence 194 17.4 BiranandCieliebak’stheorem 202 17.5 Audin’squestionformonotoneLagrangiansubmanifolds 208 17.6 Polterovich’stheoremonHam(S2) 211 PART 4 HAMILTONIAN FIXED-POINT FLOER HOMOLOGY 18 TheactionfunctionalandtheConley–Zehnderindex 219 18.1 FreeloopspaceanditsS1action 220 18.2 Thefreeloopspaceofasymplecticmanifold 221 18.3 Perturbedactionfunctionalsandtheiractionspectrum 228 18.4 TheConley–Zehnderindexof[z,w] 233 18.5 TheHamiltonian-perturbedCauchy–Riemannequation 240 19 HamiltonianFloerhomology 244 19.1 NovikovFloerchainsandtheNovikovring 244 19.2 DefinitionoftheFloerboundarymap 248 19.3 DefinitionofaFloerchainmap 254 19.4 Constructionofachainhomotopymap 256 19.5 ThecompositionlawofFloerchainmaps 258 ContentsofVolume2 vii 19.6 Transversality 261 19.7 Time-reversalflowandduality 268 19.8 TheFloercomplexofasmallMorsefunction 278 20 Thepantsproductandquantumcohomology 281 20.1 Thestructureofaquantumcohomologyring 282 20.2 Hamiltonianfibrationswithprescribedmonodromy 289 20.3 ThePSSmapanditsisomorphismproperty 299 20.4 Frobeniuspairingandduality 312 21 Spectralinvariants:construction 314 21.1 EnergyestimatesandHofer’sgeometry 315 21.2 TheboundarydepthoftheHamiltonianH 322 21.3 Definitionofspectralinvariantsandtheiraxioms 324 21.4 Proofofthetriangleinequality 332 21.5 Thespectralityaxiom 337 21.6 Homotopyinvariance 342 22 Spectralinvariants:applications 348 22.1 ThespectralnormofHamiltoniandiffeomorphisms 349 22.2 Hofer’sgeodesicsandperiodicorbits 352 22.3 Spectralcapacitiesandsharpenergy–capacityinequality 366 22.4 EntovandPolterovich’spartialsymplecticquasi-states 372 22.5 EntovandPolterovich’sCalabiquasimorphism 381 22.6 BacktotopologicalHamiltoniandynamics 397 22.7 Wildarea-preservinghomeomorphismsonD2 403 AppendixA TheWeitzenböckformulaforvector-valuedforms 408 AppendixB Thethree-intervalmethodofexponentialestimates 412 AppendixC TheMaslovindex,theConley–Zehnderindex andtheindexformula 417 References 429 Index 444 Contents of Volume 1 Preface xiii PART 1 HAMILTONIAN DYNAMICS AND SYMPLECTIC GEOMETRY 1 TheleastactionprincipleandHamiltonianmechanics 3 1.1 TheLagrangianactionfunctionalanditsfirstvariation 3 1.2 Hamilton’sactionprinciple 7 1.3 TheLegendretransform 8 1.4 ClassicalPoissonbrackets 18 2 SymplecticmanifoldsandHamilton’sequation 21 2.1 Thecotangentbundle 21 2.2 SymplecticformsandDarboux’theorem 24 2.3 TheHamiltoniandiffeomorphismgroup 37 2.4 Banyaga’stheoremandthefluxhomomorphism 45 2.5 Calabihomomorphismsonopenmanifolds 52 3 Lagrangiansubmanifolds 60 3.1 Theconormalbundles 60 3.2 Symplecticlinearalgebra 62 3.3 TheDarboux–Weinsteintheorem 71 3.4 ExactLagrangiansubmanifolds 74 3.5 ClassicaldeformationsofLagrangiansubmanifolds 77 3.6 ExactLagrangianisotopy=Hamiltonianisotopy 82 3.7 ConstructionofLagrangiansubmanifolds 87 3.8 Thecanonicalrelationandthenaturalboundarycondition 96 3.9 GeneratingfunctionsandViterboinvariants 99 ix