ebook img

Symmetry of Intramolecular Quantum Dynamics PDF

445 Pages·2012·12.445 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Symmetry of Intramolecular Quantum Dynamics

De Gruyter Studies in Mathematical Physics 11 Editors MichaelEfroimsky,Bethesda,USA LeonardGamberg,Reading,USA DmitryGitman,SãoPaulo,Brasil AlexanderLazarian, Madison,USA BorisSmirnov,Moscow,Russia Alexander V. Burenin Symmetry of Intramolecular Quantum Dynamics Translated by Alexey V. Krayev De Gruyter PhysicsandAstronomyClassification2010:87.15.hp,31.30.Gs,33.30.-i,33.57.+c,33.15.kr, 33.15.-e, 33.20.-t, 42.50.Lc, 03.65.-w, 33.20.Sn, 33.20.Wr, 33.15.Bh, 11.30.Qc, 33.20.Tp, 33.20.Vq,31.15.xh,03.65.Fd,. ISBN978-3-11-026753-2 e-ISBN978-3-11-026764-8 LibraryofCongressCataloging-in-PublicationData ACIPcatalogrecordforthisbookhasbeenappliedforattheLibraryofCongress. BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists this publicationin theDeutscheNationalbibliografie; detailedbibliographicdataareavailableintheinternetathttp://dnb.dnb.de. © 2012WalterdeGruyterGmbH,Berlin/Boston Typesetting:PTP-BerlinProtago-TEX-ProductionGmbH,www.ptp-berlin.eu Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen Printedonacid-freepaper PrintedinGermany www.degruyter.com Preface Themolecule isacomplexmultiparticle system,andinisolatedstate itsinternaldy- namicscanbedescribed,toagoodapproximation,neglectingthenuclearandelectron spin-related contributions to the Hamiltonian. The symmetry properties of a purely spatialHamiltonianaredeterminedbythesymmetrypropertiesofspaceandtime(ex- ternal symmetry) andbyrequirementsimposedonpermutationofidentical particles (internal symmetry). However, when we try to solve equationsof motionwith such aHamiltonianbythemethodsofperturbationtheory,weunexpectedlyface theneed to introduce an additional internal geometric symmetry group that characterizes the molecule.Thisisamatterofprincipleinthisapproach,sinceotherwiseitisimpossi- bletowriteapproximateequationsofmotion.Thebasicworkingapproximationisthe Born–Oppenheimer(BO)approximation[10,14,35],whichintroducestheconceptof theeffectivepotentialofnuclearinteractioninagivenelectronicstateand,asaconse- quence,theconceptofasetofequilibriumconfigurationscorrespondingtotheminima ofthispotential.Qualitatively,moleculescanbedividedintorigidandnonrigidones. Forrigidmoleculesinnondegenerateelectronicstates,thechoiceoftheeffectivepo- tential with oneminimumis quiteadequate, whereas for nonrigidmoleculesseveral such minima should be taken into account because the internal motion includes the transitionsbetweenthem.Ithaslongbeenunderstoodthatforrigidmoleculesanad- ditionalgeometricgroupshouldbeselectedintheformofapointgroupoftheirunique equilibriumconfiguration,whichbydefinition[60,64]includesallgeometricsymme- tryelementsofthisstructureasawhole.Itiscommonlyassumedthatthisgroupand the corresponding inferences are corollaries of the BO approximation, i.e., only in this approximation can we speak of a certain geometric structuring of internal mo- tions.Buteveninthissimplestcase there isnoclear ideaofanapplicabilitydomain of the pointgroup. Two essentially different opinionsare available in the literature. According to one of them [60,64], the point groupcharacterizes the total (electron- vibration-rotational) internal motion when deviations from the equilibrium position are sufficientlysmall. However, whata “sufficientlysmalldeviation”meansis quite uncertain. The alternative pointof view [15,16,39]isthat thepointgroupdescribes the symmetry of vibrational and electronic motions only and is inapplicable to ro- tational motion and, hence, to the total internal motion. As a result, analysis of the totalmotionisbasedontheso-calledcompletenuclearpermutation-inversion(CNPI) group [15,16,39]. Such contradictions in the status of empirically introduced point groups are connected with the absence of a definite point of view on their nature. Therefore, averyimportantfeature ofthebookisthestatementthatthesegroupsare vi Preface implicitordynamicallyinvariantgroupsofsymmetryofarigorousproblemofinternal coordinatemotion.Despitethefactthatnomethodisknowntodatethatwouldenable onetoobtainsuchagroupfromstudiesoftheequationsofrigorousspatialdynamics, thisstatementcanbelogicallyjustifiedonthebasisofanalysisoftheobservedprop- erties of a molecular system. It is interesting that such a point of view may change dramaticallysomegeneralconceptsofamolecularsystem: 1. A characteristic propertyof amolecular systemisthe existenceof rotationalmo- tion of the system as a whole. This means that a molecular system is a certain structure (“microcrystal”), inwhichinternal motionsoftheparticles are basically collective.Thesymmetryofthisstructure ischaracterized byanimplicitgeomet- ric group.It appears thatthe conceptitself ofthe structure of a molecular system can be introduced into the description only by using the BO approximation. The correctconfigurationspaceofcollectivemotionsisconstructedseparatelyineach electronicstate.Inotherwords,weproceedtothedomainofdescriptionbounded byoneelectronicstate.Forsuchaboundeddomain,implicitsymmetryisreplaced byitsexplicitcounterpart. 2. The solutionof the problem of the discrete spectrum of a molecular system con- ceptually relies on perturbation theory, both in the analytical and numerical ap- proaches. The point is that the conditions of selection of physically meaningful solutionsofadiscretespectrumofcollectiveinternalmotionagainstthevastback- groundofformalsolutionscannotbeformulatedwithoutusingtheBOapproxima- tion.Thisisexactlywhywepassfromtheproblemwithimplicitsymmetrytothe problemwiththe samebutexplicit symmetryinonegivenelectronic state. Since thecorrectchoiceofexplicitsymmetryshouldbeprovided,theproblemofempir- icallyseekingageometricgrouparises.Forrigidmolecularsystemsinnondegen- erate electronic states, such a group is a point group of their unique equilibrium configuration. However, the symmetry of such a configuration is an elementary consequenceof thesymmetryofinternal dynamics,andnotviceversa asisoften stated,andthesetwosymmetriescoincideonlyintheaforementionedsimplestcase. 3. WhentheSchrödingerequationdescribingadiscretespectrumofamolecularsys- temissolvedbythemethodsofperturbationtheory,achainofnested(increasingly approximate) models is constructed until the exact solution of the model prob- lembecomespossible.Simultaneously,achainofsymmetrygroupscharacterizing these models arises. In the first place, the difficulties of solving the Schrödinger equation are due to the declarative nature of the obtained series of perturbation theory describing the transitions between the neighboring models. Not only are the properties of the series unknown, but often it is also impossible to correctly calculateeventhelower-order corrections.Moreover,thesymmetryrequirements shouldalsobetakenintoaccount.However,thesituationchangesradicallyifonly thesymmetrypropertiesareconsideredandthetransitionsbetweenmodelsarede- Preface vii scribedbysymmetrymatchings.Todothis,inthegroupsoftheneighboringmod- elswesingleouttheequivalentelementswithrespecttowhichthewavefunctions and the operators of physical values should be transformed in the same way. In otherwords,transitionsbetweentheneighboringmodelsareaccompaniedbycer- tainnontrivialconstraintsonthecomplianceofsymmetrytypes.Theadvantagesof suchanapproachareprimarilyduetothefactthatthematchingsarerigorous(!). 4. Internal dynamics can be described on the basis of onlythe symmetry principles with accuracy uptosome phenomenologicalconstantswhich can bedetermined, forexample,fromacomparisonoftheoreticalconclusionsandexperimentaldata. Inthisapproach,configurationspaceofaquantumsystemisnotintroducedinex- plicitform atall, and,asaconsequence,thewave functionsof thecoordinatesof this space are not explicitly considered. However, due to its wide philosophical andtechnical difference, thisapproach isatpresent theonlyonethatcan beused for the solution of many topical problems pertaining to the internal dynamics of molecules.Themodelsobtainedrigorouslydescribeallinteractionsofinteresting types of motionthat are possiblewithin the framework of a givensymmetry and lead to a simple, purely algebraic scheme of calculation for both the position of thelevelsintheenergyspectrumandthetransitionintensitiesbetweenthem.Itis importantthatthecorrectnessofthemodelsislimitedonlytothecorrectchoiceof theinternaldynamicssymmetry. Certainly,achangeinthegeneralconceptconcernsnotonlythemolecularsystem proper,butalsoawidevarietyofotherphysicalsystemsalsorequiringtheintroduction of an additional internal geometric groupto describe its basically collective internal motions.Interestingly, an atom does not belongto such systems, and this is exactly thereasonwhyithasnorotationalmotionofthesystemasawhole. Themaingoalofthisbookistogiveasystematicdescriptionofquantumintramo- leculardynamicsonthebasisofthesymmetryprinciplesonly.Inthisrespect,thereis nocomparablebookintheworldliterature.Ascomparedwiththesecondedition[24], ithasbeenexpandedsubstantially.Anumberofnewproblemsareconsidered,among whichadiscussionofthebasicnecessityofusingtheBO approximationforthefor- mulationitselfoftheproblemoffindingadiscretemolecularspectrumbysolvingthe stationary Schrödinger equation using analytical and/or numerical methods (Chap- ter 12), the analysis of nonrigid molecular systems with continuousaxial symmetry groups(Chapter 15),andadescriptionoftheZeemanandStarkeffects (Chapter19) areworthyofspecialnotice.Wehavealsorevisedandextendedadiscussionoftheis- suesstudiedinthesecondedition.Importantly,asaresult,therangeofstudiedtypesof nonrigidmotionshasbeencompletedinanontrivialway.Inparticular,wehaveadded analysesofveryinterestingdynamicsofsomemolecularcomplexesandthesimplest ofthecarbocations,which are theintermediate molecularionsofmanychemical re- actions. Finally, the applicability of developed methodsin such fields as analysis of viii Preface moleculeswithmorethantwoidenticaltops,allowanceforhyperfineinteractionsand parityviolationeffects,etc.isdemonstratedinChapter20. Thebookisbasicallyintendedforphysicistsworkinginthefieldofmolecularspec- troscopyandquantumchemistry.Thereaderisnotexpectedtoknowtheapparatusof grouprepresentationtheoryneededforapplicationofsymmetrymethodsinquantum intramoleculardynamicssincethefirstpartofthebookisdedicatedtoit.Foramore detailed study of almost all issues touched upon, one may consult, e.g., the mono- graphs [43,50,60,92]. The problems of using a semidirect product of groups and dynamicgroupsaretheonlymajorexclusions.Thesearediscussedin[8,39].Thesec- ondpartofthebookconcernsthestate-of-the-artdescriptionofquantumintramolecu- lardynamicsemployingonlysymmetryprinciples.Thispartnowcomprisesfourteen chapters(insteadofnineinthesecondedition),andtheconsiderationismainlybased ontheauthor’sworks[17,18,20,23,28].Thereaderissupposedtoknowatleastfoun- dationsoftheanalyticaldescriptionofintramolecularmotions.Variousissuesinthis extensive area can be found in [10,14–16,35,39,60,64]. Additional references are givenasthe statement unfolds.The appendices containtherequired reference mate- rial.AppendixVabouttheactionofthedirectioncosinesontherotationalunitvectors isaddedascomparedwiththesecondedition. The author is grateful to Professors Yu.S. Makushkin, A.M. Sergeev, B.M. Smirnov,andV.G.Tyuterevforsupportinghiseffortsaimedatdevelopingthemeth- odsofsymmetrytheory. NizhnyNovgorod,Russia AlexanderV.Burenin September17,2011 Contents Preface v I Foundations ofthemathematicalapparatus 1 Basicconceptsofgrouptheory 3 1.1 Thegrouppostulates ....................................... 3 1.2 Subgroup,directproductofgroups,isomorphism,and homomorphism ........................................... 6 1.3 Cosets.Semidirectproductofgroups .......................... 7 1.4 Conjugacyclasses ......................................... 9 2 Basicconceptsofgrouprepresentationtheory 10 2.1 Linearvectorspaces ....................................... 10 2.2 Operatorsinconfigurationandfunctionspaces................... 13 2.3 Representationsofgroups ................................... 15 2.4 Characters.Decompositionofreduciblerepresentations ........... 17 2.5 Directproductofrepresentations.Symmetricpower .............. 20 2.6 TheClebsch–Gordancoefficients ............................. 23 2.7 Basisfunctionsofirreduciblerepresentations .................... 25 2.8 Irreducibletensoroperators.TheWigner–Eckarttheorem .......... 28 3 Thepermutationgroup 31 3.1 Operationsinthepermutationgroup.Classes .................... 31 3.2 Irreduciblerepresentations.TheYoungdiagramsandtableaux ...... 33 3.3 Basisfunctionsofirreduciblerepresentations .................... 35 3.4 Theconjugaterepresentation ................................. 37 4 Continuousgroups 39 4.1 CompactLiegroups ....................................... 39 4.2 Liegroupoflineartransformations ............................ 41 4.3 Liealgebra.Three-dimensionalrotationgroup ................... 42 4.4 Irreduciblerepresentationsofathree-dimensionalrotationgroup .... 46

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.