ebook img

Symmetry classes for even-order tensors PDF

35 Pages·2013·0.78 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Symmetry classes for even-order tensors

NISSUNAUMANAINVESTIGAZIONE SI PUO DIMANDARE VERASCIENZIA S’ESSA NON PASSA PER LE MATEMATICHE DIMOSTRAZIONI LEONARDO DAVINCI vol. 1 no. 2 2013 Mathematics and Mechanics of Complex Systems MARC OLIVE AND NICOLAS AUFFRAY SYMMETRY CLASSES FOR EVEN-ORDER TENSORS msp MATHEMATICSANDMECHANICSOFCOMPLEXSYSTEMS Vol.1,No.2,2013 M ∩ M dx.doi.org/10.2140/memocs.2013.1.177 SYMMETRY CLASSES FOR EVEN-ORDER TENSORS MARC OLIVE AND NICOLAS AUFFRAY We give a complete general answer to the problem, recurrent in continuum mechanics, ofdeterminingofthenumberandtypeofsymmetryclassesofan even-ordertensorspace. Thiskindofinvestigationwasinitiatedforthespaceof elasticitytensors,andsincethendifferentauthorshavesolvedthisproblemfor otherkindsofphysics,suchasphotoelectricity,piezoelectricity,flexoelectricity, andstrain-gradientelasticity. Alltheseproblemsweretreatedusingthesame computational method, which, though effective, has the drawback of not pro- vidinggeneralresults. Furthermore,itscomplexityincreaseswiththetensorial order. Hereweprovidegeneraltheoremsthatdirectlygivethedesiredresults foranyeven-orderconstitutivetensor. Asanillustrationofthismethod,andfor thefirsttime,thesymmetryclassesofalleven-ordertensorsofMindlinsecond strain-gradientelasticityareprovided. 1. Introduction Physicalmotivation. In the last years there has been increased interest in gener- alized continuum theories; see, for example, [Forest 1998; dell’Isola et al. 2009; 2012;Lebéeand Sab2011]. Theseworks,basedonthepioneeringarticles[Toupin 1962; Mindlin1964; 1965], proposeextended kinematicformulations, to take into account size effects within the continuum. The price to be paid for this is the appearanceoftensorsofordergreaterthanfourintheconstitutiverelations. These higher-order objects are difficult to handle and extracting physically meaningful informationfromthemisnotstraightforward. Theaimofthispaperistoprovide general results concerning the type and number of anisotropic systems an even- ordertensorcanhave. Suchresultshaveimportantapplications,atleast, forthemodelingandnumeri- calimplementationofnonclassicallinearconstitutivelaws: Modeling: The purpose of modeling is, given a material and a set of physical variables of interest, to construct themore general constitutivelaw(a linear one, in the present context) that describes the behavior of that material. An exampleofsuchamethodisprovidedin[ThionnetandMartin2006],where, MSC2010: 15A72,20C35,74B99. Keywords: anisotropy,symmetryclasses,higher-ordertensors,generalizedcontinuumtheories, strain-gradientelasticity. 177 178 MARCOLIVEANDNICOLASAUFFRAY given a set of variables V and the material symmetry group S, the authors derivemechanical behaviorlawsusingthe theory ofinvariantsandcontinuum thermodynamics. In such regard our results will say, without making any computationwhetherornot S iscontainedinthesetofsymmetryclassesof L(v,v(cid:48))thespaceoflinearmapsfromv∈V tov(cid:48)∈V. Numerical implementation: To implement a new linear constitutive law in a finite-element code, one has to know the complete set of matrices needed to model the associated anisotropic behavior. In that regard, our result is a precious guideline, as it tells you how many matrices there are and how to construct them. This is illustrated in the case of three-dimensional strain gradientelasticityin[Auffrayetal.2013]. Constitutivetensorssymmetryclasses. Inmechanics,constitutivelawsareusually expressedintermsoftensorialrelationsbetweenthegradientsofprimaryvariables andtheirfluxes[GuandHe2011]. Asiswellknown,thisfeatureisnotrestricted to linear behaviors, since tensorial relations appear in the tangential formulation of nonlinear ones [Triantafyllidis and Bardenhagen 1996]. It is also known that ageneraltensorialrelationcanbedividedintoclassesaccordingtoitssymmetry properties. Suchclassesareknowninmechanicsassymmetryclasses[Forteand Vianello 1996], and in mathematical physics as isotropic classes or strata [Abud andSartori1983;Auffrayetal.2011]. In the case of second-order tensors, the determination of symmetry classes is rather simple. Using spectral analysis it can be concluded that any second-order symmetric tensor1 can either be orthotropic ([D ]), transverse isotropic ([O(2)]), 2 orisotropic ([SO(3)]). Suchtensorsare commonlyusedto describe,forexample, heatconductionandelectricpermittivity. For higher-order tensors, the determination of the set of symmetry classes is moreinvolved,andismostlybasedonanapproachintroducedin[ForteandVianello 1996]forthecaseofelasticity. Letusbrieflydetailthiscase. Thevectorspaceofelasticitytensors, denotedby(cid:69)lathroughoutthispaper,is thesubspaceoffourth-ordertensorsendowedwiththefollowingindexsymmetries: Minorsymmetries: E = E = E . ijkl jikl jilk Majorsymmetry: E = E . ijkl klij Symmetrieswillbespecifiedusing notation suchas E(ij)(kl),where(..)indi- catesinvarianceunderpermutationoftheindicesinparentheses,and....indicates invariancewithrespecttopermutationsoftheunderlinedblocks. Indexsymmetries encodethephysicsdescribedbythemathematicaloperator. Theminorsymmetries 1Suchatensorisrelatedtoasymmetricmatrix,whichcanbediagonalizedinanorthogonalbasis. Thestatedresultisrelatedtothisdiagonalization. SYMMETRYCLASSESFOREVEN-ORDERTENSORS 179 stem from thefact that rigid body motionsdo not induce deformation (the symme- try of ε), and that the material is not subjected to volumic couple (the symmetry of σ). The major symmetry is the consequence of the existence of free energy. Anelasticitytensor,E,canbeviewedasasymmetriclinearoperatoron(cid:84)(ij),the spaceofsymmetricsecond-ordertensors. Accordingto[ForteandVianello1996], for the classical action of SO(3), (cid:69)la is divided into eight symmetry classes (see page183forthenotation): [(cid:69)la]={[1],[Z ],[D ],[D ],[D ],[O(2)],[O],[SO(3)]}, 2 2 3 4 whichcorrespond,respectively, tothefollowingphysical classes:2 triclinic,mon- oclinic,orthotropic,trigonal,tetragonal,transverseisotropic,cubic,andisotropic. Besidesthisfundamentalresult,theinterestoftheForteandVianellopaperwasto provideageneralmethodtodeterminethesymmetryclassesofanytensorspace [Auffrayetal.2011]. Otherresultshavebeenobtainedbythismethodsincethen: Number Property Tensor ofclasses Action Studiedin Photoelasticity T(ij)(kl) 12 SO(3) [ForteandVianello1997] Piezoelectricity T(ij)k 15 O(3) [GeymonatandWeller2002] Flexoelectricity T(ij)kl 12 SO(3) [LeQuangandHe2011] Asetoftensors ofordersix Tijklmn 14or17 SO(3) [LeQuangetal.2012] ThelimitationsoftheForte–Vianelloapproach. ThemethodintroducedbyForte andVianelloisactually themostgeneral.3 But,atthesametime, itsuffersfromat leasttwolimitations: (1) Thecomputationoftheharmonicdecomposition. (2) Thespecificityofthestudyforeachkindoftensor. Initsoriginalsetting,themethodrequiresthecomputationoftheexplicithar- monicdecompositionofthestudiedtensor,thatis,itsdecompositionintothesum ofitsSO(3)-irreduciblecomponents,alsoknownasharmonictensors4. Itsexplicit computation, which is generally based on an algorithm introduced by Spencer [1970],turnsouttobeintractableinpracticeasthetensorialorderincreases. But 2ThesesymmetryclassesaresubgroupsofthegroupSO(3)ofspacerotations. Thisisbecause theelasticitytensorisofevenorder.Totreatodd-ordertensors,thefullorthogonalgroupO(3)has tobeconsidered. 3Someothermethodscanbefoundintheliterature,suchascountingthesymmetryplanes[Chad- wick et al. 2001], or studying the SU(2)-action on (cid:69)la [Bóna et al. 2004], and others, but these methodsaredifficulttogeneralizetoarbitraryvectorspaces. 4Harmonictensorsarecompletelysymmetricandtraceless.Theyinheritthisnamebecauseofa well-knownisomorphismin(cid:82)3betweenthesetensorsandharmonicpolynomials[Backus1970]. 180 MARCOLIVEANDNICOLASAUFFRAY this is not a real problem, since the only information needed is the number of different harmonic tensors of each order appearing in the decomposition, that is, the isotypic decomposition. Based on arguments presented in [Jerphagnon et al. 1978], there exists a direct procedure to obtain this isotypic decomposition from thetensorindexsymmetries[Auffray2008]. Suchanapproachhasbeenusedin [LeQuangetal.2012]toobtainthesymmetryclassesofsixth-ordertensors. As each kind of tensor space requires specific study, this specificity constitutes the other limitation of the method. This remark has to be considered together withtheobservationthat,foreven-ordertensorsitseemsthatthereexistonlytwo possibilities. Namely,atensorspacehasasmanyclassesas • the fullsymmetric tensorspace (forexample, (cid:69)lais divided intoeight classes, likethefullsymmetrictensorspace[ForteandVianello1996]),or • the generic tensor space5 (other fourth-order tensor spaces such as those of photoelasticity[ForteandVianello1997],flexoelectricity[LeQuangandHe 2011],etc.,aredividedinto12classes,likethegenerictensorspace). The same observation can also be made for second and sixth-order tensors [Le Quang et al. 2012]. Understanding the general rule behind this observation would be an important result in mechanics. Its practical implication is the direct determination of the number and the type of symmetry classes for any constitu- tivelaw,nomatteritsorder. Thisresultisvaluableforunderstandinggeneralized continuumtheories,inwhichhigher-ordertensorsareinvolvedinconstitutivelaws. Organizationofthepaper. InSection2,themainresultsofthispaper,TheoremsI, II,andIII,arestated. Asanapplication,thesymmetryclassesoftheeven-ordercon- stitutive tensorspacesof Mindlinsecond strain-gradientelasticity aredetermined. Results concerning the sixth-order coupling tensor and the eighth-order second strain-gradienttensoraregivenforthefirsttime. Obtainingthesameresultswith theForte–Vianelloapproachwouldhavebeenmuchmoredifficult. Othersections are dedicated to the construction of our proofs. In Section 3, the mathematical frameworkusedtoobtainourresultisintroduced. Thereafter,westudythesym- metry classes of a couple of harmonic tensors, which is the main purpose of the toolnamedtheclipsoperator. Wethengivetheassociatedresultsforcouplesof SO(3)-closedsubgroups(Theorem4.6andTable2). Thankstotheseresults,and withthehelpofpreviousworkonthetopic[IhrigandGolubitsky1984],weobtain inSection5somegeneralresultsconcerningsymmetryclassesforgeneraleven- order tensors. In Section 6 our main results are finally proved. The Appendix is devotedtoproofsandthecalculusofclipsoperations. 5Then-thordergenerictensorisan-thordertensorwithnoindexsymmetry. SYMMETRYCLASSESFOREVEN-ORDERTENSORS 181 2. Mainresults Inthissection,ourmainresultsarestated. Inthefirstsubsection,theconstruction of constitutive tensor spaces (CTS) is discussed. This construction allows us to formulateourmainresultsinthenextsubsection. Finally,theapplicationofthese resultstoMindlinsecondstrain-gradientelasticity(SSGE)isconsidered. Precise mathematicaldefinitionsofthesymmetryclassesaregiveninSection3. ConstructionofCTS. Linearconstitutivelawsarelinearmapsbetweenthegradi- entsof primaryphysical quantitiesandtheir fluxes. Eachofthese physicalquanti- ties(seeTable1onthenextpage)isinfactrelatedtosubspaces6 oftensorsspaces; these subspaces will be called state tensor spaces (STS). These STS will be the primitivenotionfromwhichtheCTSwillbeconstructed. Notation. L(F,G)willindicatethevectorspaceoflinearmapsfrom F to G. Now we consider two STS, (cid:69) = (cid:84) and (cid:69) = (cid:84) , respectively of order p 1 G 2 f and order q, possibly with index symmetries. As a consequence, they belong to subspacesof(cid:78)p(cid:82)3 and(cid:78)q(cid:82)3. Aconstitutivetensor C isalinearmapbetween (cid:69) and (cid:69) , that is, an element of the space L((cid:69) ,(cid:69) ). This space is isomorphic, 1 2 1 2 modulo the use of an euclidean metric, to (cid:69) ⊗(cid:69) . Physical properties lead to 1 2 some index symmetriesonC ∈(cid:69) ⊗(cid:69) ; thus the vector spaceof suchC is some 1 2 vectorsubspace(cid:84) of(cid:69) ⊗(cid:69) . C 1 2 Now, each of the spaces (cid:69) , (cid:69) , and (cid:69) ⊗(cid:69) has natural O(3) actions. In this 1 2 1 2 paper,weareconcernedwithcasesinwhich p+q =2n. Insuchasituation,itis knownthattheO(3)-actionon(cid:69) ⊗(cid:69) reducestothatofSO(3)[ForteandVianello 1 2 1996]. Wethereforehave L((cid:69) ,(cid:69) )(cid:39)(cid:69) ⊗(cid:69) ⊂(cid:84)p⊗(cid:84)q =(cid:84)p+q=2n. 1 2 1 2 Herearesomeexamplesofthisconstruction: Property (cid:69) (cid:69) Tensorproduct Number 1 2 forCTS ofclasses Elasticity (cid:84)(ij) (cid:84)(ij) Symmetric 8 Photoelasticity (cid:84)(ij) (cid:84)(ij) Standard 12 Flexoelectricity (cid:84)(ij)k (cid:84)i Standard 12 First-gradientelasticity (cid:84)(ij)k (cid:84)(ij)k Symmetric 17 ThistableshowstwokindsofCTS,describingrespectively: • coupledphysics(tensorssuchasphotoelasticityandflexoelectricity,encoding thecouplingbetweentwodifferentphysics),and 6Becauseofsomesymmetries. 182 MARCOLIVEANDNICOLASAUFFRAY Physicalnotion Mathematicalobject Mathematicalspace Gradient TensorstateT ∈(cid:78)p(cid:82)3 (cid:84) : tensorspacewith 1 G indexsymmetries Fluxesofgradient TensorstateT ∈(cid:78)q(cid:82)3 (cid:84) : tensorspacewith 2 f indexsymmetries Linearconstitutivelaw C ∈L((cid:84) ,(cid:84) ) (cid:84) ⊂L((cid:84) ,(cid:84) ) G f C G f Table1. Physicalandmathematicallinks. • properphysics(tensorssuchasclassicalandfirst-gradientelasticities,describ- ingasinglephysicalphenomenon). Onthemathematicalsidethisimplies: • Coupled physics: the spaces (cid:69) and (cid:69) may differ, and when (cid:69) =(cid:69) linear 1 2 1 2 mapsarenotself-adjoint. • Properphysics: wehave(cid:69) =(cid:69) andlinearmapsareself-adjoint.7 1 2 Therefore,theelasticitytensor isaself-adjointlinearmapbetweenthevector space of deformation tensors and the vector space of stress tensors. These two spaces are modeled on (cid:84)(ij). The vector space of elasticity tensors is therefore completely determined by (cid:84)(ij) and the symmetric nature of the tensor product, that is, (cid:69)la=(cid:84)(ij)⊗S(cid:84)(kl), where ⊗S denotes the symmetric tensor product. On the side of coupling tensors, flexoelectricity is a linear map between (cid:69)1 =(cid:84)(ij)k, thespaceofdeformationgradients,and(cid:69) =(cid:84) ,theelectricpolarization;therefore 2 l (cid:70)lex=(cid:84)(ij)k⊗(cid:84)l. Symmetryclassesofeven-ordertensorspaces. Consideraneven-orderCTS(cid:84)2n. It is known [Jerphagnon et al. 1978] that thisspace can be decomposed orthogo- nally8 intoafullsymmetricspaceandacomplementaryonewhichisisomorphic toatensorspaceoforder2n−1,thatis: (cid:84)2n =(cid:83)2n⊕(cid:67)2n−1. Letusintroduce: (cid:83)2n: thevectorspaceof2n-thordercompletelysymmetrictensors. (cid:71)2n: thevectorspaceof2n-thordertensorswithnoindexsymmetries.9 Thefollowingobservationisobvious: (cid:83)2n ⊆(cid:84)2n ⊆(cid:71)2n, 7Thisisaconsequenceoftheassumptionoftheexistenceofafreeenergy. 8Therelateddotproductisconstructedby2nproductsofthe(cid:82)3canonicalone. 9Formallythisspaceisconstructedas(cid:71)2n=(cid:78)2n(cid:82)3. SYMMETRYCLASSESFOREVEN-ORDERTENSORS 183 andtherefore,ifwedenotebyItheoperatorwhichgivestoatensorspacetheset ofitssymmetryclasses,weobtain: I((cid:83)2n)⊆I((cid:84)2n)⊆I((cid:71)2n). Thesymmetrygroupofeven-ordertensorsisconjugatetoSO(3)-closedsubgroups [ZhengandBoehler1994;ForteandVianello1996]. ClassificationofSO(3)-closed subgroups is a classical result that can be found in many references [Ihrig and Golubitsky1984;Sternberg1994]. Thesesubgroupsare,uptoconjugacy: Lemma2.1. Everyclosedsubgroupof SO(3)isconjugatetopreciselyonegroup fromthefollowinglist: {1,Z ,D ,T,O,I,SO(2),O(2),SO(3)}. n n Amongthesegroups,wecandistinguish: Planargroups: {1,Z ,D ,SO(2),O(2)},whichareO(2)-closedsubgroups. n n Exceptionalgroups: {T,O,I,SO(3)},ofwhichthefirstthreearerotationalsym- metrygroupsofPlatonicpolyhedra. Letusdetailfirstthesetofplanarsubgroups. Wefixabase(i;j;k)of(cid:82)3,and denotebyQ(v;θ)∈SO(3)therotationaboutv∈(cid:82)3,withangleθ ∈[0;2π). • 1istheidentity. • Z (n ≥ 2) is the cyclic group of order n, generated by the n-fold rotation n Q(k;θ =2π/n). whichisthesymmetrygroupofachiralpolygon. • D (n ≥ 2) is the dihedral group of order 2n generated by Z and Q(i;π), n n whichisthesymmetrygroupofaregularpolygon. • SO(2)isthesubgroupofrotationsQ(k;θ)withθ ∈[0;2π). • O(2)isthesubgroupgeneratedbySO(2)andQ(i;π). The classes of exceptional subgroups are: T, the tetrahedral group of order 12 which fixes a tetrahedron, O, the octahedral group of order 24 which fixes an octahedron(oracube),andI,thesubgroupoforder60whichfixesanicosahedron (oradodecahedron). InSection6,thesymmetryclassesof(cid:83)2n and(cid:71)2n areobtained: Lemma2.2. Thesymmetryclassesof (cid:83)2n are: I((cid:83)2)={[D ],[O(2)],[SO(3)]}, 2 I((cid:83)4)={[1],[Z ],[D ],[D ],[D ],[O(2)],[O],[SO(3)]}, 2 2 3 4 I((cid:83)2n)={[1],[Z2],...,[Z2(n−1)],[D2],...,[D2n],[O(2)],[T],[O],[I],[SO(3)]}, ifn≥3. 184 MARCOLIVEANDNICOLASAUFFRAY Lemma2.3. Thesymmetryclassesof (cid:71)2n are: I((cid:71)2)={[1],[Z ],[D ],[SO(2)],[O(2)],[SO(3)]}, 2 2 I((cid:71)4)={[1],[Z ],[Z ],[Z ],[D ],[D ],[D ],[SO(2)],[O(2)],[T],[O],[SO(3)]}, 2 3 4 2 3 4 I((cid:71)2n)={[1],[Z ],...,[Z ],[D ],...,[D ],[SO(2)],[O(2)],[T],[O],[I],[SO(3)]}, 2 2n 2 2n ifn≥3. Thefollowingtablelistshowmanyclassesthereareforeachn: n= 1 2 ≥3 #I((cid:83)2n) 3 8 2(2n+1) #I((cid:71)2n) 6 12 4n+5 Thesymmetryclassesof(cid:84)2n areclarifiedbythefollowingtheorem: TheoremI. Let(cid:84)2n beatensorspace. TheneitherI((cid:84)2n)=I((cid:83)2n)orI((cid:84)2n)= I((cid:71)2n). Inotherwords,thenumberandtypeofclassesarethesameasthoseof • (cid:83)2n,thespaceof2n-ordercompletelysymmetrictensors,inwhichcasethe numberofclassesisminimal,or • (cid:71)2n,thespaceof2n-ordergenerictensors,inwhichcasethenumberofclasses ismaximal. Infact,asspecifiedbythefollowingtheorems,inmostsituationsthenumberof classesisindeedmaximal. TheoremII(couplingtensors). Letusconsider(cid:84)2p thespaceofcouplingtensors between two physics described by two tensor vector spaces (cid:69) and (cid:69) . If these 1 2 tensorspacesareofordersgreaterthanorequaltoone,thenI((cid:84)2p)=I((cid:71)2p). TheoremIII(propertensors). Letusconsider(cid:84)2p,thespaceoftensorsofaproper physicsdescribedbythetensorvectorspace(cid:69). Ifthistensorspaceisoforder p≥3, andissolelydefinedintermsofitsindexsymmetries,thenI((cid:84)2p)=I((cid:71)2p). Remark2.4. Exceptionsoccurfor p=1, whenthespaceofsymmetricsecond-ordertensorsisobtained,and p=2, when,inthecaseof(cid:84)(ij),thespaceofelasticitytensorsisobtained. Ineachofthesesituationsthenumberofclassesisminimal. Thereisnoother situationwherethis caseoccurs. Itshould thereforebeconcludedthatthe spaceof elasticitytensorsisexceptional. SYMMETRYCLASSESFOREVEN-ORDERTENSORS 185 Secondstrain-gradientelasticity(SSGE). Applicationoftheformertheoremswill bemadeontheeven-ordertensorsofSSGE.First,theconstitutiveequationswill be summed up, and then the results will be stated. It worth noting that obtain- ingthe sameresultswith theForte–Vianelloapproach wouldhavebeenfar more complicated. Constitutivelaws. Inthesecondstrain-gradienttheoryoflinearelasticity[Mindlin 1965;Forestetal.2011],the constitutivelawgivesthesymmetricCauchystress tensor10 σ(2) and thehyperstress tensorsτ(3) andω(4) in termsof the infinitesimal straintensorε(2) anditsgradientsη(3)=ε(2)⊗∇ andκ(4)=ε(2)⊗∇⊗∇ through thethreelinearrelations: σ(2)=E(4):ε(2)+M(5)∴η(3)+N(6)::κ(4), τ(3)=MT(5):ε+A(6)∴η(3)+O(7)::κ(4), (2-1) ω(4)=NT(6):ε(2)+OT(7)∴η(3)+B(8)::κ(4), where :, ∴, and :: denote, respectively, the double, third, and fourth contracted products. Above,11 σ(ij),ε(ij),τ(ij)k,η(ij)k =ε(ij),k,ω(ij)(kl),andκ(ij)(kl)=ε(ij),(kl) are,respectively,thematrixcomponentsofσ(2),ε(2),τ(3),η(3),ω(4),andκ(4) rela- tivetoanorthonormalbasis(i;j;k)of(cid:82)3. And E(ij)(lm), M(ij)(lm)n, N(ij)(kl)(mn), A(ij)k (lm)n, O(ij)k(lm)(no), and B(ij)(kl)(mn)(op) are the matrix components of the relatedelasticstiffnesstensors. Symmetryclasses. Thesymmetryclassesoftheelasticitytensorsandofthefirst strain-gradient elasticity tensors has been studied in [Forte and Vianello 1996; Le Quang et al. 2012]. Hence, here we solely consider the spaces of coupling tensorsN(6) andofsecondstrain-gradientelasticitytensorsB(8). • Wedefine(cid:67)estobethespaceofcouplingtensorsbetweenclassicalelasticity andsecondstrain-gradientelasticity: (cid:67)es={N(6)∈(cid:71)6| N(ij)(kl)(mn)}. AdirectapplicationofTheoremIIleadstotheresultthat I((cid:67)es)={[1],[Z ],...,[Z ],[D ],...,[D ],[SO(2)],[O(2)],[T],[O],[I],[SO(3)]}. 2 6 2 6 Therefore(cid:67)esisdividedinto17symmetryclasses. • Wedefine(cid:83)grtobethespaceofsecondstrain-gradientelasticitytensors: (cid:83)gr={O(8)∈(cid:71)8| O(ij)(kl)(mn)(op)}. 10Inthissubsectiononly,tensororderswillbeindicatedbysuperscriptsinparentheses. 11Thecommaclassicallyindicatesthepartialderivativewithrespecttospatialcoordinates.Su- perscriptT denotestransposition.Transpositionisdefinedbypermutingthe pfirstindiceswiththe qlast,where pisthetensorialorderoftheimageofaq-ordertensor.

Description:
other kinds of physics, such as photoelectricity, piezoelectricity, flexoelectricity, and strain-gradient elasticity. All these . Piezoelectricity T(ij)k. 15. O(3) [Geymonat and Weller 2002] also compute that it only leaves fixed the axes f d1, ed7, ed11, ed12, and ed14, thus = D5. References. [Ab
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.