Symmetry Analysis of Differential Equations Symmetry Analysis of Differential Equations An Introduction Daniel J. Arrigo DepartmentofMathematics UniversityofCentralArkansas Conway,AR Copyright©2015byJohnWiley&Sons,Inc.Allrightsreserved. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada. Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin anyformorbyanymeans,electronic,mechanical,photocopying,recording,scanning,or otherwise,exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyright Act,withouteitherthepriorwrittenpermissionofthePublisher,orauthorizationthrough paymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222 RosewoodDrive,Danvers,MA01923,(978)750-8400,fax(978)750-4470,oronthewebat www.copyright.com.RequeststothePublisherforpermissionshouldbeaddressedtothe PermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030, (201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheir besteffortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespect totheaccuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimany impliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymay becreatedorextendedbysalesrepresentativesorwrittensalesmaterials.Theadviceand strategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwitha professionalwhereappropriate.Neitherthepublishernorauthorshallbeliableforanyloss ofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental, consequential,orotherdamages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,please contactourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outside theUnitedStatesat(317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappears inprintmaynotbeavailableinelectronicformats.FormoreinformationaboutWiley products,visitourwebsiteatwww.wiley.com. LibraryofCongressCataloging-in-PublicationData: Arrigo,DanielJ.(DanielJoseph),1960- Symmetryanalysisofdifferentialequations:anintroduction/DanielJ.Arrigo, DepartmentofMathematics,UniversityofCentral Arkansas,Conway,AR. pagescm Includesbibliographicalreferencesandindex. ISBN978-1-118-72140-7(cloth) 1. Liegroups–Textbooks.2. Liegroups–Studyandteaching(Higher)3. Lie groups–Studyandteaching(Graduate)4. Differential equations,Partial–Textbooks. I.Title. QA387.A772014 515′.353–dc23 2014007305 PrintedintheUnitedStatesofAmerica. 10987654 TothelateBillAmes, myteacher,mymentor,myfriend. Contents Preface xi Acknowledgments xiii 1 An Introduction 1 1.1 WhatIsaSymmetry? 1 1.2 LieGroups, 4 1.3 InvarianceofDifferentialEquations, 6 1.4 SomeOrdinaryDifferentialEquations, 8 Exercises, 12 2 Ordinary Differential Equations 15 2.1 InfinitesimalTransformations, 19 2.2 Lie’sInvarianceCondition, 23 Exercises, 27 2.3 StandardIntegrationTechniques, 28 2.3.1 LinearEquations, 28 2.3.2 BernoulliEquation, 30 2.3.3 HomogeneousEquations, 31 2.3.4 ExactEquations, 32 2.3.5 RiccatiEquations, 35 Exercises, 37 2.4 InfinitesimalOperatorandHigherOrderEquations, 38 2.4.1 TheInfinitesimalOperator, 38 2.4.2 TheExtendedOperator, 39 2.4.3 ExtensiontoHigherOrders, 40 2.4.4 First-OrderInfinitesimals(revisited), 40 2.4.5 Second-OrderInfinitesimals, 41 2.4.6 TheInvarianceofSecond-OrderEquations, 42 2.4.7 Equationsofarbitraryorder, 43 2.5 Second-OrderEquations, 43 Exercises, 55 vii viii Contents 2.6 HigherOrderEquations, 56 Exercises, 61 2.7 ODESystems, 61 2.7.1 FirstOrderSystems, 61 2.7.2 HigherOrderSystems, 67 Exercises, 71 3 Partial Differential Equations 73 3.1 First-OrderEquations, 73 3.1.1 WhatDoWeDowiththeSymmetriesof PDEs? 77 3.1.2 DirectReductions, 80 3.1.3 TheInvariantSurfaceCondition, 83 Exercises, 84 3.2 Second-OrderPDEs, 84 3.2.1 HeatEquation, 84 3.2.2 Laplace’sEquation, 91 3.2.3 Burgers’EquationandaRelative, 94 3.2.4 HeatEquationwithaSource, 100 Exercises, 107 3.3 HigherOrderPDEs, 109 Exercises, 115 3.4 SystemsofPDEs, 115 3.4.1 First-OrderSystems, 115 3.4.2 Second-OrderSystems, 120 Exercises, 124 3.5 HigherDimensionalPDEs, 126 Exercises, 132 4 Nonclassical Symmetries and Compatibility 133 4.1 NonclassicalSymmetries, 133 4.1.1 InvarianceoftheInvariantSurface Condition, 135 4.1.2 TheNonclassicalMethod, 137 4.2 NonclassicalSymmetryAnalysisandCompatibility, 146 4.3 BeyondSymmetriesAnalysis–General Compatibility, 147 4.3.1 CompatibilitywithFirst-OrderPDEs–Charpit’s Method, 149
Description: