Symbolic Math Toolbox For Use with MATLAB® Computation Visualization Programming User’s Guide Version 2 How to Contact The MathWorks: 508-647-7000 Phone 508-647-7001 Fax TheMathWorks,Inc. Mail 24PrimeParkWay Natick,MA01760-1500 http://www.mathworks.com Web ftp.mathworks.com AnonymousFTPserver comp.soft-sys.matlab Newsgroup [email protected] Technicalsupport [email protected] Productenhancementsuggestions [email protected] Bugreports [email protected] Documentationerrorreports [email protected] Subscribinguserregistration [email protected] Orderstatus,licenserenewals,passcodes [email protected] Sales,pricing,andgeneralinformation SymbolicMathToolboxUser’sGuide (cid:211) COPYRIGHT1993-1998byTheMathWorks,Inc. Thesoftwaredescribedinthisdocumentisfurnishedunderalicenseagreement. Thesoftwaremaybeused orcopiedonlyunderthetermsofthelicenseagreement.Nopartofthismanualmaybephotocopiedorrepro- ducedinanyformwithoutpriorwrittenconsentfromTheMathWorks,Inc. U.S.GOVERNMENT: IfLicenseeisacquiringtheProgramsonbehalfofanyunitoragencyoftheU.S. Government,thefollowingshallapply: (a)ForunitsoftheDepartmentofDefense: theGovernmentshall haveonlytherightsspecifiedinthelicenseunderwhichthecommercialcomputersoftwareorcommercial softwaredocumentationwasobtained,assetforthinsubparagraph(a)oftheRightsinCommercial ComputerSoftwareorCommercialSoftwareDocumentationClauseatDFARS227.7202-3,thereforethe rightssetforthhereinshallapply;and(b)Foranyotherunitoragency: NOTICE:Notwithstandingany otherleaseorlicenseagreementthatmaypertainto,oraccompanythedeliveryof,thecomputersoftware andaccompanyingdocumentation,therightsoftheGovernmentregardingitsuse,reproduction,anddisclo- sureareassetforthinClause52.227-19(c)(2)oftheFAR. MATLAB,Simulink,Stateflow,HandleGraphics,andReal-TimeWorkshopareregisteredtrademarks,and TargetLanguageCompilerisatrademarkofTheMathWorks,Inc. Otherproductorbrandnamesaretrademarksorregisteredtrademarksoftheirrespectiveholders. PrintingHistory: August1993 Firstprinting October1994 Secondprinting May1997 ThirdprintingforSymbolicMathToolbox2.0 September1998 UpdatedforRelease11(onlineonly) Contents Tutorial 1 Introduction ......................................... 1-2 GettingHelp ......................................... 1-4 GettingStarted ....................................... 1-5 SymbolicObjects ..................................... 1-5 CreatingSymbolicVariablesandExpressions ............. 1-6 SymbolicandNumericConversions ...................... 1-7 ConstructingRealandComplexVariables .............. 1-9 CreatingAbstractFunctions ........................ 1-10 UsingsymtoAccessMapleFunctions ................. 1-11 Example:CreatingaSymbolicMatrix ................. 1-11 TheDefaultSymbolicVariable ...................... 1-13 CreatingSymbolicMathFunctions ..................... 1-15 UsingSymbolicExpressions ......................... 1-15 CreatinganM-File ................................ 1-16 Calculus ............................................ 1-17 Differentiation ...................................... 1-17 Limits ............................................. 1-21 Integration ......................................... 1-23 IntegrationwithRealConstants ..................... 1-26 RealVariablesviasym ............................. 1-28 SymbolicSummation................................. 1-30 TaylorSeries ....................................... 1-31 ExtendedCalculusExample ........................... 1-33 PlottingSymbolicFunctions ......................... 1-33 i SimplificationsandSubstitutions ..................... 1-47 Simplifications ...................................... 1-47 collect ........................................... 1-48 expand .......................................... 1-49 horner ........................................... 1-49 factor ............................................ 1-50 simplify .......................................... 1-52 simple ........................................... 1-52 Substitutions ....................................... 1-56 subexpr .......................................... 1-56 subs ............................................. 1-59 Variable-PrecisionArithmetic ......................... 1-64 Overview ........................................... 1-64 Example:UsingtheDifferentKindsofArithmetic ......... 1-65 RationalArithmetic ................................ 1-65 Variable-PrecisionNumbers ......................... 1-66 ConvertingtoFloating-Point ........................ 1-67 AnotherExample .................................... 1-67 LinearAlgebra ....................................... 1-69 BasicAlgebraicOperations ............................ 1-69 LinearAlgebraicOperations ........................... 1-70 Eigenvalues ........................................ 1-74 JordanCanonicalForm ............................... 1-81 SingularValueDecomposition ......................... 1-82 EigenvalueTrajectories ............................... 1-86 SolvingEquations .................................... 1-96 SolvingAlgebraicEquations ........................... 1-96 SeveralAlgebraicEquations .......................... 1-104 SingleDifferentialEquation .......................... 1-107 Example1....................................... 1-108 Example2....................................... 1-108 Example3....................................... 1-109 SeveralDifferentialEquations ........................ 1-109 IntegralTransforms ................................. 1-112 TheFourierandInverseFourierTransforms ............ 1-112 TheLaplaceandInverseLaplaceTransforms ............ 1-120 ii TheZ–andInverseZ–transforms ...................... 1-126 References ...................................... 1-128 SpecialMathematicalFunctions ...................... 1-130 Diffraction......................................... 1-132 UsingMapleFunctions .............................. 1-136 SimpleExample .................................... 1-136 VectorizedExample ................................. 1-139 Debugging ......................................... 1-141 TraceMode ...................................... 1-141 StatusOutputArgument .......................... 1-141 ExtendedSymbolicMathToolbox .................... 1-143 PackagesofLibraryFunctions ........................ 1-143 ProcedureExample ................................. 1-145 PrecompiledMapleProcedures ........................ 1-148 Reference 2 Compatibility Guide A CompatibilitywithEarlierVersions .................... A-2 ObsoleteFunctions .................................... A-3 iii iv Contents 1 Tutorial Introduction . . . . . . . . . . . . . . . . . . . . 1-2 GettingHelp . . . . . . . . . . . . . . . . . . . . 1-4 GettingStarted . . . . . . . . . . . . . . . . . . 1-5 Calculus . . . . . . . . . . . . . . . . . . . . . . 1-17 SimplificationsandSubstitutions . . . . . . . . . . 1-47 Variable-PrecisionArithmetic . . . . . . . . . . . 1-64 LinearAlgebra . . . . . . . . . . . . . . . . . . . 1-69 SolvingEquations . . . . . . . . . . . . . . . . . 1-96 IntegralTransforms . . . . . . . . . . . . . . . 1-112 SpecialMathematicalFunctions . . . . . . . . . . 1-130 UsingMapleFunctions . . . . . . . . . . . . . . 1-136 ExtendedSymbolicMathToolbox . . . . . . . . . 1-143 1 Tutorial Introduction TheSymbolicMathToolboxesincorporatesymboliccomputationinto MATLAB®’snumericenvironment.ThesetoolboxessupplementMATLAB’s numericandgraphicalfacilitieswithseveralothertypesofmathematical computation: Facility Covers Calculus Differentiation,integration,limits,summation, andTaylorseries LinearAlgebra Inverses,determinants,eigenvalues,singular valuedecomposition,andcanonicalformsof symbolicmatrices Simplification Methodsofsimplifyingalgebraicexpressions Solutionof Symbolicandnumericalsolutionstoalgebraicand Equations differentialequations Variable-Precision Numericalevaluationofmathematicalexpressions Arithmetic toanyspecifiedaccuracy Transforms Fourier,Laplace,z-transform,andcorresponding inversetransforms Special Specialfunctionsofclassicalappliedmathematics Mathematical Functions (cid:210) ThecomputationalengineunderlyingthetoolboxesisthekernelofMaple ,a systemdevelopedprimarilyattheUniversityofWaterloo,Canada,and,more recently,attheEidgenössicheTechnischeHochschule,Zürich,Switzerland. MapleismarketedandsupportedbyWaterlooMaple,Inc. TheseversionsoftheSymbolicMathToolboxesaredesignedtoworkwith MATLAB5andMapleVRelease4. Therearetwotoolboxes.ThebasicSymbolicMathToolboxisacollectionof morethanone-hundredMATLABfunctionsthatprovideaccesstotheMaple 1-2 Introduction kernelusingasyntaxandstylethatisanaturalextensionoftheMATLAB language.ThebasictoolboxalsoallowsyoutoaccessfunctionsinMaple’s linearalgebrapackage.TheExtendedSymbolicMathToolboxaugmentsthis functionalitytoincludeaccesstoallnongraphicsMaplepackages,Maple programmingfeatures,anduser-definedprocedures.Withbothtoolboxes,you canwriteyourownM-filestoaccessMaplefunctionsandtheMapleworkspace. ThefollowingsectionsofthisTutorialprovideexplanationandexampleson howtousethetoolboxes. Section Covers “GettingHelp” HowtogetonlinehelpforSymbolicMath Toolboxfunctions “GettingStarted” Basicsymbolicmathoperations “Calculus” Howtodifferentiateandintegratesymbolic expressions “Simplificationsand Howtosimplifyandsubstitutevaluesinto Substitutions” expressions “Variable-Precision Howtocontroltheprecisionof Arithmetic” computations “LinearAlgebra” Examplesusingthetoolboxfunctions “SolvingEquations” Howtosolvesymbolicequations “IntegralTransforms” Fourier,Laplace,andz-transforms “SpecialMathematical HowtoaccessMaple’sspecialmath Functions” functions “UsingMapleFunctions” HowtouseMaple’shelp,debugging,and user-definedprocedurefunctions “ExtendedSymbolicMath FeaturesoftheExtendedSymbolicMath Toolbox” Toolbox Chapter2, “Reference,”providesdetaileddescriptionsofeachofthefunctions inthetoolboxes. 1-3 1 Tutorial Getting Help TherearetwowaystofindinformationonusingSymbolicMathToolbox functions.One,ofcourse,istoreadthismanual!TheotheristouseMATLAB’s commandlinehelpsystem.Generally,youcanobtainhelponMATLAB functionssimplybytyping help function wherefunctionisthenameoftheMATLABfunctionforwhichyouneedhelp. Thisisnotsufficient,however,forsomeSymbolicMathToolboxfunctions.The reason?TheSymbolicMathToolbox“overloads”manyofMATLAB’snumeric functions.Thatis,itprovidessymbolic-specificimplementationsofthe functions,usingthesamefunctionname.Toobtainhelpforthesymbolic versionofanoverloadedfunction,type help sym/function wherefunctionistheoverloadedfunction’sname.Forexample,toobtainhelp onthesymbolicversionoftheoverloadedfunction,diff,type help sym/diff Toobtaininformationonthenumericversion,ontheotherhand,simplytype help diff Howcanyoutellwhetherafunctionisoverloaded?Thehelpforthenumeric versiontellsyouso.Forexample,thehelpforthedifffunctioncontainsthe section Overloaded methods help char/diff.m help sym/diff.m Thistellsyouthattherearetwootherdiffcommandsthatoperateon expressionsofclasscharandclasssym,respectively.Seethenextsectionfor informationonclasssym.Formoreinformationonoverloadedcommands,see Chapter14oftheUsingMATLABguide. YoucanusethemhelpcommandtoobtainhelponMaplecommands.For example,toobtainhelpontheMaplediffcommand,typemhelp diff.This returnsthehelppagefortheMapledifffunction.Formoreinformationonthe 1-4