Second Edition Abraham LPressman Switching Power Supply Design Abraham I. Pressman President,SwitchtronixPower, Inc. Waban,Massachusetts Second Edition McGraw-Hili NewYork San Francisco Washington,D.C. Auckland 80go13 Caracas Lisbon London Madrid MexicoCity Milan Montreal NewDelhi SanJuan Singapore Sydney Tokyo Toronto l.ibraryofConllJ'II'HIICataloging·in·l·ublieation Uata Presaman.Abruham I. Switchingpowersupplydesign I Abraham '- Pn.-","'mlln _ 2ndroo p. em, Indude'"index. ISBN 0-07-0-52236-7 I Switchingpowersupplies. 2. Eleetromcapparatus and appliances-c-Pow..rsupply. 3. "-licrot"l('Ctronics--l'ower"upply. 4. Electriccurrentconverters. r.Titlt'. TK786K.P6P75 1998 621.381'044-dc21 97...:11668 CIP McGraw-Hill Copyright " 1998 by The ~1cGraw·ltill Companies, Inc.All rights reserved.Printed in theUnited Stat..s ufAmeriea.Exceptall permitted und..r the United StatesCopyrightAct uf 1976,no partofthillpublica tion mayhe repruduc-edor distributed in anyform or by any means, ur storedin a data l»i!l<!or retrievalsystem, without theprior written per~ missionotth..puhlillh..r. 5 f>7 1'1 9 0 nee/roc (J 2 1 0 ISBN0-o7.(J;;22:W-7 ThO'sf"'ns"ri"g"r/ilor[orthi,.hookWWISI,'v..Chapman, Ih.."'r/ilinl< ~1.<{Jf!rvi.",r«.'011SmllAmerman, amiIh..productionsuperinsorWa.~ Sherri&!Uffmtln'.It was set inCentury,....,h.."lh""kby Ron l'oitlt"r,,{ M.--(;rmt,·Hill'1fPm(..""j"n,,1Rook Groupc(>mp<~~ili"nutlit. Printedand boundflyR.R.lJonneliry& &)1J1fC"mpan.y. McGraw-Hill booksare availableat specialquantitydiscounts10useas premiumsand salespromotions,orfor use incorporatetraining programs. Formore information, pleasewriteto theDirectorofSpecialSales. McGraw-Hill,Professional Publishing,TwoPenn Plaza,New York,NY 10121-2298,Or eonucryour localbookstore. Thillh""k i" printed on n'Cyc!t'd, acid-freel'''I'''rcontnininga minimumoff,()'it rHcych·d,de-inkedfiber. Informationcontained inthillwork halll,,·..nobtained byTh,'Md:;raw. Hill Compani..... 1no:-.(·M.-Graw·Hill~) f..om ..ourees believed I" I", Ii- able.How..ver,neith..rMcGraw·lli]]nor il"authorsguarantt't'th n.'U· rary or romplet..n..,.,.ofany informatiorentI"I'"u.h...li"h..d ........;n and n..ither ~lcGraw·lliII nul'il.>l llulhors shallbe ibl.. forany..rroea,omis aions,or dama~" Ilri"inl:"out of u,..."fthillinformation.Thi" work ill publi"b<"<.! with th~· und..,.,.tand;n~ Ihal McGra....-HiII and ;111 .ulho.... ......"upplyin~inf"rmativnbut ..n.' n"talt..mptinl:"to renderenlllnt'<!rinl:' "I' other prof,.....ionlll >;f'mres, Ifsuch II('rvin", are rPquir..d.lh.. u"il\ tanreofan approprialeprof......,;onal..houldbeIlOUght. Contents Preface xix Part1 Topologies Chapter 1. Fundamental Switching Regulators-Buck, Boost, andInverterTopologies 3 1.1 Introduction 3 1.2 LinearRegulators-Swtiching RegulatorAncestors 4 1.2.1 Basicoperation-meritsand drawbacks 4 1.2.2 Linearregulatordrawbacks 5 1.2.3 Powerdissipation inthe series-passtransistor 5 1.2.4 Linearregulatorefficiencyversusoutputvoltage 6 1.2.5 LinearregulatorswithPNPseries-passtransistors forlesserrequired headroom 8 1.3 "Buck"Switching RegulatorTopology 9 1.3.1 Basicoperation 9 1.3.2 Significantcurrentwaveformsinbuckregulator 12 1.3.3 BuckregulatorefficiencyneglectingACswitching losses 13 1.3.4 BuckregulatorefficiencyincludingACswitching losses 13 1.3.5 Optimumswitchingfrequency in buckregulator 16 1.3.6 Designrelations-outputfilterinductorselection 17 1.3.7 Designrelations-outputfiltercapacitorselection 21 1.3.8 DC-isolated, regulated voltagefrom abuckregulator 23 1.4 BoostSwitching RegulatorTopology 24 1.4.1 Basicoperation 24 1.4.2 Quantitativerelations-boostregulator 26 1.4.3 Discontinuousand continuousmodesin boostregulator 27 1.4.4 Discontinuous-modeboostregulatordesign relations 28 1.4.5 Boostregulatorapplicationsand flybackcomparison 31 1.5 PolarityInvertingSwitching RegulatorTopology 32 1.5.1 Basicoperation 32 1.5.2 Design relationsin polarityinverter 34 Reference 35 v vi Contents Chapter2. Push-Pull and Forward ConverterTopologies 37 2.1 Introduction 37 2.2 Push-PullTopology 37 2.2.1 Basicoperation-master/slaveoutputs 37 2.2.2 Slaveline-load regulation 40 2.2.3 Slaveabsoluteoutputvoltagelevels 41 2.2.4 Masteroutputinductorminimumcurrentlimitations 41 2.2.5 Fluximbalancein push-pulltopology 42 2.2.6 Indicationsof flux imbalance 45 2.2.7 Testing forflux imbalance 48 2.2.8 Copingwithflux imbalance 49 2.2.9 Powertransformerdesignrelations 51 2.2.10 Primary,secondarypeakand rmscurrents 55 2.2.11 Transistorvoltagestressand leakageinductance spikes 58 2.2.12 Powertransistorlosses 60 2.2.13 Outputpowerand inputvoltagelimitationsin push-pull topology 63 2.2.14 Outputfilterdesign relations 64 2.3 ForwardConverterTopology 66 2.3.1 Basicoperation 66 2.3.2 Designrelations: output/inputvoltage, on time,turns ratios 70 2.3.3 Slaveoutputvoltages 71 2.3.4 Secondaryload,free-wheeling diode,and inductor currents 72 2.3.5 Relationsbetweenprimarycurrent,outputpower, and inputvoltage 73 2.3.6 Maximumoff-voltagestressin powertransistor 74 2.3.7 Practical inputvoltage/outputpowerlimits 74 2.3.8 Forwardconverterwithunequal powerand reset winding turns 75 2.3.9 Forwardconvertermagnetics 78 2.3.10 Powertransformerdesignrelations 81 2.3.11 Outputfilterdesign relations 84 2.4 Double-Ended ForwardConverterTopology 86 2.4.1 Basicoperation 86 2.4.2 Designrelationsand transformerdesign 88 2.5 InterleavedForwardConverterTopology 89 2.5.1 Basicoperation-merits,drawbacks,and outputpower limits 89 2.5.2 Transformerdesign relations 92 2.5.3 Outputfilterdesign 92 Chapter3. Half- and Full-Bridge ConverterTopologies 93 3.1 Introduction 93 3.2 Half-BridgeConverterTopology 93 3.2.1 Basicoperation 93 3.2.2 Half-bridgemagnetics 95 3.2.3 Outputfiltercalculations 97 3.2.4 Blockingcapacitorto avoidflux imbalance 97 3.2.5 Half-bridgeleakageinductanceproblems 98 3.2.6 Double-endedforward converterversushalfbridge 99 Contents vii 3.2.7 Practicaloutputpowerlimitsin halfbridge 100 3.3 Full-BridgeConverterTopology 101 3.3.1 Basicoperation 101 3.3.2 Full-bridgemagnetics 103 3.3.3 Outputfiltercalculations 104 3.3.4 Transformerprimaryblockingcapacitor 104 Chapter4. Flyback ConverterTopologies 105 4.1 Introduction 105 4.2 FlybackConverter-Areasof Application 105 4.3 Discontinuous-ModeFlybacks-BasicOperation 107 4.3.1 Relation betweenoutputvoltageversusinputvoltage, on time, outputload 108 4.3.2 Design relationsand sequentialdecision requirements 109 4.3.3 Flybackmagnetics 114 4.3.4 Flybackdisadvantages 121 4.3.5 Flybacksfor120-or 220-V-ACoperationwithno doublerand full-wave rectifierswitching 125 4.4 Continuous-ModeFlybacks-BasicOperation 127 4.4.1 Discontinuous-modeto continuous-modetransition 130 4.4.2 Designrelations-continuous-modeflybacks 132 4.5 InterleavedFlybacks 137 4.5.1 Summationof secondarycurrentsin interleaved flybacks 138 4.6 Double-Ended Discontinuous-ModeFlyback 138 4.6.1 Area of application 138 4.6.2 Basicoperation 139 4.6.3 Leakageinductanceeffectindouble-endedflyback 140 References 141 Chapter5. Current-Modeand Current-FedTopologies 143 5.1 Introduction 143 5.2 Current-ModeAdvantages 144 5.2.1 Avoidanceoffluximbalancein push-pullconverters 144 5.2.2 Instantaneouscorrection againstlinevoltagechanges withoutthe delayinanerroramplifier(voltage feedforwardcharacteristics) 145 5.2.3 Easeand simplicityof feedback-loopstabilization 145 5.2.4 Parallelingoutputs 146 5.2.5 Improvedload currentregulation 146 5.3 Current-ModeversusVoltage-ModeControlCircuits 146 5.3.1 Voltage-modecontrolcircuitry 146 5.3.2 Current-modecontrolcircuitry 149 5.4 Detailed Explanationof Current-ModeAdvantages 154 5.4.1 Linevoltageregulation 154 5.4.2 Eliminationoffluximbalance 154 5.4.3 Simplified loopstabilizationresultingfromelimination of outputinductorinsmall-signalanalysis 155 5.4.4 Mechanismof load currentregulation 156 5.5 Current-ModeDeficienciesand Problems 158 5.5.1 Constantpeak versusconstantaverageoutputinductor problems 158 viii Contents 5.5.2 Responseto anoutputinductorcurrentdisturbance 161 5.5.3 Slopecompensationto correctproblemsin current mode 161 5.5.4 Slopecompensationwith apositive-goingramp voltage 163 5.5.5 Implementingslopecompensation 164 5.6 Voltage-Fedand Current-FedTopologies 165 5.6.1 Introductionand definitions 165 5.6.2 Deficienciesof voltage-fed,width-modulatedfull- wave bridge 166 5.6.3 Buck-voltage-fedfull-wavebridgetopology-basic operation 170 5.6.4 Buck-voltage-fedfull-wavebridgeadvantages 172 5.6.5 Drawbacksin buck-voltage-fedfull-wave bridge 174 5.6.6 Buck-current-fedfull-wavebridgetopology-basic operation 175 5.6.7 Flyback-current-fed push-pulltopology 189 References 208 Chapter6. MiscellaneousTopologies 211 6.1 SCRResonantTopologies-Introduction 211 6.2 SCRBasics 213 6.3 SCRTurnoffby ResonantSinusoidalAnodeCurrents- Single-Ended ResonantInverterTopology 216 6.4 SCRResonantBridgeTopologies-Introduction 222 6.4.1 SCRhalf-bridgeresonantconverter,series-Ioaded- basicoperation 224 6.4.2 Designcalculations-SCRhalf-bridgeresonant converter, series-loaded 226 6.4.3 Designexample-SCRhalf-bridgeresonantconverter, series-loaded 229 6.4.4 SCRhalf-bridgeresonantconverter,shunt-loaded 230 6.4.5 Single-endedSCRresonantconvertertopologydesign 230 6.5 Cuk ConverterTopology-Introduction 237 6.5.1 Cuk converter-basicoperation 237 6.5.2 Relationbetweenoutput/Inputvoltageand Qon time 239 6.5.3 Ratesof changeof currentsin L1,L2 240 6.5.4 Reducinginputripplecurrentsto zero 241 6.5.5 Isolatedoutputsin the Cuk converter 242 6.6 Low OutputPower"Housekeeping"or "Auxiliary"Topologies- Introduction 242 6.6.1 Housekeeping powersupply-onoutputor inputground 243 6.6.2 Housekeepingsupplyalternatives 244 6.6.3 Specifichousekeepingsupplyblockdiagrams 245 6.6.4 Royer oscillatorhousekeepingsupply-basicoperation 248 6.6.5 Minimum-parts-countflybackasahousekeepingsupply 260 6.6.6 Buckregulatorwith DC-isolatedoutputasa housekeepingsupply 262 References 263 Contents ix Part2 Magnetics and Circuits Designs Chapter7. Transformerand Magnetics Design 267 7.1 Introduction 267 7.2 TransformerCore Materialsand Geometriesand PeakFlux DensitySelection 268 7.2.1 Ferritecorelossesversusfrequencyand fluxdensity forwidelyused corematerials 268 7.2.2 Ferritecoregeometries 271 7.2.3 Peakfluxdensityselection 275 7.3 MaximumTransformerCore OutputPower, PealFlux Density, Core and BobbinAreas, and Coil CurrentDensity 277 7.3.1 Derivationof outputpowerrelationsforforward convertertopology 277 7.3.2 Derivationof outputpowerrelationsfor push-pull topology 280 7.3.3 Derivationof outputpowerrelationsforhalf-bridge topology 286 7.3.4 Outputpowerrelationsinfull-bridgetopology 287 7.3.5 Conversionof outputpowerequationsintocharts permitting coreand operatingfrequencyselection ataglance 288 7.4 TransformerTemperatureRise Calculations 294 7.5 TransformerCopperLosses 298 7.5.1 Introduction 298 7.5.2 Skineffect 300 7.5.3 Skineffect-quantitativerelations 301 7.5.4 AC/DCresistanceratiofor variouswiresizesatvarious frequencies 303 7.5.5 Skineffectwithrectangularcurrentwaveshapes 306 7.5.6 Proximityeffect 308 References 317 Chapter8. Bipolar PowerTransistor Base Drives 319 8.1 Introduction 319 8.2 Objectivesof BipolarBase DriveCircuits 320 8.2.1 Sufficientlyhighcurrentthroughoutthe on time 320 8.2.2 Aspikeof highbase inputcurrentI atinstantof b1 turnon 321 8.2.3 Aspikeof highreversebase currentI atthe instant b2 ofturnoff 322 8.2.4 Abase-to-emitterreversevoltagespike -1 to -5Vin amplitudeatthe instantofturnoff 324 8.2.5 Aschemeto permitthe circuitto workequallywell withhigh-or low-betatransistors 324 8.2.6 High efficiency 325 8.3 BakerClamps 325 x Contents 8.3.1 Bakerclampoperation 328 8.3.2 Transformercoupling intoaBakerclamp 330 8.3.3 Transformerized Bakerclamp 336 8.3.4 InherentBakerclampingin Darlingtontransistors 338 8.3.5 Proportional base drive 329 8.3.6 Miscellaneousbase driveschemes 345 References 351 Chapter9. MOSFETPower Transistorsand Input Drive Circuits 353 9.1 Introduction 353 9.2 MOSFETBasics 354 9.2.1 MOSFETdraincurrentversusdrain-to-sourcevoltage characteristics(Id - VdC) 356 9.2.2 MOSFETinputimpedanceand required gate currents 359 9.2.3 MOSFETgate rise and fall timesfordesireddrain currentrise and falltimes 361 9.2.4 MOSFETgate drivecircuits 362 9.2.5 MOSFETR temperaturecharacteristicsand safe dC operatingarea limits 365 9.2.6 MOSFETgate threshold voltageand temperature characteristic 369 9.2.7 MOSFETswitchingspeedand temperature characteristics 370 9.2.8 MOSFETcurrentratings 371 9.2.9 Parallelling MOSFETs 374 9.2.10 MOSFETsin push-pulltopology 377 9.2.11 MOSFETmaximumgate voltagespecifications 378 9.2.12 MOSFETdrain-to-source("body")diode 379 References 380 Chapter10. Magnetic-AmplifierPostregulators 381 10.1 Introduction 381 10.2 Linearand BuckRegulatorPostregulators 382 10.3 MagneticAmplifiers-Introduction 383 10.3.1 Squarehysteresislookmagneticcoreasafast acting on/offswitchwithelectricallyadjustableon/offtime 385 10.3.2 Blockingand firingtimesin magnetic-amplifier postregulators 388 10.3.3 Magnetic-amplifiercoreresetting and voltageregulation 389 10.3.4 Slave outputvoltageshutdownwith magneticamplifiers 390 10.3.5 Squarehysteresisloopcorecharacteristicsand sources 391 in_?{;squranrrenJnnnnnrJJru",,,,.,rnJJJrn,Jrnn~Jn.J.JJ'-?-';L').Dr ~.2~ 10.3.5 IfY€'f~(lf!f"(sIUc:rfTC<7("cC7rrcrra<u",,·_..- 391 sources . 396 6 Core lossand temperaturerisec~l.culatlons 402 10.3. Designexample-magnetic-amphflerpostregulator 10.3.7 407 10.3.8 Magnetic-amplifiergain 408 10.3.9 Magneticamplifiersforapush-pulloutput .. ModUI~t?r 408 MagneticAmplifierPulse-Width and Erro.rAmphfler 10.4 10.4.1 Circuitdetails,magneticamphflerpulse-width 409 modulator-erroramplifier 412 References Contents xi Chapter 11. Tuman, TurnoffSWitching Lossesand Snubbers 413 11.1 Introduction 413 11.2 TransistorTurnoffLosseswithoutaSnubber 414 11.3 RCDTurnoffSnubberOperation 416 11.4 Selectionof CapacitorSize in RCDSnubber 418 11.5 Design Example-RCDSnubber 419 11.5.1 RCDsnubberreturned to positivesupplyrail 420 11.6 NondissipativeSnubbers 421 11.7 SnubberReduciton of LeakageInductanceSpiketo Avoid Second Breakdown 422 11.8 Transformer-AidedSnubber 425 References 426 Chapter 12. Feedback-LoopStabilization 427 12.1 Introduction 427 12.2 Mechanismof LoopOscillation 429 12.2.1 Gain citerionforastablecircuit 429 12.2.2 Gain slopecriteriaforastablecircuit 430 12.2.3 Gaincharacteristicof LCoutputfilterwithand without equivalentseriesresistance(ESR) in outputcapacitor 433 12.2.4 Pulse-width-modulatorgain 436 12.2.5 Total output LCfilterplusmodulatorand sampling networkgain 437 12.3 Shaping Error-AmplifierGain-versus-FrequencyCharacteristic 437 12.4 Error-AmplifierTransferFuction, Polesand Zeros 440 12.5 Rules forGain SlopeChangesDue to Zero and Pole Frequencies 442 12.6 Derivationof TransferFunctionof an ErrorAmplifierwithSingle Zero and SinglePole fromIts Schematic 444 12.7 Calculationof Type 2Error-AmplifierPhaseShiftfromIts Zero and Pole Locations 445 12.8 Phase Shiftthrough LC FilterHaving ESRin Its OutputCapacitor 446 12.9 Design Example-StabilizingaForwardConverterFeedback LoopwithaType 2ErrorAmplifier 448 12.10 Type 3ErrorAmplifier-When Used and TransferFunction 451 12.11 Phase Lag throughaType 3ErrorAmplifieras Functionof Zero and Pole Locations 453 12.12 Type 3ErrorAmplifierSchematic,TransferFunction,and Zero and Pole Locations 454 12.13 Design Example-StabilizingaForwardConverterFeedback Loopwith aType 3ErrorAmplifier 456 12.14 ComponentSelectionto Yield DesiredType 3Error-Amplifer Gain Curve 458 12.15 ConditionalStabilityin FeedbackLoops 459 12.16 StabilizingaDiscontinuous-ModeFlybackConverter 461 12.16.1 DCgainfromerror-amplifieroutputto outputvoltagenode 461 12.16.2 Discontinuous-modeflybacktransferfunction or AC voltagegainfromerror-amplifieroutputto output voltagenode 462
Description: