Surface Water Quality and Ecological Health in Central Appalachian Streams Nicholas Alexander Cook Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Systems Engineering Leigh-Anne H. Krometis, Chair Emily A. Sarver, Co-Chair William C. Hession Nino S. Ripepi Eugene R. Yagow August 13, 2015 Blacksburg, Virginia Keywords: surface water quality, inorganic ions, untreated household waste, benthic macroinvertebrates, ecology, sustainability, Appalachia Copyright © 2015 Nicholas Cook SURFACE WATER QUALITY AND ECOLOGICAL HEALTH IN CENTRAL APPALACHIAN STREAMS Nicholas Alexander Cook ABSTRACT The Central Appalachian region is home to several resource-extraction industries, a host of globally unique aquatic wildlife species, and region-wide poverty. These overlapping circumstances make solving environmental issues in the region challenging. Of particular focus is the coal mining industry, both because of its prevalence and because of controversial methods of practice such as mountain top mining. One of the primary concerns in the region is the extirpation of sensitive aquatic macroinvertebrate species. Several studies have suggested the primary driver of this loss of biodiversity is due to increased conductivity in streams impacted by these mining practices. The reality is that several pollutant sources coexist in these Central Appalachian watersheds. Because of geographic isolation, many headwater communities lack proper sewerage and discharge directly into nearby waterways, compounding potential effects of upstream mining activities. Additionally, several legacy sites exist throughout the Appalachian region, both underground and surface mining in nature. To best mitigate ecological impacts of all of these pollutant types, relative contributions of each must be understood, as well as the nature of the pollution contributed by each. As a contribution towards this region-wide need for better information on pollution, the studies comprising this dissertation seek to better understand the composition of these different pollutant sources and their in-stream contributions to conductivity. The first paper found that these sources are indeed distinct in their inorganic ion make-up: surface coal mining was found to contribute primarily Ca, K, Ni, Se, and SO 2-, while untreated household waste (UHW) was 4 primarily associated with P. HCO - Mn, and Si were found to be associated with a legacy 3 underground discharge. The second and third scientific studies included here analyzed conductivity’s effect on Virginia Stream Condition Index (VSCI) versus other water quality and habitat parameters as well as the effect of specific ion suites on VSCI score. Findings indicated that excellent habitat extends species resilience against elevated conductivity, with passing VSCI scores found at conductivity in the 600-800 s/cm range in cases of excellent habitat metric scores. Meanwhile, VSCI score suppression was highly related to surface mining-related inorganic ions (Ca, K, Mg, Ni, and SO 2-), but also negatively correlated with ions related to 4 UHW (P and Na). These results indicate the need for quantification of biological responses to specific ions in order to initiate targeted mitigate of pollutants in Central Appalachian watersheds. ACKNOWLEDGMENTS I would like to express deep, heartfelt thanks to my co-advisors Dr. Leigh-Anne Krometis and Dr. Emily Sarver for giving me the opportunity to come back and acquire my PhD, for their personal support, and their sense of humor. Coming to Virginia Tech has changed my life for the better and the thread of this story begins with them. Special thanks to the ARIES project and Dr. Mike Karmis and Dr. John Craynon for providing funding that made my project possible. Thanks to my other committee members Dr. Cully Hession, Dr. Nino Ripepi, and especially Gene Yagow, who provided me expertise and reference material on benthic macroinvertebrates and their environment. Thanks to Jeff Parks for his assistance and patience in teaching me to operate the ICP-MS. Special thanks to our environmental consultants Tim Compton and Travis Lowe, who provided our biological sampling but went beyond the call of duty to provide expertise and assistance in the field and in interpreting data. I would also like to thank all of the sampling buddies that came on the two-day excursion to Wise and Harlan Counties over the two years of sampling. Special mention goes to Dr. Rory Coffey and Tyler Faulkner, who each came on the sampling trip multiple times. Other assistants were Chris Gilson, Tammy Smith, Jordan Wetzig, Jake Cantor, Heather Govenor, Nick Geroux, Julia Sherry, Matt Razaire, Rachel Sellaro, and Leigh-Anne Krometis. Extraordinary thanks are required for Vicki Nystrom and Sara Gokturk for spending countless nights in the lab analyzing samples for bacteria, acid washing bottles, and acidifying samples. They are the glue that made this campaign possible. Lastly, I want to thank my friends and family for their support. Special recognition goes out to my new, amazing, beautiful, brilliant wife, Danielle Cook, whose awesomeness provided me with the extra motivation to complete this degree and be indescribably happy while doing so. iii TABLE OF CONTENTS Abstract ........................................................................................................................................... 2 Acknowledgments.......................................................................................................................... iii Table of Contents ........................................................................................................................... iv List of Tables ................................................................................................................................ vii List of Figures .............................................................................................................................. viii Author’s Preface ............................................................................................................................ ix Chapter 1. Introduction ................................................................................................................... 1 Work cited ................................................................................................................................... 4 Chapter 2. Inventory of Bacterial Impairments in Central Appalachia .......................................... 7 Abstract ....................................................................................................................................... 7 Introduction ................................................................................................................................. 7 Methods .................................................................................................................................... 10 GIS Methodology.................................................................................................................. 13 Results and Discussion ............................................................................................................. 14 Conclusions ............................................................................................................................... 21 Acknowledgements ................................................................................................................... 22 Work cited ................................................................................................................................. 24 Chapter 3. Inorganic Constituents of Conductivity in Five Central Appalachian Watersheds with Mixed Source-Driven Pollutants................................................................................................... 26 Abstract ..................................................................................................................................... 26 Introduction ............................................................................................................................... 27 Methodology ............................................................................................................................. 28 Study Area ............................................................................................................................ 28 Sample Collection ................................................................................................................. 29 Statistical Analysis ................................................................................................................ 32 Results ....................................................................................................................................... 33 Discussion ................................................................................................................................. 39 Acknowledgements ................................................................................................................... 42 Work cited ................................................................................................................................. 43 iv Chapter 4. Habitat and Water Quality as Drivers of Ecological System Health in Central Appalachia .................................................................................................................................... 48 Abstract ..................................................................................................................................... 48 Introduction ............................................................................................................................... 49 Methodology ............................................................................................................................. 51 Study Area ............................................................................................................................ 51 Data Collection ..................................................................................................................... 51 Land Use Metric Development ............................................................................................. 52 Statistical Analyses ............................................................................................................... 56 Results ....................................................................................................................................... 57 Discussion ................................................................................................................................. 61 Conclusions ............................................................................................................................... 63 Acknowledgements ................................................................................................................... 64 Supplemental Material .............................................................................................................. 64 Work Cited ................................................................................................................................ 66 Chapter 5. Benthic Macroinvertebrate Response to Concentrations of Specific Inorganic Ions .. 71 Abstract ..................................................................................................................................... 71 Introduction ............................................................................................................................... 71 Methodology ............................................................................................................................. 73 Study Area ............................................................................................................................ 73 Observed Data ....................................................................................................................... 76 Modeled Data ........................................................................................................................ 77 Statistical Analysis ................................................................................................................ 79 Results ....................................................................................................................................... 80 Discussion ................................................................................................................................. 86 Acknowledgements ................................................................................................................... 88 Work cited ................................................................................................................................. 89 Chapter 6. putting Corporate Social Responsibility to Work in Mining Communities: Exploring Community Wastewater Needs in Central Appalachia ................................................................ 93 Abstract ..................................................................................................................................... 93 Introduction ............................................................................................................................... 94 v Mining CSR in Appalachia ....................................................................................................... 96 Unique Opportunities for Community Solutions .................................................................. 96 The Specific Case of Bacterial Surface Water Impairments in Central Appalachia ............ 98 The Need for Resource Alignment ..................................................................................... 101 Putting Corporate Social Responsibility to Work ............................................................... 104 Conclusions ............................................................................................................................. 106 Acknowledgements ................................................................................................................. 107 Work cited ............................................................................................................................... 108 Chapter 7. Final Remarks and Suggested Future Research ........................................................ 111 Work cited ............................................................................................................................... 113 Appendix A. Raw Data ............................................................................................................... 114 vi LIST OF TABLES Table 2-1. Terms for FIB-Impaired Waters by State .................................................................... 12 Table 2-2. Impaired Stream Miles by States Comprising Central Appalachia ............................. 15 Table 2-3. FIB Impairments in States Comprising Central Appalachia ....................................... 15 Table 2-4. Statewide FIB impairments (and Overall Land Area) vs. Primary Land Use ............. 17 Table 2-5. Statewide FIB impairments vs. Population Density in States Comprising Central Appalachia .................................................................................................................................... 17 Table 2-6. FIB Impairment Incidence with Mining Permits in AOI (Central Appalachia) .......... 19 Table 2-7. Potential FIB Impairment Targets for Mining Operations in AOI (Central Appalachia) ....................................................................................................................................................... 20 Table 3-1. MRLs and MDLs of Inorganic Ions Analyzed via ICP-MS ........................................ 30 Table 3-2. Average and Standard Deviation values for measured ions and water quality parameters in each study watershed .............................................................................................. 34 Table 3-3. Loadings and eigenvalues for the first three principal components (PCs) .................. 37 Table 3-4. Mean values for significant inorganic ions and conductivity ...................................... 39 Table 4-1. Consolidated Land Use Proportions for Observation Subwatersheds ......................... 56 Table 4-2. Average Environmental Variables (and VSCI metrics) for CA Groups ..................... 58 Table 4-3. PC Loadings and Eigenvalues ..................................................................................... 59 Table 4-4. Results of Change Point Analysis with 95% CI .......................................................... 60 Table 5-1. Seasonal model selection/validation results for ion concentrations ............................ 81 Table 5-2. Ion concentrations of cluster analysis-identified groups averaged over all seasons ... 82 Table 5-3. PCA results of seasonal ion concentration data .......................................................... 83 Table 5-4. PCA results of combined seasonal ion concentration data .......................................... 84 Table 6-1. The Seven Questions to Sustainability ........................................................................ 94 Table A-1. Site Descriptions and Locations ............................................................................... 115 Table A-2. Water Quality Data from Field Sampling Points ...................................................... 117 Table A-3. ICP-MS ion concentrations and lab-determined carbonate concentrations .............. 144 Table A-4. Water quality parameter values at biomonitoring sites ............................................ 178 Table A-5. Habitat assessment metrics at biomonitoring sites ................................................... 182 Table A-6. Family-level organism identification at biomonitoring sites I ................................. 187 Table A-7. Family-level organism identification at biomonitoring sites II ................................ 192 Table A-8. Family-level organism identification at biomonitoring sites III ............................... 197 Table A-9. Family-level organism identification at biomonitoring sites IV .............................. 202 Table A-10. Family-level organism identification at biomonitoring sites V .............................. 207 Table A-11. EDAS-generated metrics at biomonitoring sites .................................................... 212 vii LIST OF FIGURES Figure 2-1. Central Appalachian Area of Interest (AOI) .............................................................. 10 Figure 2-2. Drainage Level, Watershed Level, and Community Level Mitigation Strategies at a West Virginia Example Location .................................................................................................. 21 Figure 3-1. Location Map for Study Streams and Sample Sites ................................................... 31 Figure 3-2. Grouping dendogram results from cluster analysis .................................................... 35 Figure 3-3. Variable Importance plot for Random Forest analysis .............................................. 36 Figure 3-4. PCA 3D plot showing CA groupings ......................................................................... 38 Figure 3-5. Correlation Matrix of Conductivity and Inorganic Ions ............................................ 39 Figure 4-1. Kentucky Study Sites and Land Use .......................................................................... 54 Figure 4-2. Virginia Study Sites and Land Use ............................................................................ 55 Figure 4-3. PCA Biplot with CA Groups (and Centroids), VSCI Scores (Pass refers to sites with VSCI ≥ 55) .................................................................................................................................... 60 Figure 4-4. VSCI Scores in Conductivity-Habitat Space with Change Points ............................. 61 Figure 4-5. Virginia Site Locations and Site IDs .......................................................................... 64 Figure 4-6. Kentucky Site Locations and Site IDs ....................................................................... 65 Figure 5-1. Virginia Water Quality and Biomonitoring Sample Sites with Land Use Raster Data ....................................................................................................................................................... 74 Figure 5-2. Kentucky Water Quality and Biomonitoring Sites with Land Use Raster Data ........ 75 Figure 5-3. Process Diagram for ion concentration modelling at biological monitoring sites ..... 78 Figure 5-4. 3D PCA plot of ion concentrations with cluster analysis groupings ......................... 84 Figure 5-5. PC1 vs. PC2 with passing VSCI observations ........................................................... 85 Figure 5-6. Correlation matrix of ions and VSCI scores .............................................................. 86 Figure 6-1. Central Appalachian Region Political Boundaries, Mining Extents and FIB-Impacted watershed areas ............................................................................................................................. 97 Figure 6-2. Permit, Watershed, and Community-Level Mitigation Impacts from Mining Operations ................................................................................................................................... 101 Figure 6-3. Stakeholders, Impediments, and Sustainability Capital in Central Appalachia ....... 102 viii AUTHOR’S PREFACE This dissertation represents a compilation of five separate manuscripts (Chapters 2 through 6) proceeded by an introductory chapter and followed by a chapter that identifies primary conclusions and provides recommendations for further research. The dissertation author is the primary author for the conference proceedings publication and the four articles. Chapter 2 provides an inventory of bacterial impairments in the central Appalachian region. By comparing land use, population density, impairment type, and mining permit coverage, a GIS analysis showed that bacterial impairments in central Appalachia occur primarily in low- population, forested watersheds within 25 km of mining operations. The nature of the surrounding conditions suggest that the sources for these bacterial impairments are most likely wildlife, domestic animals, or untreated household waste (UHW). Chapter 2 was peer-reviewed and published in the Proceedings of the Environmental Considerations for Energy Production Symposium, which was held in Charleston, WV April 14-18, 2013 (Cook, N. A., Krometis, L. A., & Sarver, E. A. (2013). Inventory of Bacterial Impairments in Central Appalachia. In J. R. Craynon (Ed.), Environmental Considerations in Energy Production (pp. 214-228). Englewood, CO: Society for Mining, Metallurgy, and Exploration). Supported by the general finding from Chapter 2 that bacterial impairments may co-exist with other primary impairments in the central Appalachian region, a two year field study was initiated to investigate the effects of specific pollutant sources on water quality and ecological health in headwater streams. Chapters 3-5 are related to analysis of data collected as part of the field study. Chapter 3 provides analysis of ion concentration data collected from August 2012 to August 2014 during an intensive clustered watershed monitoring campaign. Using multivariate statistical methods, we demonstrated that different pollutant sources (UHW, surface coal mining, legacy underground mine discharges) could be identified by distinct trends in constituent ions. Specific relationships link phosphorus (P) to UHW, SO 2- to surface coal mining, and Mn to legacy 4 underground mine discharges. Chapter 3 was peer-reviewed and accepted in Ecological Engineering (Cook, N. A., Krometis, L. H., Sarver, E. A., & Huang, J. (2015). Inorganic constituents of conductivity in five central Appalachian watersheds with mixed source-driven pollutants. Ecological Engineering, 82, 175-183. doi: http://dx.doi.org/10.1016/j.ecoleng.2015 .04.090). Chapter 4 provides analysis of the seasonal biological monitoring data collected in the study watershed cluster between August 2011 and May 2014. This study compared Virginia Stream Condition Index (VSCI) scores across sites. Higher VSCI scores were correlated with low channel alteration, high vegetation of the riparian and bank zones, and diverse epifaunal substrate, while lower VSCI scores were associated with surface disturbance and elevated conductivity. Results suggest that both habitat and water quality are important for ecological health, and support a holistic approach to ecological improvement. Chapter 4 was revised in accordance with an initial round of largely positive peer reviews and has been resubmitted to Ecological Engineering. ix Chapter 5 presents an effort to link inorganic ion concentration data collected in the field (Chapter 3) to model concentrations at biological monitoring (Chapter 4) through geo-statistical models. Analysis of VSCI scores and inorganic ions showed negative correlations with ions related to surface coal mining (Ca, K, Mg, Ni, SO 2-), as well as UHW (most specifically, P and 4 Na). Chapter 5 will be submitted to Ecological Engineering in August 2015. Finally, Chapter 6 presents a review and discussion residential wastewater challenges in the central Appalachian region within the current economic circumstances and regulatory framework, and considering the ultimate aims of corporate social responsibility (CSR) efforts that are underway across many industry sectors. This paper suggests that local industry, along with other key stakeholders, might play a role in solving regional infrastructure challenges, specifically UHW; but that strengthened communication and cooperation amongst all stakeholders will be instrumental in prioritizing regional goals and allocation of resources. Chapter 6 was peer-reviewed and published in Resources (April 2015). x
Description: