ebook img

Supervised Learning with Quantum Computers PDF

293 Pages·2018·5.613 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Supervised Learning with Quantum Computers

Quantum Science and Technology Maria Schuld · Francesco Petruccione Supervised Learning with Quantum Computers Quantum Science and Technology Series editors Raymond Laflamme, Waterloo, ON, Canada Gaby Lenhart, Sophia Antipolis, France Daniel Lidar, Los Angeles, CA, USA Arno Rauschenbeutel, Vienna University of Technology, Vienna, Austria Renato Renner, Institut für Theoretische Physik, ETH Zürich, Zürich, Switzerland MaximilianSchlosshauer,DepartmentofPhysics,UniversityofPortland,Portland, OR, USA Yaakov S. Weinstein, Quantum Information Science Group, The MITRE Corporation, Princeton, NJ, USA H. M. Wiseman, Brisbane, QLD, Australia Aims and Scope The book series Quantum Science and Technology is dedicated to one of today’s mostactiveandrapidlyexpandingfieldsofresearchanddevelopment.Inparticular, the series will be a showcase for the growing number of experimental implemen- tations and practical applications of quantum systems. These will include, but are not restricted to: quantum information processing, quantum computing, and quantum simulation; quantum communication and quantum cryptography; entan- glement and other quantum resources; quantum interfaces and hybrid quantum systems; quantum memories and quantum repeaters; measurement-based quantum control and quantum feedback; quantum nanomechanics, quantum optomechanics and quantum transducers; quantum sensing and quantum metrology; as well as quantum effects in biology. Last but not least, the series will include books on the theoretical and mathematical questions relevant to designing and understanding these systems and devices, as well as foundational issues concerning the quantum phenomena themselves. Written and edited by leading experts, the treatments will be designed for graduate students and other researchers already working in, or intending to enter the field of quantum science and technology. More information about this series at http://www.springer.com/series/10039 Maria Schuld Francesco Petruccione (cid:129) Supervised Learning with Quantum Computers 123 Maria Schuld Francesco Petruccione Schoolof Chemistry andPhysics, Schoolof Chemistry andPhysics QuantumResearch Group University of KwaZulu-Natal University of KwaZulu-Natal Durban,SouthAfrica Durban,SouthAfrica and and National Institute for Theoretical National Institute for Theoretical Physics (NITheP) Physics (NITheP) KwaZulu-Natal, SouthAfrica KwaZulu-Natal, SouthAfrica and and Schoolof Electrical Engineering Xanadu QuantumComputing Inc Korea AdvancedInstitute of Science Toronto, Canada andTechnology(KAIST) Daejeon,Republic of Korea ISSN 2364-9054 ISSN 2364-9062 (electronic) QuantumScience andTechnology ISBN978-3-319-96423-2 ISBN978-3-319-96424-9 (eBook) https://doi.org/10.1007/978-3-319-96424-9 LibraryofCongressControlNumber:2018950807 ©SpringerNatureSwitzerlandAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland For Chris and Monique Preface Quantum machine learning is a subject in the making, faced by huge expectations due to its parent disciplines. On the one hand, there is a booming commercial interest in quantum technologies, which are at the critical point of becoming availablefortheimplementationofquantumalgorithms,andwhichhaveexceeded therealmofapurelyacademicinterest.Ontheotherhand,machinelearningalong with artificial intelligence is advertised as a central (if not the central) future technology into which companies are bound to invest to avoid being left out. Combining these two worlds invariably leads to an overwhelming interest in quantum machine learning from the IT industry, an interest that is not always matchedbythescientificchallengesthatresearchersareonlybeginningtoexplore. To find out what quantum machine learning has to offer, its numerous possible avenues first have to be explored by an interdisciplinary community of scientists. Weintendthisbooktobeapossiblestartingpointforthisjourney,asitintroduces somekeyconcepts,ideasandalgorithmsthataretheresultofthefirstfewyearsof quantum machine learning research. Given the young nature of the discipline, we expectalotofnewanglestobeaddedtothiscollectioninduetime.Ouraimisnot to provide a comprehensive literature review, but rather to summarise themes that repeatedlyappearinquantummachinelearning,toputthemintocontextandmake them accessible to a broader audience in order to foster future research. On the highest level, we target readers with a background in either physics or computer science that have a sound understanding of linear algebra and computer algorithms. Having said that, quantum mechanics is a field based on advanced mathematicaltheory(anditdoesbynomeanshelpwithasimplephysicalintuition either), and these access barriers are difficult to circumvent even with the most well-intended introduction to quantum mechanics. Not every section is therefore easytounderstandforreaderswithoutexperienceinquantumcomputing.However, we hope that the main concepts are within reach and try to give higher level overviews wherever possible. vii viii Preface We thank our editors Aldo Rampioni and Kirsten Theunissen for their support and patience. Our thanks also go to a number of colleagues and friends who have helped to discuss, inspire and proofread the book (in alphabetical order): Betony Adams, Marcello Benedetti, Gian Giacomo Guerreschi, Vinayak Jagadish, Nathan Killoran, Camille Lombard Latune, Andrea Skolik, Ryan Sweke, Peter Wittek and Leonard Wossnig. Durban, South Africa Maria Schuld March 2018 Francesco Petruccione Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Merging Two Disciplines. . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 The Rise of Quantum Machine Learning. . . . . . . . . . . . . . 4 1.1.3 Four Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.4 Quantum Computing for Supervised Learning. . . . . . . . . . 6 1.2 How Quantum Computers Can Classify Data. . . . . . . . . . . . . . . . 7 1.2.1 The Squared-Distance Classifier . . . . . . . . . . . . . . . . . . . . 8 1.2.2 Interference with the Hadamard Transformation. . . . . . . . . 9 1.2.3 Quantum Squared-Distance Classifier . . . . . . . . . . . . . . . . 13 1.2.4 Insights from the Toy Example . . . . . . . . . . . . . . . . . . . . 16 1.3 Organisation of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 Machine Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1 Prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.1 Four Examples for Prediction Tasks . . . . . . . . . . . . . . . . . 23 2.1.2 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 How Data Leads to a Predictive Model. . . . . . . . . . . . . . . 30 2.2.2 Estimating the Quality of a Model . . . . . . . . . . . . . . . . . . 32 2.2.3 Bayesian Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.4 Kernels and Feature Maps . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3 Training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3.1 Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.2 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . 42 2.4 Methods in Machine Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.4.1 Data Fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 48 ix x Contents 2.4.3 Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.4.4 Kernel Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3 Quantum Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.1 Introduction to Quantum Theory . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.1.1 What Is Quantum Theory?. . . . . . . . . . . . . . . . . . . . . . . . 76 3.1.2 A First Taste. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.1.3 The Postulates of Quantum Mechanics . . . . . . . . . . . . . . . 84 3.2 Introduction to Quantum Computing . . . . . . . . . . . . . . . . . . . . . . 91 3.2.1 What Is Quantum Computing? . . . . . . . . . . . . . . . . . . . . . 91 3.2.2 Bits and Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.2.3 Quantum Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.2.4 Quantum Parallelism and Function Evaluation. . . . . . . . . . 101 3.3 An Example: The Deutsch-Josza Algorithm. . . . . . . . . . . . . . . . . 103 3.3.1 The Deutsch Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.3.2 The Deutsch-Josza Algorithm. . . . . . . . . . . . . . . . . . . . . . 104 3.3.3 Quantum Annealing and Other Computational Models. . . . 106 3.4 Strategies of Information Encoding . . . . . . . . . . . . . . . . . . . . . . . 108 3.4.1 Basis Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 3.4.2 Amplitude Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.4.3 Qsample Encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3.4.4 Dynamic Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.5 Important Quantum Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3.5.1 Grover Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3.5.2 Quantum Phase Estimation. . . . . . . . . . . . . . . . . . . . . . . . 117 3.5.3 Matrix Multiplication and Inversion . . . . . . . . . . . . . . . . . 119 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4 Quantum Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.1 Computational Complexity of Learning . . . . . . . . . . . . . . . . . . . . 127 4.2 Sample Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.2.1 Exact Learning from Membership Queries . . . . . . . . . . . . 133 4.2.2 PAC Learning from Examples . . . . . . . . . . . . . . . . . . . . . 134 4.2.3 Introducing Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.3 Model Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5 Information Encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.1 Basis Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.1.1 Preparing Superpositions of Inputs . . . . . . . . . . . . . . . . . . 142 5.1.2 Computing in Basis Encoding . . . . . . . . . . . . . . . . . . . . . 145 5.1.3 Sampling from a Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . 146

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.