ebook img

Supersymmetric Schur functions and Lie superalgebra representations PDF

221 Pages·2007·1.446 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Supersymmetric Schur functions and Lie superalgebra representations

FACULTEIT WETENSCHAPPEN Supersymmetric Schur functions and Lie superalgebra representations Els Moens Promotor: Prof. dr. Joris Van der Jeugt Proefschriftingediendtothetbehalenvandegraadvan DoctorindeWetenschappen: Wiskunde FaculteitWetenschappen VakgroepToegepasteWiskundeenInformatica Academiejaar2006–2007 Dankwoord Bijdevoltooiingvanditdoctoraatsproefschriftrichtikgraageenwoordvandankaan iedereendiemijdevoorbijejarenmetraadendaadheeftbijgestaan. In de eerste plaats wil ik prof. Joris Van der Jeugt bedanken. Dankzij zijn exper- tise in de wereld van de supersymmetrische functies en Lie superalgebra’s werd dit proefschrift voor mij een ware ontdekkingstocht. Hij gaf mij zeer gerichte lees- en onderzoekopdrachten zodat ik langzamerhand ook mijn weg vond in deze – voor mij nogonbekende–wereld. Zonderzijnantwoordenopdievelevragen,debegeleiding, detalrijkesuggestiesenhintenzoudezethesisnooittotstandzijngekomen. Bedankt, Joris! Verderwensikookde(ex-)collega’stebedankenvoordeaangenamewerkomge- ving. Enkelen wens ik hier afzonderlijk te vermelden: mijn bureaugenoten door de jaren heen: Karim, Tom, Annelies en Lizzy, zij moesten immers alles als eerste aan- horen, van de vreugde bij het vinden van een bewijs, over het praten over koetjes en kalfjes heen tot de stress bij het schrijven van een doctoraatsthesis; Stijn, voor het luisterend oor, de vriendschap en de antwoorden op heel wat vragen; Glad, voor het oplossenvanhetzoveelsteLATEX-probleem; entenslotteAnn, Wouter, Paul, Herbert, KatiaenStefanievoordelogistiekesteunennogveelmeer. Verderwilikookmijnouders, familieenvriendenbedanken. Mijnouderswilik danken, omdat ze mij de kans hebben gegeven om te studeren, zij waren steeds daar ommijtemotiverenenteblijvensteunen;familieenvriendenomdatjulliesteedsge- interesseerdbleveninwatikdeed;enBartomdathijsteedsinmijisblijvengelovenen omwillevandeonvoorwaardelijkesteunzodatikondanksallestochhebdoorgezet;en tenslotte,onsdochtertjeJana,voordeontwapenendelachbijhethorenvanhetverhaal vandedag. ElsMoens, Gent,december2006 Contents Preface ix 1 SymmetricSchurFunctions 1 1.1 Partitionsandcompositepartitions . . . . . . . . . . . . . . . . . . . 1 1.1.1 Partitionsanddiagrams . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Skewdiagramsandtableaux . . . . . . . . . . . . . . . . . . 3 1.1.3 Compositepartitions . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Theringofsymmetricfunctions . . . . . . . . . . . . . . . . . . . . 5 1.3 SymmetricSchurfunctions . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 SymmetricSchurfunctionsindexedbyapartitionλ. . . . . . 7 1.3.2 SymmetricSchurfunctionsindexedbyacompositepartitionν¯;µ 11 1.4 Generatingfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5 PropertiesofsymmetricSchurfunctions . . . . . . . . . . . . . . . . 15 1.5.1 Transitionmatrices . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.2 OperationsonsymmetricSchurfunctions . . . . . . . . . . . 16 1.5.3 Generalizationstothecaseofcompositepartitions . . . . . . 19 1.6 Appendix: Formulary . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.6.1 SymmetricSchurfunctionsindexedbyapartitionλ. . . . . . 24 1.6.2 SymmetricSchurfunctionsindexedbyacompositepartitionν¯;µ 26 2 SupersymmetricSchurFunctions 29 2.1 Supersymmetricfunctionsindexedbyλ . . . . . . . . . . . . . . . . 30 2.1.1 Elementaryandcompletesupersymmetricfunctions . . . . . 30 2.1.2 SupersymmetricSchurfunctions . . . . . . . . . . . . . . . . 31 2.1.3 Supertableaux. . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Supersymmetricbases . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.1 Supersymmetricpowerfunctions . . . . . . . . . . . . . . . 34 vi Contents 2.2.2 Themonomialsupersymmetricfunctionsandtheforgottensu- persymmetricfunctions. . . . . . . . . . . . . . . . . . . . . 35 2.2.3 Generatingfunctions . . . . . . . . . . . . . . . . . . . . . . 38 2.3 SupersymmetricSchurfunctionsindexedbyν¯;µ . . . . . . . . . . . 40 2.3.1 Definitionandproperties . . . . . . . . . . . . . . . . . . . . 40 2.3.2 (m|n)-standardcompositepartitionsandsupertableaux . . . . 42 2.4 Appendix: Formulary . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.4.1 Supersymmetricfunctionsindexedbya(skew)partition . . . 50 2.4.2 SupersymmetricSchurfunctionsindexedbyacompositepar- titionν¯;µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 Liesuperalgebrasandtheirrepresentations 55 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 DefinitionofLiesuperalgebras . . . . . . . . . . . . . . . . . . . . . 56 3.3 TheenvelopingalgebraofaLiesuperalgebra . . . . . . . . . . . . . 60 3.4 ACartansubalgebraandsimplerootsystems . . . . . . . . . . . . . 60 3.5 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.5.1 Irreducibleandfaithfulrepresentations . . . . . . . . . . . . 63 3.5.2 Highestweightrepresentations . . . . . . . . . . . . . . . . . 64 3.5.3 Typicalandatypicalrepresentationsandcharacterformulas . 65 3.6 Highestweightandcompositepartitions . . . . . . . . . . . . . . . . 67 3.7 Covariant,contravariantandmixedtensormodules . . . . . . . . . . 70 3.8 AtypicalityandtheatypicalitymatrixofΛ . . . . . . . . . . . . . . . 71 4 AdeterminantalformulaforsupersymmetricSchurpolynomials 75 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Covariantmodulesforgl(m|n) . . . . . . . . . . . . . . . . . . . . . 78 4.3 Adeterminantalformulafors (x/y). . . . . . . . . . . . . . . . . . 87 λ 4.4 Fourcharacterizingproperties . . . . . . . . . . . . . . . . . . . . . 91 4.5 AproofofcoincidencewiththeSergeev-Pragaczformula . . . . . . . 95 5 DeterminantalformulaforcompositesupersymmetricS-functions 101 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.2 Normally,criticallyandquasicriticallyrelatedroots . . . . . . . . . . 103 5.3 Someexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4 Acharacterformulaforaspecialclassofcompositepartitions . . . . 111 5.5 Adeterminantalformulaforch(V ) . . . . . . . . . . . . . . . . . 115 ν¯;µ 5.6 Thecharacterformulaands (x/y) . . . . . . . . . . . . . . . . . . 118 ν¯;µ Contents vii 6 Dimensionformulasforgl(m|n)representations 131 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.2 t-dimensionformulaforcovariantrepresentations . . . . . . . . . . . 132 6.2.1 Aformulaforthet-dimension . . . . . . . . . . . . . . . . . 135 6.2.2 Furthersimplifications,examplesandapplications . . . . . . 142 6.3 t-dimensionformulaformixedtensorrepresentations . . . . . . . . . 145 6.3.1 Aformulaforthet-dimension . . . . . . . . . . . . . . . . . 145 6.3.2 Thet-dimensioninthespecialcaseν¯;µ=(bc);(bc) . . . . . 151 A Nederlandstaligesamenvatting 175 A.1 SymmetrischeSchur-functies . . . . . . . . . . . . . . . . . . . . . . 175 A.1.1 Partitiesensamengesteldepartities . . . . . . . . . . . . . . 175 A.1.2 Deringvansymmetrischefuncties . . . . . . . . . . . . . . . 176 A.1.3 SymmetrischeSchur-functies . . . . . . . . . . . . . . . . . 177 A.2 SupersymmetrischeSchur-functies . . . . . . . . . . . . . . . . . . . 178 A.2.1 Supersymmetrischefunctiesge¨ındexeerddoorλ . . . . . . . 178 A.2.2 Supersymmetrischebasissen . . . . . . . . . . . . . . . . . . 180 A.2.3 SupersymmetrischeSchur-functiesge¨ındexeerddoorν¯;µ. . . 181 A.3 Liesuperalgebra’senrepresentaties . . . . . . . . . . . . . . . . . . 182 A.3.1 Definities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 A.3.2 Hoogstegewichtenversussamengesteldepartities . . . . . . 184 A.3.3 Covariante,contravarianteengemengdetensormodulen . . . 185 A.3.4 AtypicaliteitendeatypicaliteitsmatrixvanΛ . . . . . . . . . 185 A.4 EendeterminantformulevoorsupersymmetrischeS-functies . . . . . 186 A.4.1 Covariantemoduleningl(m|n)zijntam . . . . . . . . . . . . 186 A.4.2 Eendeterminantformulevoors (x/y) . . . . . . . . . . . . . 188 λ A.4.3 Vierkarakteriserendeeigenschappen. . . . . . . . . . . . . . 189 A.4.4 Eendirectenonafhankelijkbewijs . . . . . . . . . . . . . . . 189 A.5 Determinantformulevoorsupersymmetrischefunctiess (x/y) . . . 190 ν¯;µ A.5.1 Inleiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 A.5.2 Normaal,kritischenquasikritischgerelateerdewortels . . . . 190 A.5.3 Eenkarakterformulevoorkritischerepresentaties . . . . . . . 192 A.5.4 Dekarakterformuleens (x/y) . . . . . . . . . . . . . . . 194 ν¯;µ A.6 Dimensieformulesvoorrepresentatiesingl(m|n) . . . . . . . . . . . 195 A.6.1 Inleiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 A.6.2 t-dimensievancovarianterepresentaties . . . . . . . . . . . . 195 A.6.3 t-dimensievangemengdetensorrepresentaties . . . . . . . . 197 B Erratum 199 viii Contents Bibliography 201 Preface “Fermionen und Bosonen sind fundamental verschiedene Typen von Quan- tenteilchen. So wenig ein gewo¨hnlicher Spiegel einen Apfel wie eine Birne aussehen la¨st, so wenig vermag eine der u¨blichen Symmetrien Fermionen in Bosonenzuverwandeln. DasschaffterstderZauberspiegelderSupersymme- trie.” (Prof.Dr.J.Jolie[30]) Lie superalgebras and their representations continue to play an important role in theunderstandingandexploitationofsupersymmetryinphysicalsystems. TheLiesu- peralgebrasunderconsiderationhere,namelygl(m|n)orsl(m|n)(sometimesdenoted by U(m|n) or SU(m|n)), have applications in quantum mechanics [1, 42], nuclear physics [6, 14, 27], string theory [19, 23], conformal field theory [21], supergrav- ity [2, 35], M-theory [20], lattice QCD [7, 9, 15], solvable lattice models [62], spin systems [24] and quantum systems [58]. Also their affine extensions [21, 24] or q- deformations [1, 58] play an important role. In most of the applications, it are the irreducible representations or “multiplets” of gl(m|n) (sometimes referred to as sim- ple gl(m|n) modules) that play a role. But, despite the fact that Lie superalgebras andtheirrepresentationshavebeenthesubjectofmuchattention,thereisnocomplete description of the finite-dimensional complex irreducible representations of even the simplestfamilyofbasicclassicalLiesuperalgebras,sl(m|n). RepresentationtheoryofLiesuperalgebras,andinparticularofgl(m|n)oritssim- ple counterpart sl(m|n), is not a straightforward copy of the corresponding theory for simple Lie algebras. The development of gl(m|n) representation theory is quite remarkable. Shortly after the classification of finite-dimensional simple Lie superal- gebras [31, 59], Kac considered the problem of classifying all finite-dimensional ir- reduciblerepresentationsofthebasicclassicalLiesuperalgebras[32]. Forasubclass of these irreducible representations, known as “typical” representations, Kac derived a character formula closely analogous to the Weyl character formula for irreducible x Preface representationsofsimpleLiealgebras[32]. Theproblemofobtainingacharacterfor- mula for the remaining “atypical” irreducible representations has been the subject of intensiveinvestigation. From a computational and practical point of view, it is useful to identify charac- ters with supersymmetric S-functions, since it is easy to work with S-functions, for whichmanypropertiesareknown. Althoughthisidentificationholdsforcovariantand contravariantirreduciblerepresentations[10,22],wherethecorrespondingS-function islabelledbyasinglepartitionλ,itfailsformixedtensorirreduciblerepresentations, wherethecorrespondingS-functionislabelledbyacompositepartitionν¯;µ.Theprob- lemiswelldescribedandanalysedin[70],wherefurthermoreacharacterformulafor atypical gl(m|n) irreducible representations is conjectured. Since then, some partial solutions to this problem were given, e.g. for so-called generic representations [53], forsinglyatypicalrepresentations[12,68,71],orfortamerepresentations[34]. More recently,thecharacterproblemforgl(m|n)wasprincipallysolvedbySerganova[60], whogaveanalgorithmtocomputecompositionfactormultiplicitiesofso-calledKac- modules,andthusindirectlythecharacter. In[73],asubstantiallysimplermethodwas conjectured to compute these composition factor multiplicities; this conjecture was proved by Brundan [13]. Still, the method using composition factor multiplicities of Kac-modules remains a rather indirect way of computing characters. Recently, there wasafurtherbreakthroughforthisproblem. DevelopingontheworkofBrundan,Yu- caiSuandZhang[66]managedtocomputethegeneralizedKazhdan-Lusztigpolyno- mialsofgl(m|n)irreduciblerepresentations, leadingtoarelativelyexplicitcharacter formula for all these irreducible representations, and thus proving that the character formulaconjecturedin[70]holds. ThemainideaofChapter1istofixsomenotationandterminology,andtodiscuss brieflytheringofsymmetricfunctions. Asalreadymentioned, symmetricandsuper- symmetricfunctionswillbeparametrizedbyeitherpartitionsorcompositepartitions. Those objects play an important role in this thesis. So, we will give their definition, their representation by means of Young diagrams and we will explain the notion of (composite) tableaux. In the second section we consider the ring of symmetric func- tions. Thebases,knownforthisring,arediscussedbriefly. Nexttothosebases,there stillexistsanotherandevenmoreimportantbasis: thesymmetricSchurfunctions. As severalbasesoftheringofsymmetricfunctionsaredefined,therelationbetweenthose basesisgivenbymeansoftransitionmatrices. Duetotherelationbetweensymmetric functionsandcharactersoftheirreduciblerepresentations,theremainderofthechapter isdedicatedtothesymmetricSchurfunctions. Herewemakeadifferencebeweenthe symmetric functions parametrized by either a partition or a composite partition. For bothfamilies,wegivethedefinitionandalotofpropertiesandformulas. Someprop-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.