REPORT THEJOURNALOFBIOLOGICALCHEMISTRYVOL.288,NO.26,pp.18778–18783,June28,2013 ©2013byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PublishedintheU.S.A. Succinylated Octopamine thepreviouslydescribedacetates.Chemically,bimodaldeacti- vationofbiogenicaminesviaacetylationandsuccinylationpar- Ascarosides and a New Pathway allelsposttranslationalmodificationofproteinsviaacetylation of Biogenic Amine Metabolism andsuccinylationofL-lysine.Ourresultsrevealasmall-mole- cule connection between neurotransmitter signaling and in Caenorhabditis elegans*□S interorganismalregulationofbehaviorandsuggestthatascaro- side biosynthesis is based in part on co-option of degradative Receivedforpublication,April12,2013,andinrevisedform,May13,2013 Published,JBCPapersinPress,May20,2013,DOI10.1074/jbc.C113.477000 biochemicalpathways. AlexanderB.Artyukhin‡§,JoshuaJ.Yim‡,JaganSrinivasan¶1, YevgeniyIzrayelit‡,NeelanjanBose‡,StephanH.vonReuss‡2, YearaJo¶,JamesM.Jordan(cid:1),L.RyanBaugh(cid:1),MicheongCheong§, PaulW.Sternberg¶3,LeonAvery§,andFrankC.Schroeder‡4 Small-molecule signals that incorporate glycosides of the Fromthe‡BoyceThompsonInstituteandDepartmentofChemistryand dideoxysugar ascarylose (“ascarosides”) play a central role in ChemicalBiology,CornellUniversity,Ithaca,NewYork14853,the thebiologyofthemodelorganismCaenorhabditiselegans,reg- §DepartmentofPhysiologyandBiophysics,VirginiaCommonwealth ulating several aspects of development and behavior. Ascaro- University,Richmond,Virginia23298,the¶HowardHughesMedical side-basedsignalingmoleculeswereinitiallyidentifiedascom- InstituteandDivisionofBiology,CaliforniaInstituteofTechnology, Pasadena,California91125,andthe(cid:1)DepartmentofBiology,DukeCenter ponents of the dauer pheromone, a population density signal Do forSystemsBiology,DukeUniversity,Durham,NorthCarolina27708 thatinducesentryintothedauerstage,ahighlystress-resistant wn alternatelarvalstagethatcansurviveformonthswithoutfood loa d Background: Ascarosides play central roles regulating intakebeforeresumingnormaldevelopment(1,2).Subsequent ed C.elegansbehavioranddevelopment. studiesshowedthatascarosidesalsoregulateC.eleganslifespan fro m Results:L1larvaeproducestarvation-dependentascaro- (3),aswellasseveraldifferentbehaviors,includingsex-specific h sCidoenscbluassieodno:nSusuccccininyylalatitoendoisctaonpaimmpinoert.ant pathway for aFtitgr.a1cAti)o.nThaevositdruanctcuer,edsiospfethrseala,scaanrdosaidggerseagraetihoingh(l4y–m1o0d)u(lsaere, ttp://ww mSiegtnaibfioclaisnmceo:fbOiocgtoepnaicmaimneineasscinarCo.siedleegsancso.nnect neu- ipnrtiemgararytimngetbaubioldliicnpgabthlowcakyssf(r1o1m).Aamscianroosaidcieds,iglinpaidli,nagnisdhoigthhelyr w.jbc.o rotransmitterandascarosidesignalinginC.elegans. conserved among nematodes, including both parasitic and rg a/ non-parasiticspecies(12–14). t D Theascarosides,small-moleculesignalsderivedfromcombi- The biosynthesis of nematode ascarosides is only partially uk e natorial assembly of primary metabolism-derived building understood. Although the lipid-like side chains have been U n blocks,playacentralroleinCaenorhabditiselegansbiologyand shown to derive from peroxisomal (cid:1)-oxidation of longer ive regulate many aspects of development and behavior in this chainedprecursors(11,15–17),site(s)andenzymesinvolvedin rsity model organism as well as in other nematodes. Using HPLC- attachingsubstituentstothe2-and4-positionsoftheascary- o n MS/MS-basedtargetedmetabolomics,weidentifiednovelasca- lose or the side chain have not been characterized. Here we A u g rosidesincorporatingasidechainderivedfromsuccinylationof describetheidentificationofanewseriesofmodularascaro- u s the neurotransmitter octopamine. These compounds, named sides,inwhichthe4-positionoftheascaryloseisconnectedtoa t 26 osas#2,osas#9,andosas#10,areproducedpredominantlybyL1 sidechainderivedfromsuccinylationoftheneurotransmitter , 2 0 1 larvae, where they serve as part of a dispersal signal, whereas octopamine. These octopamine ascarosides are specifically 5 these ascarosides are largely absent from the metabolomes of producedbyL1larvae,whichhadnotpreviouslybeenstudied other life stages. Investigating the biogenesis of these octop- in detail. The incorporation of N-succinylated octopamine in amine-derivedascarosides,wefoundthatsuccinylationrepre- theseascarosidesthenledustoinvestigatewhethersuccinyla- sents a previously unrecognized pathway of biogenic amine tion plays a general role in biogenic amine metabolism in metabolism. At physiological concentrations, the neurotrans- C.elegans. mittersserotonin,dopamine,andoctopamineareconvertedtoa EXPERIMENTALPROCEDURES large extent into the corresponding succinates, in addition to C.elegansStrainsandGeneralCultureMethods—Wild-type *ThisworkwassupportedinpartbyNationalInstitutesofHealthGrants C.elegans(N2,Bristol),MT13113tdc-1,MT9455tbh-1,RB859 GM088290 (to F.C.S.), GM008500 (to Y.I.), DK83593 (to L.A.), and daf-22,andVS8dhs-28mutantstrainswereobtainedfromthe GM085285(toF.C.S.andP.W.S.),andNationalScienceFoundationGrant Caenorhabditis Genetics Center (CGC). Strains were main- IOS1120206(toL.R.B.),aswellastheVassarCollegeMaryLandonSague tainedat20°ConNGM5plateswithbacteria(Escherichiacoli Fellowship(toY.I.). □S ThisarticlecontainssupplementalFigs.S1–S11. OP50orHB101)asfood. 1Presentaddress:Dept.ofBiologyandBiotechnology,WorcesterPolytechnic Preparation of L1 Exo-metabolome Samples—Worms were Institute,Worcester,MA01609. grown at 20–22°C either on NGM plates seeded with E.coli 2Presentaddress:Dept.ofBioorganicChemistry,MaxPlanckInstitutefor ChemicalEcology,07745Jena,Germany. 3AnInvestigatoroftheHowardHughesMedicalInstitute. 4Towhomcorrespondenceshouldbeaddressed.Tel.:607-254-4391;Fax: 5Theabbreviationsusedare:NGM,nematodegrowthmedium;MS/MS,tan- 607-254-2958;E-mail:[email protected]. demmassspectrometry. 18778 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER26•JUNE28,2013 REPORT: BiogenicAmineMetabolismviaSuccinylation HB101orinliquidculture(S-completemediumsupplemented anterioramphidsensoryneurons.Avoidanceofosas#9isindi- with3%HB101).CultureswerestartedwithsynchronizedL1 cated by a backward motion away from the drop. Such a larvae. Gravid worms were collected and treated with 20% response was scored as a positive response. The avoidance bleachand0.3MNaOHfor6mintoyieldacleaneggsuspen- index was calculated by dividing the number of positive sion.TheeggswerewashedtwicewithM9buffer,resuspended responsestothetotalnumberoftrials(18).Thewormswere infreshM9atadensityof30–500eggs/(cid:2)l,andincubatedwith allowed to freely move on the plate for about 20–30 min shakingat25°Cfor24h.HatchedL1larvaewerespundown, beforetesting.After30min,wormsweretestedforresponseto and the supernatant (starved L1 medium) was either used distilledwater.Forallthestagesofwormstested,weobserved directlyforHPLC-MSanalysisinsingleionrecordingmodeor an avoidance index of less than 0.1 for water. 50 individual frozen,lyophilized,extractedwithmethanol,andthenanalyzed animals per life stage were tested on each day using freshly byHPLC-MSorMS/MS.Forpreparationofexo-metabolome prepared osas#9 concentrations. Shown data represent the samples from fed L1 larvae, eggs were prepared similarly but meanfromassaysconductedon3ormoredays. resuspendedinM9withHB101.Sampleforascarosideprofil- Dauer Assay—Dauer assays were performed in liquid as ingwastaken14haftereggpreparationtoassurethatworms described previously with modifications (10). Eggs were sus- arestillinL1stage. pended in 3 ml of S-complete medium in 20-ml scintillation HPLC-MS Analysis—HPLC-MS and HPLC-MS/MS were vials at a concentration of 1 egg/(cid:2)l, and E.coli (HB101) was performedusinganAgilent1100seriesHPLCsystemequipped addedforafinalconcentrationof1.3mg/ml.Aliquotsofasca- with an Agilent Eclipse XDB-C18 column (9.4 (cid:1) 250 mm, rosidesolutionswereaddedtoachieve200nMascr#2,200nM 5-(cid:2)mparticlediameter)connectedtoaQuattroIIspectrome- ascr#5, and 1 (cid:2)M osas#9, and the worms were grown on a Do w ter (Micromass/Waters) using a 10:1 split. For HPLC, a 0.1% 180-rpm shaker at 20°C for 6 days. Dauer formation was n lo aceticacid-acetonitrilesolventgradientwasusedataflowrate assessedbysoakingthewormsin1%SDSfor50minandcount- ad e of3.6ml/min,startingwithanacetonitrilecontentof5%for5 ingsurvivingL4wormsafter24hofrecoveryonHB101plates. d fro min, which was increased to 100% over a period of 40 min. L1SurvivalAssay—Eggsweresuspendedin6mlofM9buffer m Exo-metabolome samples were analyzed by HPLC-electros- orosas#9solutioninM9in40-mlglassvialsataconcentration http prayionization-MSinnegativeionmodeusingacapillaryvolt- of0.8egg/(cid:2)landincubatedinashakerat210rpmand25°C. ://w age of 3.5 kV and a cone voltage of (cid:2)40 V. HPLC-MS/MS Triplicatealiquotsfromeachsampleweretakeneverydayor w w screeningforprecursorionsofm/z(cid:3)73.0wasperformedusing everyotherdayandseededonHB101platesforrecovery.Star- .jb c argon as collision gas at 2.1 mtorr and 40 eV. Analysis and vationsurvivalwasassessedbycountingwormsthatresumed .o rg characterizationofosasascarosidesandN-acylatedderivatives growthafterrecoveryat20°Cfor2–3days. a/ of serotonin, dopamine, and octopamine were performed in Statistical Analysis—Statistical analyses of avoidance used t D u bothnegativeandpositiveionizationmodeswithconevoltages unpaired Student’s t tests with Welch correction using the ke of(cid:2)40Vand(cid:2)20Vfornegativeand(cid:4)30Vforpositiveelec- InStatstatisticssoftware.pvaluesaredenotedasfollows:**,p(cid:5) Un trosprayionizationmode.HighresolutionHPLC-MSwasper- 0.001;***,p(cid:5)0.0001. ive rs formedusingaWatersnanoACQUITYUPLCsystemequipped ity with Waters ACQUITY UPLC HSS C-18 column (2.1 (cid:1) 100 RESULTSANDDISCUSSION on A mm,1.8-(cid:2)mparticlediameter)connectedtoaXevoG2QTof L1LarvaeProduceOctopamineAscarosides—Westartedour u g u massspectrometer. investigationswithananalysisofchemicalsignalsproducedby s t 2 tsas#9 Identification—High resolution HPLC-MS analysis starvedL1larvae,whichenteradistinctstateofdevelopmental 6 , 2 demonstrated a molecular formula of putative tsas#9 in the arrest that confers enhanced stress resistance and extended 0 1 5 naturalsample(calculatedmassofmolecularion466.2077and starvationsurvival(19–23).Toscreenforascarosidesspecifi- ascr#9 fragment 247.1182; measured masses 466.2082 and cally produced by starved L1 worms, we used comparative 247.1184, respectively). To confirm the identity of tsas#9 in HPLC-MSanalysiscombinedwithanMS/MSscreenforpre- tbh-1 L1 medium, we compared its retention time with the cursorionsoftheascaroside-characteristicfragmentionatm/z retentiontimeofsynthetictsas#9.Bothhavethesamereten- 73,atechniquethatgreatlysimplifiesrecognitionofascaroside tiontime(17.0minundertheconditionsdescribedabove)and derivativesincomplexmetabolomesamples(11).Comparison uponco-injectioneluteasonepeak. of ascaroside profiles in the exo-metabolomes of starved L1 Avoidance Assays—A previously described avoidance assay larvae,adultworms,ormixedstageculturesshowedremarka- was used to test the behavior of animals to osas#9 and octo- bledifferences.ascr#3,oneofthemostabundantascarosidesin pamine (18). For these experiments, osas#9 was diluted into mixed stage cultures, is produced in L1 stage only in trace doublydistilledwater,andwaterwasusedasacontrol.Assays amounts. Instead, HPLC-MS/MS analysis of the L1 exo- wereconductedonunseededNGMplatesusinganimalsofdif- metabolome revealed a strong peak with MS/MS precursor ferentstages.Totestanimalsforavoidancetoosas#9,worms ionsatm/z482andm/z247,whichdidnotmatchthemolecular werewashedfrommixedstageplatesinM9buffertoremove ionsofanyknownascarosideandthereforesuggestedthepres- bacteria.Afteracoupleofwashes,thewormsweresuspended enceofayetundescribedcompound(Fig.1B).Highresolution inasmallvolumeofbufferanddispensedontounseededNGM MSanalysesindicatedmolecularformulaeofC H NO for 23 32 10 plates. For avoidance measurements, a drop of assay solution the molecular ion ([M-H](cid:2), calculated 482.2026; observed containing osas#9 or control was delivered near the tail of a 482.2030) and C H O (calculated 247.1182; observed 11 19 6 movinganimal.Thedropsurroundstheanimalandreachesthe 247.1186),suggestingthatthiscompoundmaybederivedfrom JUNE28,2013•VOLUME288•NUMBER26 JOURNALOFBIOLOGICALCHEMISTRY 18779 REPORT: BiogenicAmineMetabolismviaSuccinylation D o w n lo a d e d fro m FIGURE1.AscarosidesinC.elegansanddetectionofascarosidesspecifictostarvedL1larvae.A,structuresandfunctionsofascarosidesproducedby h differentdevelopmentalstagesofC.elegans.Inthisstudy,weinvestigatedascarosidesspecificallyproducedbyarrestedL1larvae.B,HPLC-MSanalysisof ttp exo-metabolomesamplesobtainedfromstarvedL1wormsusingnegative-ionelectrosprayionizationrevealsanovelascarosidederivativeatm/z482 ://w (osas#9).Itsmassspectrometricfragmentationpatternsuggeststhatitisderivedfromtheknownascr#9.C,proposedstructuresofosas#9andtworelated w compounds,osas#2andosas#10. w .jb c .o rg sthimepaldedaitsicoanroosfidaeCfe1a2tHu1r3inNgOa4smatouireattyedtofitvhee-ckanrboownnsaidsecrc#h9ai,na aonfadsOu-cscuinbystligturoteudpCwHer-eCoHb2semrvoeiedt(ys,uapspwleelmlaesnstiaglnFailgs.sSu2g)g.Besatsievde at D/ u withaterminalcarboxylgroupthathasbeenidentifiedinexo- onthechemicalshiftsofprotonsinthesetentativefragments ke U metabolomesamplesfrommixedstagecultures(11).Analysis andaputativemolecularformulaofC H NO ,weproposed n 23 33 10 iv ofexo-metabolomesamplesfromfedL1larvaeandfedmixed astructureinwhichascr#9isconnectedviaasuccinylmoiety e rs stage cultures revealed only trace amounts of the compound tothenitrogenofoctopamine,abiogenicaminethatservesasa ity o with m/z 482, whereas it is consistently produced in large neurotransmitter in C.elegans (25) (Fig. 1C). We named this n A amounts by starved L1 larvae. Detailed examination of structure osas#9 (octopamine succinyl ascaroside, see Small u g u HPLC-MS data from fed and starved L1 larvae revealed two Molecule Identifier Database (SMID DB) for nomenclature), s t 2 additionalcompoundsatm/z538and480,whoseMSfragmen- named its putative longer chained homolog osas#10, and 6 , 2 tationpatternsweresimilartothefragmentationofthecom- namedtheascr#2-derivedmemberofthisseriesosas#2(Fig. 0 1 5 poundwithm/z482(supplementalFig.S1),suggestingthatthey 1C). arechemicallyrelated.ThemolecularformulaeofC H NO Forconfirmationoftheproposedstructureofosas#9andto 27 40 10 ([M-H](cid:2), calculated 538.2652; observed 538.2658) and determineitsstereochemistry,wedevelopedashortsynthesis C H NO ([M-H](cid:2), calculated 480.2234; observed 480.2243) asshowninFig.2A(seesupplementaldataformethods).Bis- 24 34 9 obtainedfortheseionssuggestedthattheyrepresentascarosides succinylationofthebenzylester1ofascr#9providedinterme- derivedfromtheadditionofaC H NO moietytoascr#10(fea- diate 2, which was reacted with (R)-octopamine 3 (26), the 12 13 4 turing a 9-carbon side chain) and the keto ascaroside ascr#2, naturally occurring enantiomer (27). The resulting bis-octo- respectively. paminederivative5wasthenhydrogenatedtoremovetheben- Toobtainlargerquantitiesofthedetectedcompounds,we zyl group and subsequently treated with lithium hydroxide, fractionated large scale exo-metabolome samples by prepara- producingamixtureofosas#9andits2-O-substitutedisomer, tiveHPLC(11).Fractionscontainingtheunknowncompounds fromwhichpuresyntheticosas#9wasisolatedviapreparative were analyzed by two-dimensional NMR spectroscopy, using HPLC. Comparison of HPLC retention times (supplemental highresolutiondoublequantumfilteredcorrelationspectros- Fig.S3),massspectra,andNMRspectroscopicdataconfirmed copyspectraasdescribedpreviouslyfortheanalysisofcomplex thestructureofthenaturalcompoundwithm/z482asthatof metabolite mixtures (10, 24). NMR spectroscopic analysis osas#9(supplementalFig.S4).Inparallel,werepeatedthesyn- revealed cross-peaks representing the ((cid:3)-1)-oxygenated side thesisshowninFig.2Ausingracemicoctopamine.Themixture chain of an ascaroside derivative. Furthermore, cross-peaks ofdiastereomersofosas#9obtainedfromracemicoctopamine indicativeofa4-O-acylatedascarylose,aswellasspinsystems showeddistinctNMRspectroscopicsignalsforthemethylene suggesting a p-hydroxy substituted phenyl group, a likely N- groupoftheoctopamine,whichenabledustoconfirmR-con- 18780 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER26•JUNE28,2013 REPORT: BiogenicAmineMetabolismviaSuccinylation D o w n lo a d e d fro m h ttp ://w FIGURE2.Synthesis,biosynthesis,andbiologicalpropertiesofosas#9.A,synthesisofosas#9andtsas#9.(a)succinicanhydride,N,N-diisopropylethyl- w w eaHxm2o(ig-nm)e,eP,4tda-/dbCio,mlMoemethOeyHsla;om(df)iCn,.LoeipOleyHgria,dtneinstre(aN,hd2yi)md.rCeo,tfhmuyrolafdoner/mdlifoaomxratindheee/;Hb(bi2o)O,s4.y-Bnd,tichmoemestisphayolrfaismoocnitnooopfparyemrliadintiinev,ee,tay1br-aeumtnhdiynale-n3,c-a(e3ns-ddofidmmeeraitvjhoeyrdlaaasmsccainaroorospsirdiodepesysiln)tcssaatrasbr#vo9eddaiimnLd1id,ofees,dadsLic#1h9,laoinnrodCmm.eeilxtehegadansnets;a.(gcDe),, .jbc.org osas#9inducesavoidancebehaviorintheabsenceofbacterialfood(*,noavoidanceresponse).E,mediumfromstarvedtdc-1L1larvaeislessdeterrentto a/ youngadultwormsthanmediumfromwild-typeL1larvae.Thisexperimentwasconductedintheabsenceofbacterialfood.F,ratioofN-succinyltoN-acetyl t D derivativesofserotonininN2L1mediumasafunctionofexogenouslyaddedserotoninasdeterminedbypositive-ionelectrosprayionizationMS.G,concen- u trationsofosasascarosidesstronglydecreaseinresponsetoexogenouslyaddedserotonin(5-hydroxytryptamine(5-HT)),whereaslevelsofallotherascaro- ke sidesareonlymarginallyaffected. U n iv e rs figurationoftheoctopaminesidechaininnaturalosas#9via mutantworms,whichproducetyramine,butnotoctopamine. ity o comparison of double quantum filtered correlation spectros- Wefoundthatbothtdc-1andtbh-1mutantwormsdonotpro- n A copyspectra(supplementalFig.S4). duce osas#9, whereas production of other ascarosides, e.g. u g u ComparisonofstarvedandfedL1exo-metabolomesrevealed ascr#9andicas#9,isnotabolishedinthesemutants(supple- s t 2 thatosas#9ismostabundantlyproducedbystarvedL1larvae, mentalFig.S6).Inaddition,wefoundthat,insteadofosas#9, 6 , 2 whereasosas#10isdominantinfedL1cultures(Fig.2B)and tbh-1mutantwormsproducelargeamountsofacorresponding 0 1 5 osas#2 is observed in smaller, highly variable amounts. We tyraminederivative,tsas#9(supplementalFig.S6,seesupple- noticed a general shift from ascarosides with 9-carbon side mentaldataforstructureelucidation).Weonlydetectedtrace chains (ascr#10, osas#10) in the presence of food to ascaro- amounts (1–2% of osas#9 ) oftsas#9 in starved wild-type L1 sideswithashorter5-carbonsidechaininstarvedconditions medium, suggesting that the great abundance of this com- (ascr#9,osas#9,icas#9)(Fig.2B). pound in tbh-1 medium is a result of the roughly 20-fold Biosynthesis of Octopamine Ascarosides—We then consid- increased tyramine levels in this mutant (28). These findings ered possible biogenetic origins of osas#9. Previous work demonstrated that osas ascarosides are synthesized from demonstrated that the fatty acid-derived side chains of the worm-producedoctopamine. ascarosides are derived from peroxisomal (cid:1)-oxidation (11). osas#9 Induces Avoidance Behavior—In most metazoans, Correspondingly,wefoundthatosas#9isnotproducedbynull monoamine neurotransmitters such as octopamine and sero- mutantsofdaf-22anddhs-28,encodingtheperoxisomal3-ke- tonininteractwithneuropeptidestomodulatebehavioralstate to-acyl-CoA thiolase and 3-hydroxyacyl-CoA dehydrogenase, (29). In C.elegans, octopamine down-regulates pharyngeal respectively(11)(supplementalFig.S5).Octopamineisderived pumping(andtherebyfoodintake)aswellasegglaying(25,28, fromdecarboxylationoftyrosine(catalyzedbytyrosinedecar- 30),opposingtheeffectsofserotonin.Inaddition,octopamine boxylase(TDC-1))andhydroxylationoftheresultingtyramine signalingisrequiredforavoidancebehaviorinresponsetospe- bytyramine(cid:1)-hydroxylase(TBH-1)(28)(Fig.2C).Toconfirm cific chemical stimuli (29), although octopamine itself is not that osas#9 is derived from worm-produced octopamine, we knowntobedeterrent.Becausewefoundthatosas#9isspecif- examinedtheexo-metabolomesoftdc-1mutantworms,which icallyassociatedwithstarvedL1larvae,weaskedwhetherthis do not produce tyramine or octopamine, as well as of tbh-1 compound promoted dauer entry (a starvation response) or JUNE28,2013•VOLUME288•NUMBER26 JOURNALOFBIOLOGICALCHEMISTRY 18781 REPORT: BiogenicAmineMetabolismviaSuccinylation otherwise affected larval survival. However, synthetic osas#9 deactivation mechanism or, as in the case of octopamine in didnotinducedaueroraffectlifespanofstarvedL1larvae(sup- C.elegans, lead to the creation of new signaling molecules. plementalFig.S7).Next,wetestedbehavioralresponsesoflar- Notably, competing succinylation and acetylation of biogenic val and adult worms to synthetic osas#9 and found that all aminesappeartoparallelposttranslationalmodificationofpro- larvalstagesarestronglydeterredbythiscompound(Fig.2D). teins via acetylation and succinylation of L-lysine (35). Use of Notably,theadditionofE.coliasfoodoverridesosas#9deter- primarymetabolite-derivedbuildingblocksinthebiosynthesis rence.Octopamineitselfdidnotelicitavoidancebehavior(sup- of more complex signaling molecules provides a direct link plemental Fig. S8). We then tested whether the presence of betweenmetabolicstatusoftheorganismandsmall-molecule osas#9contributestoavoidanceresponseselicitedbystarved signaling. Competition for shared building blocks (e.g. succi- L1 medium. For this purpose, we compared avoidance nate)bydifferentbiochemicalreactionsmayresultininterde- responses to medium from starved L1 larvae with those to pendenceofdifferentpathways,creatingthepotentialforaddi- medium from starved tdc-1 mutant L1 larvae, which do not tionallayersofregulation. produceosas#9ortsas#9.WefoundthatalthoughstarvedL1 The octopamine ascarosides thus connect intraorganismal mediumfromwild-typewormsisstronglydeterrent,thedeter- neurotransmitter-basedsignalingpathwayswithinterorganis- rence of medium from tdc-1 mutant worms is significantly malcommunicationbycreatingadeterrentpheromonesignal weaker, especially at higher dilutions (Fig. 2E). The residual (osas#9)fromsuccinylatedoctopamineandtheperoxisomally deterrenceofthetdc-1mediumlikelyresultsfromthepresence producedascarosideascr#9.Inconjunctionwiththeoriginof ofotherascarosides,whichareproducedbywild-typeandtdc-1 ascarosides as end products of peroxisomal (cid:1)-oxidation (11), D mutantlarvaeinroughlyequalamounts(datanotshown)and theimplicationofoctopaminesuccinylationaspartofageneral o w havepreviouslybeenshowntobedeterrentathighconcentra- pathwayforbiogenicaminedeactivationfurthersuggeststhat n lo tions(6,7).Takentogether,theseresultssuggestthatosas#9is ascaroside biosynthesis may have originated as a pathway for ad e partofadispersalsignalthatindicatesunfavorableconditions, waste product elimination that has been co-opted for addi- d fro specificallytheabsenceoffood. tionalsignalingfunctions. m C.elegansSuccinylatesBiogenicAmines—Acetylationofthe http neurotransmitters octopamine, dopamine, and serotonin is Acknowledgment—WethankMaciejKukulaforhelpwithhighreso- ://w generally thought of as a deactivation or degradation mecha- lutionMSanalysis. w w nismandhasbeendescribedforinsects,nematodes,andother .jb c invertebrates (31, 32), and several N-acetyl transferases with .o octopamine-acetylating activity have been described (33, 34). REFERENCES arg/ Ouridentificationofsuccinylatedoctopamine(osas)andtyra- 1. Jeong,P.Y.,Jung,M.,Yim,Y.H.,Kim,H.,Park,M.,Hong,E.,Lee,W.,Kim, t D u mine(tsas)ascarosidesledustoaskwhethersuccinylation,in Y.H.,Kim,K.,andPaik,Y.K.(2005)Chemicalstructureandbiological ke activityoftheCaenorhabditiselegansdauer-inducingpheromone.Nature U addition to acetylation, could represent a general pathway of n 433,541–545 iv biogenicaminemetabolism.Infact,HPLC-MSanalysisofthe e 2. Butcher,R.A.,Fujita,M.,Schroeder,F.C.,andClardy,J.(2007)Small- rs metabolomes of worm pellets from mixed stage cultures moleculepheromonesthatcontroldauerdevelopmentinCaenorhabditis ity o revealed large quantities of N-succinyl octopamine (supple- elegans.Nat.Chem.Biol.3,420–422 n A mental Fig. S9), in addition to much smaller quantities of 3. Ludewig, A. H., Izrayelit, Y., Park, D., Malik, R. U., Zimmermann, A., u g N-acetyl octopamine as well as the N-acetyl and N-succinyl Mahanti,P.,Fox,B.W.,Bethke,A.,Doering,F.,Riddle,D.L.,andSchroe- us der, F. C. (2013) Pheromone sensing regulates Caenorhabditis elegans t 2 derivativesofserotoninanddopamine.Totestwhetherworms 6 lifespanandstressresistanceviathedeacetylaseSIR-2.1.Proc.Natl.Acad. , 2 can succinylate added biogenic amines, we incubated starved 0 Sci.U.S.A.110,5522–5527 1 5 L1larvaewithdopamineandserotonin(5-hydroxytryptamine) 4. Ludewig,A.H.,andSchroeder,F.C.(2013)WormBook,Ascarosidesig- and profiled their metabolites by HPLC-MS. These analyses nalinginC.elegans.pp.1–22,TheC.elegansResearchCommunity,Pas- revealedN-acetylandN-succinylderivativesofbothdopamine adena,CA andserotonin,ofwhichtheN-acetylderivativesdominatedat 5. Kaplan,F.,Alborn,H.T.,vonReuss,S.H.,Ajredini,R.,Ali,J.G.,Akyazi,F., Stelinski,L.L.,Edison,A.S.,Schroeder,F.C.,andTeal,P.E.(2012)Inter- high (millimolar) amine concentrations, whereas relatively specific nematode signals regulate dispersal behavior. PLoS ONE 7, larger amounts of N-succinyl serotonin and dopamine were e38735 observedatlower(micromolar),morephysiologicalconcentra- 6. Srinivasan,J.,vonReuss,S.H.,Bose,N.,Zaslaver,A.,Mahanti,P.,Ho, tions(Fig.2F,supplementalFig.S10).Intriguingly,amountsof M.C.,O’Doherty,O.G.,Edison,A.S.,Sternberg,P.W.,andSchroeder, allosasascarosidesdroppeddramaticallyathighconcentration F.C.(2012)Amodularlibraryofsmallmoleculesignalsregulatessocial of added dopamine, serotonin, and most surprisingly, octo- behaviorsinCaenorhabditiselegans.PLoSBiol.10,e1001237 7. Srinivasan,J.,Kaplan,F.,Ajredini,R.,Zachariah,C.,Alborn,H.T.,Teal, pamine, whereas the concentrations of other ascarosides did P.E.,Malik,R.U.,Edison,A.S.,Sternberg,P.W.,andSchroeder,F.C. notchangeappreciably(Fig.2G,supplementalFig.S11).These (2008)Ablendofsmallmoleculesregulatesbothmatinganddevelopment results suggest that N-acetylation and N-succinylation are inCaenorhabditiselegans.Nature454,1115–1118 competing mechanisms of biogenic amine metabolism, and 8. Izrayelit,Y.,Srinivasan,J.,Campbell,S.L.,Jo,Y.,vonReuss,S.H.,Genoff, that at high (millimolar) concentrations of added biogenic M.C.,Sternberg,P.W.,andSchroeder,F.C.(2012)Targetedmetabolo- micsrevealsamalepheromoneandsex-specificascarosidebiosynthesisin amines, the succinate pool becomes exhausted, resulting in Caenorhabditiselegans.ACSChem.Biol.7,1321–1325 increasedformationofthecorrespondingN-acetylderivatives. 9. Macosko,E.Z.,Pokala,N.,Feinberg,E.H.,Chalasani,S.H.,Butcher,R.A., Thus,succinylationisapartofbiogenicaminemetabolismin Clardy, J., and Bargmann, C. I. (2009) A hub-and-spoke circuit drives C.elegansandperhapsotherorganisms,whereitmayserveasa pheromone attraction and social behaviour in C.elegans. Nature 458, 18782 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER26•JUNE28,2013 REPORT: BiogenicAmineMetabolismviaSuccinylation 1171–1175 rateregulatesL1longevityinC.elegans.PLoSONE7,e44720 10. Pungaliya, C., Srinivasan, J., Fox, B. W., Malik, R. U., Ludewig, A. H., 22. Fukuyama,M.,Rougvie,A.E.,andRothman,J.H.(2006)C.elegansDAF- Sternberg,P.W.,andSchroeder,F.C.(2009)Ashortcuttoidentifying 18/PTENmediatesnutrient-dependentarrestofcellcycleandgrowthin small molecule signals that regulate behavior and development in thegermline.Curr.Biol.16,773–779 Caenorhabditiselegans.Proc.Natl.Acad.Sci.U.S.A.106,7708–7713 23. Baugh,L.R.,andSternberg,P.W.(2006)DAF-16/FOXOregulatestran- 11. vonReuss,S.H.,Bose,N.,Srinivasan,J.,Yim,J.J.,Judkins,J.C.,Sternberg, scriptionofcki-1/Cip/Kipandrepressionoflin-4duringC.elegansL1 P. W., and Schroeder, F. C. (2012) Comparative metabolomics reveals arrest.Curr.Biol.16,780–785 biogenesisofascarosides,amodularlibraryofsmall-moleculesignalsin 24. Deyrup,S.T.,Eckman,L.E.,McCarthy,P.H.,Smedley,S.R.,Meinwald,J., C.elegans.J.Am.Chem.Soc.134,1817–1824 and Schroeder, F. C. (2011) 2D NMR-spectroscopic screening reveals 12. Choe,A.,vonReuss,S.H.,Kogan,D.,Gasser,R.B.,Platzer,E.G.,Schroe- polyketidesinladybugs.Proc.Natl.Acad.Sci.U.S.A.108,9753–9758 der,F.C.,andSternberg,P.W.(2012)Ascarosidesignalingiswidelycon- 25. Chase,D.L.,andKoelle,M.R.(2007)WormBook,Biogenicamineneu- servedamongnematodes.Curr.Biol.22,772–780 rotransmittersinC. elegans.pp.1–15,TheC.elegansResearchCommu- 13. Choe,A.,Chuman,T.,vonReuss,S.H.,Dossey,A.T.,Yim,J.J.,Ajredini, nity,Pasadena,CA R.,Kolawa,A.A.,Kaplan,F.,Alborn,H.T.,Teal,P.E.,Schroeder,F.C., 26. Cho,B.T.,Kang,S.K.,andShin,S.H.(2002),Applicationofoptically Sternberg,P.W.,andEdison,A.S.(2012)Sex-specificmatingpheromones active1,2-diolmonotosylatesforsynthesisof(cid:1)-azidoand(cid:1)-aminoalco- inthenematodePanagrellusredivivus.Proc.Natl.Acad.Sci.U.S.A.109, holswithveryhighenantiomericpurity.Synthesisofenantiopure(R)-oc- 20949–20954 topamine,(R)-tembamideand(R)-aegeline.Tetrahedron-Asymmetry13, 14. Bose,N.,Ogawa,A.,vonReuss,S.H.,Yim,J.J.,Ragsdale,E.J.,Sommer, 1209–1217 R.J.,andSchroeder,F.C.(2012)Complexsmall-moleculearchitectures 27. Erspamer,V.(1952)IdentificationofoctopamineasL-p-hydroxyphenyle- regulatephenotypicplasticityinanematode.AngewChem.Int.EdEngl. thanolamine.Nature169,375–376 51,12438–12443 28. Harris,G.,Mills,H.,Wragg,R.,Hapiak,V.,Castelletto,M.,Korchnak,A., D 15. Izrayelit,Y.,Robinette,S.L.,Bose,N.,vonReuss,S.H.,andSchroeder,F.C. and Komuniecki, R. W. (2010) The monoaminergic modulation of o w (2013)2DNMR-basedmetabolomicsuncoversinteractionsbetweencon- sensory-mediatedaversiveresponsesinCaenorhabditiselegansrequires n servedbiochemicalpathwaysinthemodelorganismCaenorhabditisel- glutamatergic/peptidergiccotransmission.J.Neurosci.30,7889–7899 loa d egans.ACSChem.Biol.8,314–319 29. Alkema,M.J.,Hunter-Ensor,M.,Ringstad,N.,andHorvitz,H.R.(2005) e d 16. Butcher,R.A.,Ragains,J.R.,Li,W.,Ruvkun,G.,Clardy,J.,andMak,H.Y. TyraminefunctionsindependentlyofoctopamineintheCaenorhabditis fro (2009)BiosynthesisoftheCaenorhabditiselegansdauerpheromone.Proc. elegansnervoussystem.Neuron46,247–260 m Natl.Acad.Sci.U.S.A.106,1875–1879 30. Horvitz,H.R.,Chalfie,M.,Trent,C.,Sulston,J.E.,andEvans,P.D.(1982) http 17. Joo,H.J.,Yim,Y.H.,Jeong,P.Y.,Jin,Y.X.,Lee,J.E.,Kim,H.,Jeong,S.K., SerotoninandoctopamineinthenematodeCaenorhabditiselegans.Sci- ://w Chitwood, D. J., and Paik, Y. K. (2009) Caenorhabditis elegans utilizes ence216,1012–1014 w dauerpheromonebiosynthesistodisposeoftoxicperoxisomalfattyacids 31. Roeder, T. (1999) Octopamine in invertebrates. Prog. Neurobiol. 59, w forcellularhomoeostasis.Biochem.J.422,61–71 533–561 .jbc 18. Hilliard, M. A., Bargmann, C. I., and Bazzicalupo, P. (2002) C.elegans 32. Isaac,R.E.,MacGregor,D.,andCoates,D.(1996)Metabolismandinac- .org respondstochemicalrepellentsbyintegratingsensoryinputsfromthe tivationofneurotransmittersinnematodes.Parasitology113,S157–S173 a/ headandthetail.Curr.Biol.12,730–734 33. Isaac,R.E.,Eaves,L.,Muimo,R.,andLamango,N.(1991)N-Acetylationof t D u 19. Johnson,T.E.,Mitchell,D.H.,Kline,S.,Kemal,R.,andFoy,J.(1984) biogenicaminesinAscaridiagalli.Parasitology102,445–450 k e ArrestingdevelopmentarrestsaginginthenematodeCaenorhabditisel- 34. Isaac,R.E.,Muimo,R.,andMacGregor,A.N.(1990)N-acetylationof U n egans.MechAgeingDev.28,23–40 serotonin, octopamine and dopamine by adult Brugia pahangi. Mol. iv e 20. Lee,B.H.,andAshrafi,K.(2008)ATRPVchannelmodulatesC.elegans Biochem.Parasitol.43,193–198 rs neurosecretion,larvalstarvationsurvival,andadultlifespan.PLoSGenet. 35. Lin,H.,Su,X.,andHe,B.(2012)Proteinlysineacylationandcysteine ity o 4,e1000213 succinationbyintermediatesofenergymetabolism.ACSChem.Biol.7, n A 21. Lee,I.,Hendrix,A.,Kim,J.,Yoshimoto,J.,andYou,Y.J.(2012)Metabolic 947–960 u g u s t 2 6 , 2 0 1 5 JUNE28,2013•VOLUME288•NUMBER26 JOURNALOFBIOLOGICALCHEMISTRY 18783 Reports: Succinylated Octopamine Ascarosides and a New Pathway of Biogenic Amine Metabolism in Caenorhabditis elegans Alexander B. Artyukhin, Joshua J. Yim, Jagan Srinivasan, Yevgeniy Izrayelit, Neelanjan Bose, Stephan H. von Reuss, Yeara Jo, James M. Jordan, L. Ryan Baugh, Micheong Cheong, Paul W. Sternberg, Leon Avery and D Frank C. Schroeder o w J. Biol. Chem. 2013, 288:18778-18783. n lo doi: 10.1074/jbc.C113.477000 originally published online May 20, 2013 ad e d fro m h ttp ://w Access the most updated version of this article at doi: 10.1074/jbc.C113.477000 w w .jb c Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites. .o arg/ Alerts: t D u • When this article is cited ke • When a correction for this article is posted U n iv e rs Click here to choose from all of JBC's e-mail alerts ity o n A Supplemental material: u g u http://www.jbc.org/content/suppl/2013/05/20/C113.477000.DC1.html s t 26 , 2 0 This article cites 33 references, 8 of which can be accessed free at 15 http://www.jbc.org/content/288/26/18778.full.html#ref-list-1 Supporting Information Succinylated octopamine ascarosides and a new pathway of biogenic amine metabolism in C. elegans* Alexander B. Artyukhin1,2, Joshua J. Yim1, Jagan Srinivasan3, Yevgeniy Izrayelit1, Neelanjan Bose1, Stephan H. von Reuss1, Yeara Jo3, James M. Jordan4, L. Ryan Baugh4, Micheong Cheong2, Paul W. Sternberg3, Leon Avery2, and Frank C. Schroeder1 1Boyce Thompson Institute and Department of Chemistry and Chemical Biology Cornell University, Ithaca, New York 14853, USA 2Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA 3Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, California 91125, USA 4Department of Biology, Duke Center for Systems Biology, Duke University, Durham, NC 27708, USA *Corresponding Author: email: [email protected] phone: 607-254-4391 fax: 607-254- 2958 S1 Table of Contents 1. Supporting Figures S1-S11 S3-S12 2. Supporting Methods S14 3. Synthesis of osas#9 and tsas#9 S15-S17 4. Synthesis of N-acetyl and N-succinyl derivatives of dopamine, octopamine, and serotonin S18-S19 5. NMR Spectra of intermediates, osas#9, and tsas#9 S20-S29 6. References S30 S2 1. Supporting Figures Figure S1. Electron spray ionization MS spectra of osas#9, osas#2, and osas#10 in both positive and negative ion modes. Fragmentation in ES+ yields the same ions for all three osas ascarosides (m/z 136, 218, 236, 348, 366) resulting from fragmentation of octopamine succinyl ascarylose moiety as well as [M+H-H O]+ and [M+Na]+. Fragmentation of osas#9 and osas#10 in ES- 2 produces ascr#9 and ascr#10 ions, respectively, but this fragmentation pathway is absent in osas#2. All three osas ascarosides also produce ions at m/z 216 and 234 in ES- resulting from octopamine succinyl moiety, in addition to molecular ions [M-H]-. S3
Description: