Substrate Integrated Waveguide Based Phase Shifter and Phased Array in a Ferrite Low Temperature Co-fired Ceramic Package Thesis by Ahmed Nafe In Partial Fulfillment of the Requirements For the Degree of Master of Science King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia March, 2014 2 The thesis of Ahmed Ali Nafe is approved by the examination committee Committee Chairperson: Dr. Atif Shamim Committee Member: Dr. Hakan Ba˘gci Committee Member: Dr. Ju¨rgen Kosel 3 Copyright '2014 Ahmed Nafe All Rights Reserved ABSTRACT Substrate Integrated Waveguide Based Phase Shifter and Phased Array in a Ferrite Low Temperature Co-fired Ceramic Package Ahmed Nafe Phasedarrayantennas, capableofcontrollingthedirectionoftheirradiatedbeam, are demanded by many modern systems. Applications such as automotive collision avoidance radar, inter-satellite communication links and future man-portable satellite communication on-the-move services require reconfigurable beam systems with stress on mobility and cost effectiveness. Microwave phase shifters are key components of phased antenna arrays. A phase shifter is a device that controls the phase of the signal passing through it. Among the technologies used to realize this device, traditional ferrite waveguide phase shifters offer the best performance. However, they are bulky and difficult to integrate with other system components. Recently, ferrite material has been introduced in Low Temperature Co-fired Ce- ramic (LTCC) multilayer packaging technology. This enables the integration of ferrite basedcomponentswithothermicrowavecircuitryinacompact, light-weightandmass producible package. 4 5 Additionally, therecentconceptofSubstrateIntegratedWaveguide(SIW)allowed realization of synthesized rectangular waveguide-like structures in planar and multi- layer substrates. These SIW structures have been shown to maintain the merits of conventional rectangular waveguides such as low loss and high power handling capabilities while being planar and easily integrable with other components. Implementing SIW structures inside a multilayer ferrite LTCC package enables monolithic integration of phase shifters and phased arrays, representing a true Sys- tem on Package (SoP) solution. It is the objective of this thesis to pursue realizing efficient integrated phase shifters and phased arrays combining the above mentioned technologies, namely Ferrite LTCC and SIW. In this work, a novel SIW phase shifter in ferrite LTCC package is designed, fabri- catedandtested. Thedeviceisabletooperatereciprocallyaswellasnon-reciprocally, demonstrating a measured maximum reciprocal phase shift of 132◦ and maximum non-reciprocal phase shift of 118◦ at 12 GHz. Additionally, a slotted SIW antenna is designed and integrated with the phase shifter in an array format, demonstrating a beam scanning of ±15◦. The design is highly suitable for mobile automotive radars and satellite communications systems Acknowledgments I would like to sincerely thank my supervisor Dr. Atif Shamim for his continuous guidance and encouragement throughout the course of this work. His enthusiasm and valuable remarks made my study very enjoyable, exciting and ultimately fruitful with rich experience. Also, I would like to express my sincere gratitude to my parents Dr. Ali Nafe and Dr. Ola El-Amrawi for their never-ending love and support. I am also thankful for my brother, friend and colleague Mahmoud Nafe who is always there whenever I needed him. Last but not least, I would like to thank my colleagues in IMPACT lab for the fruitful discussions and assistance provided during the course of this work . 6 TABLE OF CONTENTS Examination Committee Approval 2 Copyright 3 List of Figures 9 List of Tables 12 1 Introduction 13 1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Background and Literature Review 18 2.1 SIW Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 LTCC Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Magnetic Properties of Ferrites . . . . . . . . . . . . . . . . . . . . . 22 2.4 Ferrite-Microwave Interaction . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Tensor Microwave Permeability of Biased Ferrites . . . . . . . 25 2.4.2 Microwave Loss Mechanisms in Ferrites . . . . . . . . . . . . 29 2.5 Microwave Ferrite Phase Shifters . . . . . . . . . . . . . . . . . . . . 31 2.5.1 Definitions, Characteristics and Figures of Merit . . . . . . . 31 2.5.2 Waveguide Based Ferrite Phase shifters . . . . . . . . . . . . 37 2.5.3 Ferrite Loaded SIW Phase Shifters . . . . . . . . . . . . . . . 42 2.5.4 SIW Phase Shifters in Ferrite LTCC . . . . . . . . . . . . . . 44 2.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 46 7 8 3 SIW Phase Shifter 48 3.1 Phase Shifter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.1 SIW Design Considerations . . . . . . . . . . . . . . . . . . . 49 3.1.2 Symmetric and Anti-symmetric Biasing . . . . . . . . . . . . . 50 3.1.3 Phase Shifter Simulation Model and Results . . . . . . . . . . 52 3.2 Fabricated Prototype Measurement Results . . . . . . . . . . . . . . 60 3.3 Post Measurement Analysis . . . . . . . . . . . . . . . . . . . . . . . 64 3.4 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 67 4 SIW Phased Antenna Array 68 4.1 Investigations on SIW Based Antennas in Ferrite LTCC . . . . . . . 68 4.1.1 SIW H-plane Horn Antenna . . . . . . . . . . . . . . . . . . . 68 4.1.2 Slotted SIW Antenna . . . . . . . . . . . . . . . . . . . . . . . 72 4.2 Optimized Design and Array Integration . . . . . . . . . . . . . . . . 80 4.3 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5 Conclusion and Future Work 93 Appendices 95 A Magnetic Units and Conversion Factors 96 B Dispersion Relation for Uniformly biased Waveguide 98 References 101 LIST OF FIGURES 2.1 Conventionalplanarandnon-planartransmissionlinesandwaveguides. (a) Microstrip line, (b) Co-planer waveguide, (c) Rectangular waveg- uide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Substrate Integrated Waveguide. . . . . . . . . . . . . . . . . . . . . . 19 2.3 LTCC package cross section [1]. . . . . . . . . . . . . . . . . . . . . 20 2.4 LTCC Process Steps [2]. . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Orbital dipole moment m and spin dipole moment m [3]. . . . . . . 23 ◦ s 2.6 Orientation of magnetic domains before and after the application of a magnetic field [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.7 Hysteresis loops. (a) M-H loop. (b) B-H loop [4]. . . . . . . . . . . . 24 2.8 Demagnetization effect due ferrite air interface. . . . . . . . . . . . . 25 2.9 Precession of an electron dipole moment (m¯) and its associated spin angular momentum s¯ [5]. . . . . . . . . . . . . . . . . . . . . . . . . 26 2.10 General phase shifter block diagram. . . . . . . . . . . . . . . . . . . 32 2.11 Shearing of B-H curve with gapped toroids [7]. . . . . . . . . . . . . 34 2.12 Cascaded 3 bit latching digital phase shifter [6]. . . . . . . . . . . . . 35 2.13 Toroidal phase shifter variants. (a) Single-toroid. (b) Twin-toroid. . 38 2.14 Dual slab phase shifter. . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.15 Different combination of interaction in dual slab phase shifter. (a) RF magnetic field rotates in matched sense to the bias at both positions (Maximuminteraction)(b)Minimuminteractionduebiasfieldreversal (c) Minimum interaction due to direction of propagation reversal (i.e. flipped RF sense of rotation at circular polarization positions) . . . . 39 2.16 Dual mode phase shifter structure [8]. . . . . . . . . . . . . . . . . . 40 2.17 Non-reciprocal polarizer implemented by quadruple transverse biasing of a ferrite filled circular waveguide. . . . . . . . . . . . . . . . . . . 41 2.18 SIW phase shifter in a ferrite loaded roger substrate [43]. . . . . . . 43 9 10 2.19 Coil system used in [9] to achieve anti-symmetric bias of a dual slab design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.20 Embedded bias windings [10]. (a)Embedded solenoid. (b)Embedded toroid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.21 Ferrite Filled Anti-symmetrically Biased (FFAB) SIW phase shifter [10]. (a) Equivalent wave guide. (b) Bias windings. . . . . . . . . . . 45 3.1 SIW geometrical parameters. . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 Effect of rotation on a symmetrically biased ferrite waveguide. . . . . 51 3.3 Effect of rotation on an anti-symmetrically biased ferrite waveguide. . 51 3.4 Uniform symmetric and uniform anti-symmetric bias profiles. . . . . . 52 3.5 The SIW phase shifter and its associated feeding structures. . . . . . 54 3.6 Simulated S-parameters for the phase shifter in unbiased state. . . . . 55 3.7 SIW phase shifter with bias windings integrated. . . . . . . . . . . . . 56 3.8 Parallel and anti-parallel fields generated by the windings. . . . . . . 56 3.9 Magnetic field cross sectional bias profiles H (x). . . . . . . . . . . . . 57 ◦ 3.10 Bias magnetic field over the SIW longitudinal cross section. . . . . . . 57 3.11 Simulated average magnetization over the SIW cross section. . . . . . 58 3.12 Approximate symmetric and anti-symmetric bias profiles. . . . . . . . 59 3.13 Simulated reciprocal and non-reciprocal phase shift. . . . . . . . . . . 59 3.14 Fabricated phase shifter. . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.15 Fabricated phase shifter prototypes and measurement setup. . . . . . 60 3.16 Measured reflection coefficients for the phase shifter. . . . . . . . . . . 61 3.17 Measured transmission coefficients for the phase shifter. . . . . . . . . 61 3.18 Comparison of simulated and measured S-parameters. . . . . . . . . . 62 3.19 Measured reciprocal and non-reciprocal phase shifts. . . . . . . . . . . 63 3.20 Reciprocal phase error. . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.21 Computed demagnetized permeability for different saturation magne- tization values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.22 Saturation magnetization measurement using a VSM. . . . . . . . . . 65 3.23 Measured saturation magnetization. . . . . . . . . . . . . . . . . . . . 66 3.24 Measured and simulated S-parameters with corrected conductivity and saturation magnetization values. . . . . . . . . . . . . . . . . . . . . . 66 4.1 Sketches of horn antennas with different flare designs [11]. . . . . . . 69 4.2 SIW horn antenna. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3 SIW horn antenna electric field. . . . . . . . . . . . . . . . . . . . . . 71
Description: