ebook img

Subspace Methods for System Identification: A Realization Approach PDF

400 Pages·2005·13.169 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Subspace Methods for System Identification: A Realization Approach

Communications and Control Engineering Publishedtitlesinclude: StabilityandStabilizationofInfiniteDimensionalSystemswithApplications Zheng-HuaLuo,Bao-ZhuGuoandOmerMorgul NonsmoothMechanics(Secondedition) BernardBrogliato NonlinearControlSystemsII AlbertoIsidori L2-GainandPassivityTechniquesinnonlinearControl ArjanvanderSchaft ControlofLinearSystemswithRegulationandInputConstraints AliSaberi,AntonA.StoorvogelandPeddapullaiahSannuti RobustandH∞Control BenM.Chen ComputerControlledSystems EfimN.RosenwasserandBernhardP.Lampe DissipativeSystemsAnalysisandControl RogelioLozano,BernardBrogliato,OlavEgelandandBernhardMaschke ControlofComplexandUncertainSystems StanislavV.EmelyanovandSergeyK.Korovin RobustControlDesignUsingH∞Methods IanR.Petersen,ValeryA.UgrinovskiandAndreyV.Savkin ModelReductionforControlSystemDesign GoroObinataandBrianD.O.Anderson ControlTheoryforLinearSystems HarryL.Trentelman,AntonStoorvogelandMaloHautus FunctionalAdaptiveControl SimonG.FabriandVisakanKadirkamanathan Positive1Dand2DSystems TadeuszKaczorek IdentificationandControlUsingVolterraModels FrancisJ.DoyleIII,RonaldK.PearsonandBobatundeA.Ogunnaike Non-linearControlforUnderactuatedMechanicalSystems IsabelleFantoniandRogelioLozano RobustControl(Secondedition) JürgenAckermann FlowControlbyFeedback OleMortenAamoandMiroslavKrsti´c LearningandGeneralization(Secondedition) MathukumalliVidyasagar ConstrainedControlandEstimation GrahamC.Goodwin,MaríaM.SeronandJoséA.DeDoná RandomizedAlgorithmsforAnalysisandControlofUncertainSystems RobertoTempo,GiuseppeCalafioreandFabrizioDabbene SwitchedLinearSystems ZhendongSunandShuzhiS.Ge Tohru Katayama Subspace Methods for System Identification With66Figures 123 TohruKatayama,PhD DepartmentofAppliedMathematicsandPhysics, GraduateSchoolofInformatics,KyotoUniversity,Kyoto606-8501,Japan SeriesEditors E.D.Sontag·M.Thoma·A.Isidori·J.H.vanSchuppen BritishLibraryCataloguinginPublicationData Katayama,Tohru,1942- Subspacemethodsforsystemidentification:arealization approach.-(Communicationsandcontrolengineering) 1.Systemindentification2.Stochasticanalysis I.Title 003.1 ISBN-10:1852339810 LibraryofCongressControlNumber:2005924307 Apartfromanyfairdealingforthepurposesofresearchorprivatestudy,orcriticismorreview,as permittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicencesissued bytheCopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbe senttothepublishers. CommunicationsandControlEngineeringSeriesISSN0178-5354 ISBN-10 1-85233-981-0 ISBN-13 978-1-85233-981-4 SpringerScience+BusinessMedia springeronline.com ©Springer-VerlagLondonLimited2005 MATLAB®istheregisteredtrademarkofTheMathWorks,Inc.,3AppleHillDriveNatick,MA01760- 2098,U.S.A.http://www.mathworks.com Theuseofregisterednames,trademarks,etc.inthispublicationdoesnotimply,evenintheabsenceof aspecificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandtherefore freeforgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinfor- mationcontainedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsor omissionsthatmaybemade. Typesetting:Camerareadybyauthor Production:LE-TEXJelonek,Schmidt&VöcklerGbR,Leipzig,Germany PrintedinGermany 69/3141-543210Printedonacid-freepaperSPIN11370000 To myfamily Preface Numerouspapersonsystemidentificationhavebeenpublishedoverthelast40years. Though there were substantial developmentsin the theory of stationary stochastic processesandmultivariablestatisticalmethodsduring1950s,itiswidelyrecognized thatthetheoryofsystemidentificationstartedonlyinthemid-1960swith thepub- lication of two importantpapers;onedue to A˚stro¨mand Bohlin[17],in which the maximumlikelihood(ML)methodwasextendedtoaseriallycorrelatedtimeseries to estimate ARMAX models, and the other due to Ho and Kalman [72], in which thedeterministicstatespacerealizationproblemwassolvedforthefirsttimeusinga certainHankelmatrixformedintermsofimpulseresponses.Thesetwopapershave laid the foundationfor thefuturedevelopmentsof system identificationtheoryand techniques[55]. The scope of the ML identification method of A˚stro¨m and Bohlin [17] was to build single-input, single-output(SISO) ARMAX models from observed input- outputdatasequences.Sincetheappearanceoftheirpaper,manystatisticalidentifi- cationtechniqueshavebeendevelopedintheliterature,mostofwhicharenowcom- prised under the label ofpredictionerror methods(PEM)or instrumentalvariable (IV)methods.ThishasculminatedinthepublicationofthevolumesLjung[109]and So¨derstro¨mandStoica[145].Atthismomentwecansaythattheoryofsystemiden- tification forSISO systemsis established,andthe variousidentificationalgorithms havebeenwelltested,andarenowavailableasMATLABR programs. (cid:0) Also,identificationofmulti-input,multi-output(MIMO)systemsisanimportant problemwhich is notdealt with satisfactorily by PEM methods.The identification problembasedontheminimizationofapredictionerrorcriterion(oraleast-squares typecriterion),whichingeneralisacomplicatedfunctionofthesystemparameters, has to be solved by iterative descentmethodswhich may getstuck into local min- ima. Moreover, optimization methods need canonical parametrizations and it may be difficult to guess a suitable canonicalparametrizationfrom the outset. Since no single continuous parametrization covers all possible multivariable linear systems withafixedMcMillandegree,itmaybenecessarytochangeparametrizationinthe courseoftheoptimizationroutine.Thustheuseofoptimizationcriteriaandcanon- ical parametrizations can lead to local minima far from the true solution, and to viii Preface numericallyill-conditionedproblemsduetopooridentifiability,i.e.,tonearinsensi- tivity of the criterionto thevariationsof some parameters.Hence itseems thatthe PEMmethodhasinherentdifficultiesforMIMOsystems. On the other hand, stochastic realization theory, initiated by Faurre [46] and Akaike[1]andothers,hasbroughtinadifferentphilosophyofbuildingmodelsfrom data,whichisnotbasedonoptimizationconcepts.Akeystepinstochasticrealiza- tioniseithertoapplythedeterministicrealizationtheorytoacertainHankelmatrix constructedwithsampleestimatesoftheprocesscovariances,ortoapplythecanon- icalcorrelationanalysis(CCA)tothefutureandpastoftheobservedprocess.These algorithmshavebeenshowntobeimplementedveryefficientlyandinanumerically stablewaybyusingthetoolsofmodernnumericallinearalgebrasuchasthesingular valuedecomposition(SVD). Then,aneweffortindigitalsignalprocessingandsystemidentificationbasedon theQRdecompositionandtheSVDemergedinthemid-1980sandmanypapershave been published in the literature [100,101,118,119], etc. These realization theory- basedtechniqueshaveledtoadevelopmentofvariousso-calledsubspaceidentifica- tionmethods,including[163,164,169,171–173],etc.Moreover,VanOverscheeand DeMoor[165]havepublishedafirstcomprehensivebookonsubspaceidentification of linear systems. An advantageofsubspace methodsis thatwe do notneed(non- linear) optimization techniques, nor we need to impose to the system a canonical form,so thatsubspacemethodsdonotsufferfromtheinconveniencesencountered inapplyingPEMmethodstoMIMOsystemidentification. Though I have been interested in stochastic realization theory for many years, it was around1990that I actually resumed studies on realizationtheory,including subspace identification methods. However, realization results developed for deter- ministicsystemsontheonehand,andstochasticsystemsontheother,couldnotbe applied to the identification of dynamic systems in which both a deterministic test inputandastochasticdisturbanceareinvolved.Infact,thedeterministicrealization resultdoesnotconsideranynoise,andthestochasticrealizationtheorydevelopedup totheearly1990sdidaddressmodelingofstochasticprocesses,ortimeseries,only. Then,Inoticedatoncethatweneededanewrealizationtheorytounderstandmany existing subspace methodsand their underlyingrelations and to develop advanced algorithms. Thus I was fully convinced that a new stochastic realization theory in thepresenceofexogenousinputswasneededforfurtherdevelopmentsofsubspace systemidentificationtheoryandalgorithms. While we were attending the MTNS (The International Symposium on Math- ematical Theory of Networks and Systems) at Regensburg in 1993, I suggested to GiorgioPicci,UniversityofPadova,thatweshoulddojointworkonstochasticre- alizationtheoryinthepresenceofexogenousinputsandacollaborationbetweenus started in 1994 when he stayed at Kyoto University as a visiting professor.Also, I successivelyvisitedhimattheUniversityofPadovain1997.Thecollaborationhas resulted in several joint papers[87–90,93,130,131].Professor Picci has in partic- ular introduced the idea of decomposing the output process into deterministic and stochastic componentsby using a preliminaryorthogonaldecomposition,and then applyingtheexistingdeterministicandstochasticrealizationtechniquestoeachcom- Preface ix ponentto geta realizationtheoryin thepresenceofexogenousinput.On theother hand,inspiredbytheCCA-basedapproach,Ihavedevelopedamethodofsolvinga multi-stageWienerpredictionproblemtoderiveaninnovationrepresentationofthe stationaryprocesswithanobservableexogenousinput,fromwhichsubspaceidenti- ficationmethodsaresuccessfullyobtained. This book is an outgrowthof the joint work with Professor Picci on stochastic realizationtheoryandsubspaceidentification.Itprovidesanin-depthintroductionto subspacemethodsforsystemidentificationofdiscrete-timelinearsystems,together with ourresultsonrealizationtheoryin thepresenceofexogenousinputsandsub- spacesystemidentificationmethods.Ihaveincludedproofsoftheoremsandlemmas asmuchaspossible,aswellassolutionstoproblems,inordertofacilitatethebasic understanding of the material by the readers and to minimize the effort needed to consultmanyreferences. Thistextbookisdividedintothreeparts:PartIincludesreviewsofbasicresults, fromnumericallinearalgebratoKalmanfiltering,tobeusedthroughoutthisbook, Part II provides deterministic and stochastic realization theories developed by Ho andKalman,Faurre,andAkaike,andPartIIIdiscussesstochasticrealizationresults in the presenceof exogenousinputsand their adaptationto subspace identification methods;seeSection1.6formoredetails.Thus,variouspeoplecanreadthisbookac- cordingtotheirneeds.Forexample,peoplewithagoodknowledgeoflinearsystem theory and Kalman filtering can begin with Part II. Also, people mainly interested inapplicationscanjustreadthealgorithmsofthevariousidentificationmethodsin Part III, occasionally returning to Part I and/or Part II when needed. I believe that this textbookshouldbe suitable foradvancedstudents, appliedscientists andengi- neerswhowanttoacquiresolidknowledgeandalgorithmsofsubspaceidentification methods. IwouldliketoexpressmysincerethankstoGiorgioPicciwhohasgreatlycon- tributed to our fruitful collaboration on stochastic realization theory and subspace identificationmethodsoverthelasttenyears.IamdeeplygratefultoHideakiSakai, who has read the whole manuscriptcarefullyand providedinvaluablesuggestions, whichhaveledtomanychangesinthemanuscript.IamalsogratefultoKiyotsugu Takaba and Hideyuki Tanaka for their useful comments on the manuscript. I have benefited from joint works with Takahira Ohki, Toshiaki Itoh, Morimasa Ogawa, andHajimeAse,whotoldmeaboutmanyproblemsregardingmodelingandidenti- ficationofindustrialprocesses. Therelatedresearchfrom1996through2004hasbeensponsoredbytheGrant- in-AidforScientificResearch,theJapanSocietyofPromotionofSciences,whichis gratefullyacknowledged. TohruKatayama Kyoto,Japan January2005 Contents 1 Introduction................................................... 1 1.1 SystemIdentification ....................................... 1 1.2 ClassicalIdentificationMethods .............................. 4 1.3 PredictionErrorMethodforStateSpaceModels ................ 6 1.4 SubspaceMethodsofSystemIdentification..................... 8 1.5 HistoricalRemarks ......................................... 11 1.6 OutlineoftheBook......................................... 13 1.7 NotesandReferences ....................................... 14 PartI Preliminaries 2 LinearAlgebraandPreliminaries................................ 17 2.1 VectorsandMatrices........................................ 17 2.2 SubspacesandLinearIndependence........................... 19 2.3 NormsofVectorsandMatrices ............................... 21 2.4 QRDecomposition ......................................... 23 2.5 ProjectionsandOrthogonalProjections ........................ 27 2.6 SingularValueDecomposition................................ 30 2.7 Least-SquaresMethod ...................................... 33 2.8 RankofHankelMatrices .................................... 36 2.9 NotesandReferences ....................................... 38 2.10 Problems ................................................. 39 3 Discrete-TimeLinearSystems ................................... 41 3.1 -Transform............................................... 41 (cid:0) 3.2 Discrete-TimeLTISystems .................................. 44 3.3 NormsofSignalsandSystems ............................... 47 3.4 StateSpaceSystems ........................................ 48 3.5 LyapunovStability ......................................... 50 3.6 ReachabilityandObservability ............................... 51

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.