ebook img

Subpixel Mapping for Remote Sensing Images PDF

283 Pages·2022·56.866 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Subpixel Mapping for Remote Sensing Images

Subpixel Mapping for Remote Sensing Images This book provides readers with a complete overview of subpixel image processing methods, basic principles, and different subpixel mapping techniques based on single or multi-shift remote sensing images. Real-life applications are a great resource for understanding how and where to use subpixel mapping when dealing with different remote sensing imaging data. FEATURES • Provides the fundamentals of subpixel mapping technology and its applications. • Discusses in detail the advantages of using different subpixel mapping techniques based on remote sensing data. • Summarizes in a systematic way current subpixel mapping methods. • Highlights authors’ achievements in subpixel mapping technology. • Includes case studies based on remote sensing data from the United States, Italy, China, and Cambodia. This book will be of interest to undergraduate and graduate students majoring in remote sensing, surveying, mapping, and signal and information processing in universities and colleges, and it can also be used by professionals and researchers at different levels in related felds. Subpixel Mapping for Remote Sensing Images Peng Wang and Lei Zhang Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business First edition published 2023 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487–2742 and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN CRC Press is an imprint of Taylor & Francis Group, LLC © 2023 Peng Wang and Lei Zhang Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microflming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www. copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978–750–8400. For works that are not available on CCC please contact [email protected]. Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identifcation and explanation without intent to infringe. ISBN: 978-1-032-22938-6 (hbk) ISBN: 978-1-032-24522-5 (pbk) ISBN: 978-1-003-27908-2 (ebk) DOI: 10.1201/9781003279082 Typeset in Times by Apex CoVantage, LLC Contents Foreword ................................................................................................................... ix Preface....................................................................................................................... xi Authors....................................................................................................................xiii Chapter 1 Introduction.......................................................................................... 1 1.1 Background and Signifcance...................................................... 1 1.1.1 Background of Subpixel Mapping................................... 1 1.1.2 Signifcance of Subpixel Mapping................................... 4 1.2 Research Status of Subpixel Mapping......................................... 6 1.2.1 Initialize-Then-Optimize Subpixel Mapping.................. 7 1.2.2 Soft-Then-Hard Subpixel Mapping ................................. 8 1.2.3 Other Types of Subpixel Mapping................................... 9 1.2.4 Research Status of Super-Resolution Technology.............11 1.3 Problems in Subpixel Mapping ..................................................12 1.4 Main Research Contents and Chapter Arrangement..................13 References ...........................................................................................15 Chapter 2 Basic Principles of Subpixel Mapping ............................................... 23 2.1 Introduction ............................................................................... 23 2.2 Spectral Unmixing Method....................................................... 23 2.2.1 Linear Spectral Unmixing Model ................................. 23 2.2.2 Non-linear Spectral Unmixing Model........................... 24 2.3 Theoretical Basis of Spatial Correlation ................................... 24 2.4 Processing Flow of Subpixel Mapping...................................... 25 2.4.1 Subpixel Sharpening Method........................................ 25 2.4.2 Class Allocation Method............................................... 28 2.5 Evaluation Method of Subpixel Mapping Accuracy ................. 30 2.6 Summary ....................................................................................33 References .......................................................................................... 34 Chapter 3 Subpixel Mapping Based on Single Remote Sensing Image ..............35 3.1 Introduction ................................................................................35 3.2 Subpixel Mapping Based on Spatial-Spectral Interpolation ...............................................................................35 3.2.1 Interpolation Problem.................................................... 36 3.2.2 Existing Subpixel Mapping Based on Interpolation ...................................................................37 3.2.3 Processing Flow of the Proposed Method..................... 38 3.2.4 Experimental Content and Result Analysis................... 40 v vi Contents 3.3 Subpixel Mapping Based on Hopfeld Neural Network With More Supervision Information ......................................... 48 3.3.1 Traditional Subpixel Mapping Method Based on Hopfeld Neural Network.......................................... 48 3.3.2 Hopfeld Neural Network With More Prior Information.................................................................... 49 3.3.3 Experiment Content and Result Analysis.......................51 3.4 Subpixel Mapping Based on Extended Random Walk...............55 3.4.1 Multi-Scale Segmentation Algorithm ............................55 3.4.2 Extended Random Walk Algorithm...............................57 3.4.3 Class Allocation Method Based on Object Unit.............58 3.4.4 Experimental Content and Result Analysis....................59 3.5 Subpixel Mapping Based on Spatial-Spectral Correlation for Spectral Imagery .............................................. 64 3.5.1 Spatial Correlation......................................................... 64 3.5.2 Spectral Correlation....................................................... 66 3.5.3 Spatial-Spectral Correlation Implementation .................67 3.5.4 Experimental Content and Result Analysis................... 69 3.6 Summary ....................................................................................81 References .......................................................................................... 82 Chapter 4 Subpixel Mapping Based on Multi-Shift Remote Sensing Images................................................................................... 85 4.1 Introduction ............................................................................... 85 4.2 Theoretical Basis....................................................................... 85 4.2.1 Multi-Shift Images Problem.......................................... 85 4.2.2 Existing Subpixel Mapping Method Based on Multi-Shift Images ................................................... 87 4.3 Subpixel Mapping Method Based on Multi-Shift With Spatial-Spectral Information............................................ 88 4.3.1 Multi-Shift Image With More Spatial- Spectral Information...................................................... 88 4.3.2 Experiment Content and Result Analysis.......................91 4.4 Subpixel Mapping Based on the Spatial Attraction Model With Multi-Scale Subpixel Shifted Images ................. 100 4.4.1 Subpixel-Pixel Spatial Attraction Model..................... 100 4.4.2 Subpixel-Subpixel Spatial Attraction Model ................102 4.4.3 Spatial Attraction Model With Multi-Scale Subpixel Shifted Image ................................................103 4.4.4 Experiment Content and Result Analysis.....................104 4.5 Utilizing Parallel Networks to Produce Subpixel Shifted Images With Multi-Scale Spatial-Spectral Information for Subpixel Mapping...............................................................115 4.5.1 Multi-Scale Network and Spatial-Spectral Network ........................................................................115 Contents vii 4.5.2 Multi-Scale Spatial-Spectral Information....................119 4.5.3 Experimental Content and Result Analysis..................121 4.6 Spatiotemporal Subpixel Mapping by Considering the Point Spread Function Effect..............................................132 4.6.1 Spatial Dependence......................................................133 4.6.2 Temporal Dependence..................................................135 4.6.3 Spatiotemporal Dependence.........................................136 4.6.4 Experimental Content and Result Analysis..................136 4.7 Summary ..................................................................................142 References .........................................................................................143 Chapter 5 Subpixel Mapping of Remote Sensing Image Based on Fusion Technology .......................................................................145 5.1 Introduction ..............................................................................145 5.2 Soft-Then-Hard Subpixel Mapping Based on Pansharpening Technology ......................................................146 5.2.1 Pansharpening Technology ..........................................146 5.2.2 STHSRM-PAN.............................................................148 5.2.3 Experimental Content and Result Analysis..................150 5.3 Subpixel Land Cover Mapping Based on Parallel Processing Path for Hyperspectral Image................................159 5.3.1 Fusion Path ...................................................................159 5.3.2 Deep Learning Path......................................................161 5.3.3 Dual Processing Path....................................................163 5.3.4 Experimental Content and Result Analysis..................164 5.4 Subpixel Mapping Based on Multi-Source Remote Sensing Fusion Data for Land Cover Classes...........................175 5.4.1 Data-Level Fusion.........................................................178 5.4.2 Feature Fusion ..............................................................178 5.4.3 Obtaining Mapping Result ...........................................179 5.4.4 Experimental Content and Result Analysis..................180 5.5 Summary ..................................................................................186 References .........................................................................................188 Chapter 6 Remote Sensing Image Subpixel Mapping Based on Classifcation Then Reconstruction...................................................191 6.1 Introduction ..............................................................................191 6.2 Theoretical Basis......................................................................191 6.2.1 Super-Resolution Algorithm.........................................191 6.2.2 Fully Supervised Information Classifcation Algorithm .....................................................................193 6.3 Subpixel Mapping Based on MAP Super-Resolution Reconstruction Then Classifcation..........................................199 viii Contents 6.3.1 Transformed MAP-Based Super-Resolution Reconstruction..............................................................199 6.3.2 LSSVM Classifcation Algorithm ............................... 203 6.3.3 Experiment Content and Result Analysis.................... 204 6.4 Subpixel Mapping Based on Pansharpening Then Classifcation ............................................................................219 6.4.1 Implementation Steps...................................................219 6.4.2 Experiment Content and Result Analysis.................... 220 6.5 Summary ................................................................................. 223 References ........................................................................................ 224 Chapter 7 Application of Subpixel Mapping Technology in Remote Sensing Imaging............................................................................... 227 7.1 Introduction ............................................................................. 227 7.2 Improving Flood Subpixel Mapping for Multispectral Image by Supplying More Spectral Information..................... 228 7.2.1 Existing SRFIM .......................................................... 228 7.2.2 SRFIM-MSI................................................................. 230 7.2.3 Experiment Content and Result Analysis.....................231 7.3 Subpixel Mapping of Urban Buildings Based in Multispectral Image With Spatial-Spectral Information .........235 7.3.1 Spaceborne Multispectral Remote Sensing Image ..............................................................235 7.3.2 Experiment Content and Result Analysis.................... 236 7.4 Multispectral Subpixel Burned-Area Mapping Based on Space-Temperature Information..........................................241 7.4.1 Space Part.....................................................................241 7.4.2 Temperature Part......................................................... 243 7.4.3 Implementation of STI................................................. 244 7.4.4 Experiment Content and Result Analysis.................... 245 7.5 Summary ................................................................................. 256 References ........................................................................................ 256 Appendix: Abbreviations......................................................................................259 Content Validity ................................................................................................... 265 Index.......................................................................................................................267 Foreword With the rapid development of the aerospace industry in recent years, remote sensing science, as a comprehensive technology in the aerospace feld, has been widely and greatly developed in both theory and application. In particular, the spectral remote sensing developed in recent years can obtain the spatial information and spectral information of land cover classes at the same time, realize the real integration of maps, and provide strong technical support for the aerospace industry. Remote sens- ing technology has been successfully applied in military, civil, agricultural, marine, smart city, disaster reduction, and other felds. As an important research direction of remote sensing technology, remote sensing image processing directly determines the accuracy and utilization of remote sensing information. One of the hot issues in remote sensing image processing technology is how to deal with mixed pixels to improve the spatial resolution of remote sensing images. Although spectral unmixing technology can obtain the proportion (abun- dance value) of each class in the mixed pixel, it cannot obtain the specifc spatial distribution information of each class in the mixed pixel. Subpixel mapping (SPM) technology, as the subsequent processing of spectral unmixing technology, decom- poses pixels into smaller subpixels and then obtains thematic mapping with distribu- tion information of each class at the subpixel scale. SPM, as a potential technology to obtain land cover classes of spatial distribution information, has attracted more and more attention. Combined with the authors’ relatively new research achievements in this technol- ogy, this book makes a systematic arrangement and detailed explanation and con- tributes to readers’ understanding, learning, and research of SPM technology. In this book, the authors compile the important theories and methods about the analysis and processing stage in the SPM process, involve the complex technical key scientifc issues such as multi-source information fusion and artifcial intelligence technology, and put forward many new theories and methods of remote sensing information. It is fascinating and refreshing to read. I would like to express my warm congratulations. Professor Yongqi Xue Academician of China Academy of Sciences ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.