ebook img

Submillimeter Video Imaging with a Superconducting Bolometer Array PDF

175 Pages·2017·10.96 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Submillimeter Video Imaging with a Superconducting Bolometer Array

University of Colorado, Boulder CU Scholar Physics Graduate Theses & Dissertations Physics Spring 1-1-2014 Submillimeter Video Imaging with a Superconducting Bolometer Array Daniel Thomas Becker University of Colorado at Boulder, [email protected] Follow this and additional works at:https://scholar.colorado.edu/phys_gradetds Part of theOptics Commons Recommended Citation Becker, Daniel Thomas, "Submillimeter Video Imaging with a Superconducting Bolometer Array" (2014).Physics Graduate Theses & Dissertations. 110. https://scholar.colorado.edu/phys_gradetds/110 This Dissertation is brought to you for free and open access by Physics at CU Scholar. It has been accepted for inclusion in Physics Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please [email protected]. SUBMILLIMETER VIDEO IMAGING WITH A SUPERCONDUCTING BOLOMETER ARRAY by DANIEL THOMAS BECKER B.S., Rice University, 1994 M.S., University of Colorado, 2009 A dissertation submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics 2014 This dissertation entitled: Submillimeter Video Imaging with a Superconducting Bolometer Array written by Daniel Thomas Becker has been approved for the Department of Physics Nils Halverson Kent Irwin Date The final copy of this dissertation has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Becker, Daniel Thomas (Ph.D., Physics) Submillimeter Video Imaging with a Superconducting Bolometer Array Dissertation directed by Associate Professor Nils Halverson Millimeter wavelength radiation holds promise for detection of security threats at a distance, including suicide bombers and maritime threats in poor weather. The high sensitivity of superconducting Transition Edge Sensor (TES) bolometers makes them ideal for passive imaging of thermal signals at millimeter and submillimeter wavelengths. I have built a 350 GHz video-rate imaging system using an array of feedhorn-coupled TES bolometers. The system operates at standoff distances of 16 m to 28 m with a measured spatial resolution of 1.4 cm (at 17 m). It currently contains one 251-detector sub-array, and can be expanded to contain four sub-arrays for a total of 1004 detectors. The system has been used to take video images that reveal the presence of weapons concealed beneath a shirt in an indoor setting. This dissertation describes the design, implementation and characterization of this system. Itpresentsanoverviewofthechallengesassociatedwithstandoffpassiveimaging and how these problems can be overcome through the use of large-format TES bolometer arrays. I describe the design of the system and cover the results of detector and optical characterization. I explain the procedure used to generate video images using the system, and present a noise analysis of those images. This analysis indicates that the Noise Equivalent Temperature Difference (NETD) of the video images is currently limited by artifacts of the scanning process. More sophisticated image processing algorithms can eliminate these artifacts and reduce the NETD to 100 mK, which is the target value for the most demanding passive imaging scenarios. I finish with an overview of future directions for this system. iii Acknowledgements It is a truth universally acknowledged that a graduate student in possession of a draft dissertation must be in want of an editor. I thank Nils Halverson, Bill Becker, and Linda Becker for carefully reading this dissertation and providing much useful feedback and advice. Any remaining grammatical, spelling, or other errors are entirely my own. I had help from many different people while performing the work described in this dissertation. At some point in time, everyone associated with NIST’s Quantum Sensors Project provided either useful advice as I worked through the design process, or gave concrete help in the lab. The sections at the ends of Chapters 4 and 5 give the names of people who were particularly helpful with specific areas. I would also like to thank Mike Niemack, who explained to me how to use the MCE as well as giving useful advice regarding the design and testing of the detectors. Conversations with Doug Bennett have been helpful in understanding TES detectors in general. Hannes Hubmayr was a useful resource for TES detectors and submillimeter detection. Randy Doriese helped me to understand SQUID readout. Carl Reintsema designed circuit boards for reading out the prototype detectors, and came up with the idea of reading out the mirror position using the SQUID readout system. Colin Fitzgerald, Jon Gard, Cale Gentry, and Bob Schwall all helped mount and unmount the cryostat from the primary mirror, a time-consuming and vexing task. Of course none of this work would be possible without good advisors, and I thank Nils Halverson for giving me an initial opportunity to work in the field of submillimeter detection, and Kent Irwin for the opportunity to continue working in the field. Both Nils and Kent have been very supportive of me, particularly in light of the challenges I have faced as a graduate student attempting to support a family with young children, and I deeply appreciate their support and help. I am blessed with a supportive family and extended family. I particularly thank my parents for, well, everything, and my sister Kate for serving as an inspiration in many different ways. During the months of writing this dissertation my children have had to put up with a father spending too much time writing in the basement, and I thank them for their patience with me. Finally, and most importantly, I thank my wife, Terzah, who helped in many small as well as large ways, and without whose love and support none of this would be possible. iv Contents List of Tables viii List of Figures ix 1 Introduction 1 1.1 Security Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Required Image Noise for Passive Imaging . . . . . . . . . . . . . . . . . . . 6 1.3 Passive Imaging Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 System Specifications and Solutions 14 2.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Transition Edge Sensor Bolometer Basics . . . . . . . . . . . . . . . . . . . . 15 2.3 Transition Edge Sensors for Passive Imaging . . . . . . . . . . . . . . . . . . 17 2.4 Other Cooled Detector Imaging Systems . . . . . . . . . . . . . . . . . . . . . 18 3 TES Bolometer Theory 21 3.1 TES Electrical And Thermal Circuits . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Linearized Electrical and Thermal Circuits . . . . . . . . . . . . . . . . . . . 23 3.3 Measurement of Natural Time Constant . . . . . . . . . . . . . . . . . . . . . 28 3.4 IV Curve Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.5 TES Saturation Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.6 Stability of TES Bolometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.7 TES Bolometer Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 System Design Overview 35 4.1 Cryostat Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Optical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Optical Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 v ontents C 4.4 Feedhorn Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.5 Optical Coupling to Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.6 Predicted Optical Efficiency and Optical Loading on Detectors . . . . . . . 62 4.7 Detector Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.8 MCE Servo Gain Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.9 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5 Detector and Focal Plane Design 72 5.1 Prototype Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2 Bolometer Design Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3 Detector Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.4 Shunts and Nyquist Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.5 Detector Wafer Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.6 Focal Plane Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.7 System Field of View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.8 Predicted Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.9 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6 Sub-array Characterization 91 6.1 A path to DC responsivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.2 Shunt Resistance Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3 Calibration of Heater Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.4 Measurement of Natural Time Constant τ . . . . . . . . . . . . . . . . . . . . 98 6.5 Measurement of TES G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.6 Direct Measurement of Detector Responsivity and τ . . . . . . . . . . . . 102 eff 6.7 Measurements of Loop Gain and TES Current Sensitivity . . . . . . . . . . . 104 6.8 Common Mode Signal and 1/f noise . . . . . . . . . . . . . . . . . . . . . . 109 6.9 Microphonic Pickup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.10 Noise Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.11 Detector Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7 Imaging 119 7.1 Detector Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.2 Readout of Mirror Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.3 Focus Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.4 Beam Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 vi Contents 7.5 Direct Measurement of Distance Scale and Image Resolution . . . . . . . . . 133 7.6 Optical Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.7 Temperature Scale Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.8 Image Processing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7.9 Image Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 8 Summary and Future Work 147 8.1 Future Work on This System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8.2 Polarization and Multi-band Imaging . . . . . . . . . . . . . . . . . . . . . . 149 8.3 Directions for Future Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Bibliography 153 vii List of Tables 2.1 Table summarizing capabilities of different video imaging systems . . . . . . . 20 3.1 Symbols and parameters used in describing behavior of TES detectors. . . . . . 27 3.2 Noise in TES bolometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1 Temperatures reached under optical load . . . . . . . . . . . . . . . . . . . . . . 36 4.2 Predicted thermal load on 1K stage . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Optical system specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4 Parameters of the optical system extracted from ZEMAX simulations . . . . . . 46 4.5 Details of all filters installed in the 350GHz Video Imager . . . . . . . . . . . . 49 4.6 Optical load and photon noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.7 Configuration parameters for the MCE . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1 Measured properties of prototype detectors . . . . . . . . . . . . . . . . . . . . . 74 5.2 Detector dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3 Detector heat capacity contributions . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.1 Summary of measurements made on first 251-detector sub-array . . . . . . . . 92 6.2 Measured detector properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3 Detector properties while biased into transition . . . . . . . . . . . . . . . . . . 103 7.1 Results of optical efficiency measurements . . . . . . . . . . . . . . . . . . . . . 137 viii List of Figures 1.1 Clothing transmission vs frequency . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Atmospheric transmission vs frequency . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Signal-to-noise ratio for object detection . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Apparent temperature of a covered illuminated object . . . . . . . . . . . . . . 9 2.1 Bolometer schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1 Electrical and thermal TES circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Plots describing heater measurements . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 Plots showing fit to Equation 3.25 . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1 Cutaway view of the 350GHz Video Imager . . . . . . . . . . . . . . . . . . . . 37 4.2 Cutaway view of the He4-sorption refrigerator . . . . . . . . . . . . . . . . . . . 38 4.3 Schematic showing elements of optical system . . . . . . . . . . . . . . . . . . . 41 4.4 Photographs of the optical system . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.5 Optical system ray-trace diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.6 ZEMAX spot diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.7 Schematic showing locations of all filters in the 350GHz Video Imager . . . . . 47 4.8 Plot showing transmission of the bandpass filter. . . . . . . . . . . . . . . . . . . 48 4.9 Schematic showing important parameters of a feedhorn and its beam . . . . . 51 4.10 Feedhorn spillover efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.11 NETD vs number of detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.12 Beam patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.13 HFSS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.14 Detector coupling efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.15 Feedhorn / detector misalignment . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.16 Time-Division Multiplexing schematic . . . . . . . . . . . . . . . . . . . . . . . . 66 ix

Description:
a distance, including suicide bombers and maritime threats in poor weather. The high sensitivity of superconducting Transition Edge Sensor (TES)
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.